Surface Modification by Means of Laser Melting Combined with Shot Peening

Noordhuis, J.; Hosson, J.Th.M. De

Published in:
Acta Metallurgica et Materialia

DOI:
10.1016/0956-7151(92)90044-F

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1992

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
SURFACE MODIFICATION BY MEANS OF LASER MELTING COMBINED WITH SHOT PEENING: A NOVEL APPROACH

J. NOORDHUIS and J. TH. M. DE HOSSON

Department of Applied Physics, Materials Science Centre, University of Groningen, Nijenborgh 18, 9747 AG Groningen, The Netherlands

(Received 13 December 1991; in revised form 22 May 1992)

Abstract—Among the available laser applications laser surface melting has turned out to be a powerful technique for the production of wear-resistant layers. Despite the advantages of this process, laser surface melting results in tensile stresses which may assist crack propagation. In this paper it will be shown that shot peening can overcome this drawback effectively. It turned out that a preceding laser treatment of an eutectic aluminium–silicon alloy is able to amplify considerably the effectiveness of the shot peening treatment. In particular the maximum attainable hardness and compressive stress increase upon increasing the quench rate, i.e. upon increasing the laser scan velocity. The high concentration of silicon in solid solution turned out to be the main reason for the enhanced mechanical performance, not only directly through solid solution hardening, but also by a higher dislocation density. The latter contribution is affected indirectly by a changed cross slip behaviour.

INTRODUCTION

Eutectic aluminium–silicon alloys are commonly used for automotive parts like cylinder heads and pistons. These types of alloys combine good castability, low density, good corrosion resistance and a low thermal expansion. The mechanical properties can be further improved by small additions of sodium or strontium [1]. These impurities cause a change in the morphology of the silicon phase, and a decreased spacing between them. The amount of modifier however is quite critical since over-modification results in reduced mechanical properties. Furthermore, losses from the melt and the formation of undesired intermetallic compounds cause additional problems.

Rapid solidification by means of laser surface melting is another way of achieving a fine distribution of the silicon phase [2]. The cellular solidification results in cell sizes in the order of 1 μm, depending on the scan velocity. The depth of the laser tracks is 50–500 μm, which is enough to allow further machining, and depends on the process parameters. In addition laser surface treatment is a process that
offers greater precision and less distortion than most other surface techniques.

In this paper we will examine the combination of laser surface melting technique and shotpeening. The latter technique has been known for much longer time and is commonly applied when the fatigue life time of metals has to be improved. An aluminium–silicon alloy is chosen because it is widely used as a casting alloy and because of its simple phase diagram.

EXPERIMENTAL

Homogeneous samples of an eutectic aluminium–silicon alloy, of which the composition is listed in Table 1, have been sandblasted to obtain a rough, well absorbing surface. After ultrasonically cleaning the samples were irradiated using a transverse flow Spectra Physics 820 CO₂ laser. At the surface the power of the beam was 1300 W. The focus point of the ZnSe lens with focal length of 127 mm lays 5 mm above the surface, resulting in a spot diameter of 0.75 mm. X-ray diffraction samples were prepared by making an overlap of laser tracks resulting in a large surface area. In all other cases single laser tracks were used. The laser scan velocity was varied between 1/8 and 8 cm/s. At higher velocities the interaction time was too short to dissolve all of the primary silicon particles.

After laser treatment shotpeening was carried out taking glass beads of an average diameter of 720 μm. The air pressure was 2.6 bar, low enough to prevent ploughing of the sample surface and breaking of the glass beads.

X-ray measurements were carried out using a Philips PW 1830 X-ray diffractometer equipped with a fine focus copper tube and a graphite monochromator in the diffracted beam.

TEM specimens were prepared using a mechanical dimpler, followed by ion milling in the cooled stage of a Gatan 600 dual ion mill. A Jeol 200 CX electron microscope was used for examination of these specimens. Optical microscopy and hardness measurement were carried out on samples embedded in epoxy using the taper sectioning technique, because this leads to accurate hardness values just below the surface.

RESULTS

Hardness measurements

The surface hardness was measured on various samples treated with different laser scan velocities and peening times. The results are compiled in Table 2. Each value represents an average of four measurements. An exponential fit [3] through the data points is depicted in Fig. 1. It is easy to see that the laser treatment results in hardness values approximately twice as high as the bulk material. Subsequent shotpeening further increases the hardness to a value three times that of the bulk material. A closer examination reveals that the increment of the hardness is the highest for the samples with the highest laser velocity. The saturation values are reached after approx. 100 s for the low and 200 s for the high laser scan velocity samples.

For a sample with laser scan velocity of 8 cm/s a depth profile is measured using a Knoop indenter, Fig. 2. From this figure we may conclude that the maximum peening effects extends to a depth of approx. 150 μm, which is almost as deep as the laser track, namely 200 μm.

X-ray measurements

X-ray measurements were carried out to determine the surface stress state after the laser treatment and the shotpeening treatment using [4]:

\[
\frac{d_{020} - d_0}{d_0} = \epsilon = \frac{1 + \nu}{E} \sigma_0 \sin^2 \psi - \frac{\nu}{E} (\sigma_1 + \sigma_2) \tag{1}
\]

<table>
<thead>
<tr>
<th>Shotpeen time</th>
<th>1/8</th>
<th>1/4</th>
<th>1/2</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>Bulk</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>88</td>
<td>91</td>
<td>98</td>
<td>94</td>
<td>107</td>
<td>112</td>
<td>108</td>
<td>62</td>
</tr>
<tr>
<td>6</td>
<td>98</td>
<td>105</td>
<td>95</td>
<td>114</td>
<td>116</td>
<td>124</td>
<td>156</td>
<td>62</td>
</tr>
<tr>
<td>10</td>
<td>105</td>
<td>113</td>
<td>119</td>
<td>124</td>
<td>129</td>
<td>137</td>
<td>153</td>
<td>56</td>
</tr>
<tr>
<td>15</td>
<td>110</td>
<td>111</td>
<td>113</td>
<td>120</td>
<td>137</td>
<td>140</td>
<td>148</td>
<td>56</td>
</tr>
<tr>
<td>25</td>
<td>115</td>
<td>117</td>
<td>124</td>
<td>125</td>
<td>145</td>
<td>147</td>
<td>148</td>
<td>54</td>
</tr>
<tr>
<td>40</td>
<td>124</td>
<td>129</td>
<td>142</td>
<td>143</td>
<td>151</td>
<td>161</td>
<td>177</td>
<td>61</td>
</tr>
<tr>
<td>60</td>
<td>125</td>
<td>135</td>
<td>151</td>
<td>157</td>
<td>159</td>
<td>181</td>
<td>182</td>
<td>69</td>
</tr>
<tr>
<td>90</td>
<td>124</td>
<td>132</td>
<td>142</td>
<td>151</td>
<td>160</td>
<td>167</td>
<td>180</td>
<td>64</td>
</tr>
<tr>
<td>150</td>
<td>130</td>
<td>141</td>
<td>154</td>
<td>152</td>
<td>170</td>
<td>187</td>
<td>190</td>
<td>64</td>
</tr>
<tr>
<td>240</td>
<td>133</td>
<td>143</td>
<td>152</td>
<td>169</td>
<td>174</td>
<td>185</td>
<td>202</td>
<td>70</td>
</tr>
<tr>
<td>360</td>
<td>129</td>
<td>147</td>
<td>152</td>
<td>169</td>
<td>171</td>
<td>195</td>
<td>200</td>
<td>65</td>
</tr>
<tr>
<td>540</td>
<td>135</td>
<td>150</td>
<td>153</td>
<td>173</td>
<td>178</td>
<td>199</td>
<td>204</td>
<td>66</td>
</tr>
</tbody>
</table>

Table 2. Measured surface hardness as a function of laser scan velocity and shotpeen time

Table 1. Chemical composition of the used alloy

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Fe</th>
<th>Mn</th>
<th>Cu</th>
<th>Zn</th>
<th>Ti</th>
<th>Si</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-Si</td>
<td>0.168</td>
<td>0.03</td>
<td>0.01</td>
<td>0.025</td>
<td>0.025</td>
<td>12.0</td>
<td>Bal</td>
</tr>
</tbody>
</table>

The table shows the chemical composition of the Al-Si alloy used in the experiment.
Fig. 1. Surface hardness of Al-12Si as a function of laser scan velocity and shotpeen time.

Fig. 2. Knoop hardness in a 8 cm/s track as a function of depth, before \(\triangle \) and after shotpeening +.

Fig. 3. Histogram showing the amount of silicon in solid solution as a function of laser scan velocity and shotpeen time.
where \(\sigma_1\) and \(\sigma_2\) represent the stresses longitudinal and transverse to the scan direction. The Young's modulus \(E\) and Poisson's constant \(v\) were taken to be 70 GPa and 0.3 respectively. We measured an average value over 10 overlapping laser tracks, and found no large differences of the stresses in the longitudinal and transverse directions. As a consequence: \(\sigma_1 = \sigma_2\). Therefore the measurements are done for longitudinal stresses only.

These measurements, carried out on the Al \(<422>\) reflection can also be used to acquire the stress free lattice parameter \(a_0\) using (1) and equating the strain to zero. The results are plotted in Fig. 3. The values of \(a_0\) can be converted to the concentration silicon in solid solution [5]. Due to the higher quench rate an increased amount of silicon in solid solution is found in samples with a higher laser scan velocity. After shotpeening the lattice parameter starts to increase, and approaches the bulk value again after 360 s peening time. This may indicate that silicon precipitates are formed during the shotpeening process. The measured stress values are depicted in Fig. 4. It is easy to see that the residual stress state appears to saturate much faster than the hardness. As expected the absolute stress values are higher when the laser scan velocity is higher.

Line profile analyses were performed to acquire information about the dislocation density, in addition to the information obtained by TEM. In order to get accurate results, the reflections used should be carefully chosen. In case of a Warren Averbach multiple line method most sets of reflections fail because of interfering silicon reflections. The best choice is the \(<111>\) and \(<222>\) combination although interference from the \(<311>\) reflection may occur when the peak-widths get large. When a single line analysis is applied, similar arguments lead to the use of the \(<111>\) reflection.

X-ray line profiles may advantageously be analyzed by their Fourier-series decomposition. The Fourier coefficients yield the effective particle size \(D\) and r.m.s. strain \(\langle \varepsilon^2 \rangle^{1/2}\). The latter is rather the width of the strain distribution. The results of a Fourier single line method are depicted in Fig. 5. In this figure the obtained values for the microstrain \(\varepsilon\) and particle size \(D\) are converted to a density of dislocations with magnitude of the Burgers vector \(b\), using [6, 7]:

\[
\rho = \sqrt{\rho_0 \rho_s} = 2\sqrt{3} \frac{\sqrt{\langle \varepsilon^2 \rangle}}{Db}
\]

When applying equation (2) one should keep in mind that precipitation of silicon may result in local lattice strains [8] which also gives a contribution to the peak broadening. Comparison of our values for the microstrain with the ones obtained by [8] leads us to the conclusion that this contribution is small compared to the microstrain arising from the dislocations.

In Fig. 5 the results for the not lasered samples have been left out because of the large relative error (small peak-width increase when compared with the reference sample). In some cases where the Warren Averbach method is feasible (medium peak-widths), a recalculation yields a similar result.

The sample with laser scan velocity 1/8 cm/s shows a maximum dislocation density of \(3.4 \times 10^{16}/m^2\), which is reached already after 10 s of shotpeening. The dislocation density for the sample with laser scan...
velocity of 8 cm/s is still increasing after 360 s of peening. The absolute value is as expected also higher, namely in the order of 10^6/m2.

Microscopic observations

Optical micrographs clearly reveal the refined structure caused by the rapid solidification after laser treatment. TEM micrographs are used to estimate the dislocation density of the samples before and after shotpeening. Because the observed densities are without exceptions very high [2], see Fig. 6, only rough estimates can be given here: 10^{13}/m2 for low laser scan velocity without shotpeening and 10^{14}/m2 for high laser scan velocity after 360 s of shotpeening.

Dislocation cell structures are not observed to be formed during the shotpeening. Apparently the sizes of the cells as started with are too small to allow further division. Minimum energy configurations by the formation of checkerboard-like structure of the original cells is sometimes observed, Fig. 6.

An important observation is the difference in mobility of the dislocations in the low and the high laser scan velocity samples. In the 1/8 cm/s samples the heat input from the electron beam was sufficient to cause thermal activated dislocation movement. In the 8 cm/s sample this was not observed.

The low laser scan velocity samples reveal a breaking up of the solidification structure after shotpeening. This change of structure is not accompanied by an increased dislocation density, which implies dynamical recovery during deformation. The result is a fine granular structure, typical grain size 0.5 to 1 μm, Fig. 7. Silicon particles originally forming the eutectic cell walls are then more randomly distributed.

Another observed phenomenon in high laser scan velocity samples after shotpeening is the formation of silicon precipitates. The sizes of these precipitates vary from approx. 5 to 50 nm, see Fig. 8.

Most important about the peened bulk samples is the breaking of the original silicon particles, Fig. 9. This indicates that this alloy in the as cast condition is not suitable for a shotpeening treatment.

DISCUSSION

Theoretical descriptions on the hardening of crystalline solids involve the movement of dislocations against the resistance provided by various types of obstacles. In our samples we have the following relevant obstacles: substitutional silicon atoms, forest dislocations and silicon precipitates. The strength of these various types of obstacles can be calculated using the random obstacle theory for localized obstacles:

$$\tau = \tau_{\text{subs}} + \tau_{\text{dis}} + \tau_{\text{prec}}$$ \hspace{1cm} (3)
where the first two contributions can be described using Friedel's relation [9]:

$$\tau_{\text{subst}} = \frac{\mu b}{L} \cos^{3/2}(\phi/2)$$

(4)

where μ, b, L and ϕ are the shear modulus, magnitude of the Burgers vector, obstacle spacing and critical break away angle, respectively.

\[\frac{(G_a + G_i)\beta}{G_a + G_i + (G_u - G_a)(1 - \beta)} \leq \frac{G - G_{al}}{G_u - G_{al}} \leq \frac{(G_a + G_i)\beta}{G_a + G_i + (G_u - G_a)(1 - \beta)} \]

where if $(G_u - G_{al})(K_u - K_{al}) \geq 0$:

\[G = \frac{3}{2} \left(\frac{1}{G_{al}} + \frac{10}{9K_u + 8G_{al}} \right)^{-1}, \quad G_{al} = \frac{3}{2} \left(\frac{1}{G_u} + \frac{10}{9K_u + 8G_u} \right)^{-1} \]

(5a, 5b)

In the material we have studied, the relatively high amount (up to 2%) of silicon in solid solution is likely to play an important role. The maximum solubility of Si in Al is only 1.5% at the eutectic temperature, and it decreases to 0.05% at 300°C [5]. This low solubility is caused by the large misfit between Al and Si, while Si still occupies substitutional sites. This large misfit (18%), however, gives the Si atoms a large interaction strength, and thus an already large contribution to the flow stress at relatively low concentrations. To calculate the numeric value of this contribution an estimate of the interaction strength ξ is made by comparison with misfits in other systems [10]. ξ depends on the critical break away angle being $\xi = \cos(\phi/2) = 0.04$. This value, together with L rewritten as b/\sqrt{c} results in a contribution to the flow stress of $10^{-4} \mu$, at a solid solution concentration of 1.5%. This value of the flow stress has to be considered rather as an upper limit since a justification of Friedel's relation can be given only for not too weak obstacles and for a low concentration of impurities, i.e. when the mean distance between obstacles is larger than the minimum curvature radius of the dislocation at the obstacle. In fact the critical condition of Friedel's approximation [11], $cW^2/\xi b^3 < 1$ indicates that the present situation is a borderline case (W represents the width of the dislocation). A different approach as presented in Mott-Nabarro's model [12], taking into account the internal stress around each solute [13], predicts a contribution of the flow stress of $4 \times 10^{-4} \mu$.

Regarding the misfit between aluminium and silicon, one should note that silicon is a non-metal and that the tabulated atomic radius might change significantly when embedded in a metal. The rate of lattice contraction as solute is added indicates that the misfit is smaller than the one based on the atomic radius.

In addition, Fleischer [13] pointed out that the modulus mismatch is just as important as size mis-match when considering solid solution hardening. To take modulus hardening into account one should have knowledge about the relative change of the shear modulus $1/G dG/dc$ as solute is added. Since silicon is virtually insoluble in aluminium this is very difficult to measure and to our knowledge no values have been reported in the literature. Nevertheless the modulus mismatch will have its effect on the interaction strength. Therefore we have made an approximation of this mismatch by applying the following equations [14]:

$$\tau_{\text{dis}} = \alpha \mu b/\sqrt{\rho}$$

(6)

where α is 1/3 [15], and ρ represents the dislocation density. This equation is valid if internal stresses are absent. In heavily deformed materials the internal stress takes up about 80% of the applied stress [16].
Therefore, the effective contribution to the flow stress amounts one fifth of the value calculated with the equation above, resulting in a value of 2×10^{-4} μ for a dislocation density of 10^9 m$^{-2}$. It has to be realized that singling out the forest cutting mechanism to account 20% of the flow stress, the rest being due to internal stress is arbitrary since the internal stress in [16] may still be proportional to the square root of the dislocation density.

The third contribution to the flow stress, caused by the presence of silicon precipitates, is given by the Orowan stress [17]:

$$
\tau_{Orowan} = \frac{0.84 \mu b}{4 \pi (1 - v) \sqrt{L - 2R_s}} \ln \left(\frac{2R_s}{r_0} \right)
$$

where R_s and r_0 are the particle and dislocation core radius, respectively.

During the shotpeening the measured concentration of silicon in solid solution significantly decreases, and silicon precipitates appear. This low temperature precipitation must then be assisted by pipe diffusion. Because the capture radius of the dislocations is undoubtedly small compared to the initial dislocation spacing, a lot of deformation is needed. This is confirmed by X-ray measurements and by TEM.

To calculate the contribution of the precipitates to the flow stress, their average spacing is needed. This is a difficult task because especially the small precipitates are easily overlooked. This is caused by the random orientation of the precipitates and the heavily deformed condition of the material. Therefore only an estimate of 0.1 μ is used here. This value results in an Orowan stress of 4×10^{-3} μ.

Comparison of the calculated contributions to the flow stress indicates that the high hardness values after laser melting and shotpeening are caused mainly by precipitation hardening and to a less extent by solid solution hardening. The dislocation–dislocation interaction seems not to be the predominant factor. It does not mean that the dislocation strengthening mechanism has to be ruled out completely. Indeed after long shotpeening times, when most of the silicon has come out of the solid solution, the flow stress is still slightly increasing. However, this is considered as of minor importance in explaining the predominantly acting hardening mechanisms.

The considerations mentioned above do not include any possible changes in cross slip behaviour. Furthermore we have not yet discussed an explanation of the large difference in dislocation density in samples treated at low and high laser scan velocity. Examination of the experimental results indicates that a changed cross slip behaviour might be responsible for this phenomenon.

An increase of hardness can be achieved if one could eliminate or postpone the onset of cross slip (stage III). From that point on the work-hardening rate is decreasing with increasing strain. In our samples we see that after an initial period of approxi-
Shotpeening of the lasered material leads to the formation of small silicon precipitates, leading to a further hardness increase.

Acknowledgements—This work is part of the research program of the Foundation for Fundamental Research on Matter (FOM—Utrecht) and has been made possible by financial support from the Netherlands Organization for Scientific Research (NWO—The Hague).

REFERENCES