Spectral and timing properties of neutron-star low-mass X-ray binaries
Lyu, Ming

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2016

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Spectral and timing properties of neutron-star low-mass X-ray binaries

PhD thesis

to obtain the degree of PhD at the University of Groningen on the authority of the Rector Magnificus Prof. E. Sterken and in accordance with the decision by the College of Deans.

This thesis will be defended in public on

Monday 27 June 2016 at 11.00 hours

by

Ming Lyu

born on 20 March 1987 in Hunan, China
Supervisor
Prof. R. M. Méndez

Assessment Committee
Prof. P. D. Barthel
Prof. M. B. M. van der Klis
Prof. A. Heger
Contents

1 Thesis Introduction .. 1
 1.1 General scenario ... 1
 1.1.1 Nuclear burning on the neutron-star surface 3
 1.1.2 Spectral and timing techniques used to study the properties of LMXBs .. 4
 1.1.3 Telescopes ... 5
 1.2 Outline of this thesis ... 9

2 Spectral analysis of 4U 1636−53 13
 2.1 Introduction ... 14
 2.2 Observations and data reduction 16
 2.2.1 Suzaku data reduction .. 16
 2.2.2 XMM-Newton and RXTE data reduction 18
 2.3 Spectral Analysis .. 18
 2.3.1 Spectral model ... 20
 2.4 Results ... 21
 2.4.1 Fitting results ... 21
 2.4.2 Flux evolution ... 25
 2.5 Discussion .. 26

3 Spectral analysis of 4U 1728−34 41
 3.1 Abstract .. 42
 3.2 Introduction ... 42
 3.3 Observations and data reduction 43
 3.4 Spectral Analysis .. 44
 3.4.1 Direct emission ... 44
 3.4.2 Reflection emission ... 45
 3.5 Results ... 46
 3.6 Discussion .. 49
CONTENTS

4 MHz QPOs in 4U 1636–53

4.1 Abstract .. 56
4.2 Introduction 56
4.3 Observation and data reduction
 4.3.1 Spectral data 58
 4.3.2 Timing data 59
4.4 Results ... 61
 4.4.1 Timing results 61
 4.4.2 Spectral results 62
4.5 Discussion 67
4.6 Appendix A: Other fitting results with a blackbody component 70
4.7 Appendix B: Other fitting results with a disc component 70

Analysis of the mHz QPOs in 4U 1636–53

5.1 Abstract .. 82
5.2 Introduction 82
5.3 Observations and data reduction
 5.3.1 Timing data 84
 5.3.2 Spectral data 85
5.4 Results ... 91
 5.4.1 Timing results 91
 5.4.2 Spectral results 91
5.5 Discussion 94

6 MHz QPOs and burst convexity in 4U 1636–53

6.1 Abstract .. 102
6.2 Introduction 102
6.3 Observations and data reduction .. 103
6.4 Results ... 104
6.5 Discussion 105

English Summary

113

Nederlandse Samenvatting

119

Acknowledgements

123