Asymmetric Synthesis of New Chiral Europium N,N'-Disuccinate Complexes
HULST, R; DEVRIES, NK; FERINGA, BL

Published in:
Journal of Organic Chemistry

DOI:
10.1021/jo00103a044

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1994

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
https://doi.org/10.1021/jo00103a044

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Asymmetric Synthesis of New Chiral Europium N,N’-Disuccinate Complexes: Shift Reagents for Aqueous Solutions and Application in the Enantiomeric Excess Determination of Amino Acids

Ron Hulst,† N. Koen de Vries,‡ and Ben L. Feringa*†

Department of Organic and Molecular Inorganic Chemistry, Groningen Center for Catalysis and Synthesis, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, and DSM Research, Base Chemicals and Hydrocarbons, Analytical Section, DSM Geleen, P.O. Box 18, 6160 MD Geleen, The Netherlands

Received June 21, 1994

The synthesis of new chiral N,N’-disuccinate ligands (R,R)-8, (R,R)-9, and (S,S)-10 from (5R)- or (5S)-(menthlyloxy)-2(5H)-furanone is described. These ligands, after complexation with EuCl₃·6H₂O, are highly suitable as chiral shift reagents for the enantiomeric excess determination of amino acids and α-alkylated amino acids in aqueous solutions. Resolution experiments using various amino acids and their derivatives and a study of the pH dependency of the induced diastereomeric shift differences are included.

Introduction

Although many chiral lanthanide shift reagents are known for enantiomeric excess (ee) determinations in organic solvents, studies performed on water-soluble chiral shift reagents are rather limited. The direct ee determination of unprotected amino acids, in contrast to derivatization methods and subsequent ee determination, is an intriguing goal. Since Reuben, in 1980, by means of paramagnetic lanthanide ions only three known of the enantiomeric excess of unprotected amino acids other systems have been developed for the determination thanide derivative of (Scheme 1) to resolve the enantiomeric nuclei of chiral unprotected α-amino acids and α-hydroxy carboxylic acids. Kabuto and Sasaki demonstrated the utility of the Eu⁺⁺⁺ complex of (R)-propylene-1,2-diaminetetraacetate 2 as a powerful chiral shift reagent for aqueous solutions. The most simple and promising chiral watersoluble shift reagent until now is probably the system reported by Kidō and co-workers. The ligand, (S,S)-ethylendiamine-N,N’-disuccinamic acid (3), is easily prepared by the condensation of two molecules of L-aspartic acid with dibromoethane. Subsequent complexation with EuCl₃·6H₂O yields the chiral shift reagent.

The four carboxylic acid and two amine groups in 3 afford an ideal ligand for the lanthanide ion. The original synthesis as described by Major and co-workers, and modified by Neal and Rose, from L-aspartic acid and dibromoethane guarantees the ready availability of the ligand, although structural modifications in the ethylene bridge or acid moieties are not easily introduced.

We therefore developed an alternative route, being the asymmetric synthesis from (5R)- or (5S)-(menthlyloxy)-2(5H)-furanone (4) (Scheme 2). This route is based on a stereoselective 1,4-addition to two molecules of L-aspartic acid with dibromoethane. This methodology allows structural flexibility in the diamines and affords ligands which, after complexation with Eu⁺⁺⁺, are highly suitable as chiral water-soluble shift reagents for the enantiomeric excess determination of unprotected amino acids.

Results and Discussion

Synthesis of Disuccinate Ligands from (5S)- or (5R)-5-(Menthlyloxy)-2(5H)-furanone. When (5S)-(menthlyloxy)-2(5H)-furanone (4) was treated with 1,2-diaminoethylen, a nearly quantitative double 1,4-addition took place at room temperature (as indicated by ¹H NMR) using CH₂Cl₂ or DMF as solvent, affording the enantiomERICALLY pure 1,2-ethylen bridge bis(men-
Scheme 2. Synthesis of Ligands 8, 9, and 10 from (5R)-5-(Menthyloxy)-2(5H)-furanone (4)

7454
Hulst et al.

Ph
Scheme 3

5 R' = H, R" = H
6 R' = CH$_2$CH$_2$, R" = H
7 R' = H, R" = (S,S) Ph
1. pyridinium dichromate
2. acidic hydrolysis

R' = H, R" = (S,S) Ph

R' = H, R" = (S,S) Ph

R' = H, R" = (S,S) Ph

In the reactions described here, some amounts of the cis–trans (5–10%) and even cis–cis (5%) addition products were formed, indicating that these diamine 1,4-additions were not completely stereoselective, in contrast to previous observations in the monoamine additions to butenolides. Surprisingly, no traces of mono 1,4-adducts were found. Careful crystallization from ethanol afforded the products 5–7 as single enantiomers. Subsequent oxidation of 5, 6, and 7 using pyridinium dichromate in DMF or acetone followed by basic workup afforded the tetraacids 8, 9, and 10, respectively, in moderate yield after slow crystallization from dilute aqueous HCl (Scheme 3). The analytical data of the ligand (S,S)-8 obtained via this route appeared to be in agreement with those reported earlier.
Asymmetric Synthesis of Eu N,N'-Disuccinate Complexes

Figure 1. 1H NMR spectra (α-proton) of 0.1 M d,L-phenylglycine in the presence of 0.02 M Eu-(R,R)-8 (upper) and Eu-(R,R)-9 (lower) in D$_2$O/NaOD.

excellent agreement with the data reported by Kido and co-workers. The 1H and 13C NMR data also clearly indicated that the tetraacids were diastereomerically pure. Attempts to prepare (R,R)-6 and subsequently (R,R)-9 by means of intramolecular dialkylation of (R,R)-5 using 1,2-dibromoethane were not successful.

N,N'-Bridged Disuccinate Europium Complexes as Chiral Shift Reagents. For NMR studies separate solutions were prepared of the amino acids and the Eu(II) complexes of 8, 9, and 10 and subsequently combined in the desired ratios. The Eu(III) complexes were prepared by dissolving the desired ligand in D$_2$O with 4 equiv of NaOD and adding this solution to a D$_2$O solution of EuCl$_3$6H$_2$O, according to the method as described by Kido and co-workers. Each amino acid was dissolved in D$_2$O with an equivalent amount of NaOD, and an appropriate amount of NaCl was added to keep the final concentration at 2 M after combination with the Eu-8, Eu-9, and Eu-10 solutions.

The diastereomeric shift nonequivalences of racemic amino acids, obtained using shift reagents Eu-8 and Eu-9, are illustrated for D,L-phenylglycine in Figure 1. The larger upfield shifts of the α-proton of phenylglycine for the L isomer relative to the D isomer upon the addition of the europium complexes of (R,R)-8 or (R,R)-9 are clearly seen. The magnitude of the lanthanide-induced shift was found to increase with the europium complex: phenylglycine ratio, although the line broadening in-
increased also, making a correct determination of the resonance position difficult at higher concentrations. The europium (S,S)-10 complex shows the same kind of behavior, although in this case the D isomers are shifted more upfield relative to the L isomers.

The pH dependence of the induced chemical shift by the Eu complexes was investigated using D,L-phenylglycine as the substrate molecule, at [S0] = 0.1 and [L] = 0.02 M typically (vide infra). Using Eu-(R,R)-8 the resonances of the α-proton of D,L-phenylglycine were shifted upfield, giving the largest shift difference for the L-isomer and a somewhat smaller shift difference for the D-isomer. Both induced chemical shifts (Δδ) showed a large dependence upon the pH of the solution (Figure 2) in the pH range 9–11 with a bell shaped profile having a maximum induced chemical shift Δδ at pH 9.5–10. The sharp decreases in Δδ on both the acidic and the basic side probably correspond to oligomerization and hydroxo complex formation, respectively. The Eu-(R,R)-9 complex showed the same type of behavior, also giving a maximum induced chemical shift Δδ at pH 9–10, although the bell-shaped dependence is much less outspoken.

For the Eu-(S,S)-10 system the situation is more complex, primarily due to the limited solubility of this complex at various pH’s. The maximum Δδ is located at pH 9.0–9.5, with a sharpe decrease at both sides of this pH optimum. This decrease is probably due to limitations in solubility and not to the factors noted before. This behavior makes it difficult to compare the Eu-10 complex with the Eu-8 and the Eu-9 complex, that do not show such large solubility restrictions. Since all solutions were turbid in the pH range below 9 and above 11, experiments could only be conducted in the pH range 9–11 (actual measurements were made at pH 10), except for the experiments using 10, for which compound all measurements were performed at pH 9.25.

![Figure 2. pH dependence of the induced chemical shift (Δδ) of D-phenylglycine using the europium complexes of (R,R)-8 (+), (R,R)-9 (▲), and (S,S)-10 (●).]

![Figure 3. [S0] versus (1/chemical shift) for L-phenylglycine, Eu-(R,R)-8 (△), Eu-(R,R)-9 (○), Eu-(S,S)-10 (●); D-phenylglycine, Eu-(R,R)-8 (▲), Eu-(R,R)-9 (●), Eu-(S,S)-10 (●).]

The 1H NMR data permitted the determination of the formation constants for the ternary complexes, assuming that only 1:1 Eu ligand:phenylglycine complexes are formed, with equilibrium constant K

$$S_0 = (L_0 + [LS]^2)/S_0(\Delta\delta/\Delta\delta_i) - (L_0 + 1/K)$$

In eq 1, Δδ is the bound shift of the formed complex and L0 and S0 represent the total concentration of lanthanide shift reagent and substrate, respectively. The observed chemical shifts of the nucleus in the presence and absence of shift reagent are given by δobs and δ0, respectively. At low lanthanide to substrate ratios, [LS]/[S0] must be negligible in comparison with L0 and eq 1 simplifies to eqs 2 and 3

$$S_0 = (L_0\Delta\delta_i)/(\Delta\delta) - (L_0 + 1/K)$$

$$1/\Delta\delta = (S_0 + 1/K\Delta\delta_i)/(1/L_0) + 1/\Delta\delta_i$$

A plot of the reciprocal of the induced shift Δδ against the substrate concentration S0 (at constant lanthanide concentration) affords both the bound shift (slope/L0) and the association constant (∼1/(intercept + L0)). In Figure 3 the plots are given for the three europium ligand systems, at [L0] = 0.03 M with D- and L-phenylglycine. For the Eu-(R,R)-8 complex it was found that the data are in good agreement with the data as determined by Kido and co-workers. The association constant for the L isomer (KΔδ = 5.5) was found to be larger than for the D isomer (KΔδ = 3.5), while the bound shift for the L isomer (ΔδL = 7.2) was also larger than for the D isomer (ΔδD = 4.4). When Eu-(R,R)-9 was used as shift reagent, these

References

Asymmetric Synthesis of Eu N,N'-Disuccinate Complexes

bound shifts were determined to be not be investigated with the same degree of accuracy as the L isomer of phenylglycine are geometrically more Ab0 This phenomenon is probably related to the anisotropy formation constants are comparable with the two other systems, but the observed shift differences are larger. AbL data were not altered in sign, but only in magnitude, regardless the structure of the amino acids or amino acid derivatives used, although line broadening sometimes was extensive. Phenylglycine, used as the test substrate, is spectroscopically the most simple chiral amino acid and the signals of the α-proton are readily resolved using one of the three europium complexes, with Eu-(S,S)-10 giving the largest ΔΔδ values. Also using alanine, resolved signals could be obtained with all three europium complexes giving separations for the absorptions of the β-protons. The α-proton signals appeared as quartets, although due to extensive line broadening the exact position was difficult to determine. Again, upon the use of Eu-(S,S)-10 the largest shift differences were obtained. Phenylalanine also yielded the best results when Eu-(S,S)-10 was used, giving the largest shifts for the β-protons of the L-isomer. When α-alkylated amino acids were used, the line broadening was extensive, so that the resonance position could not always be determined, regardless of the europium ligand system used. It appeared to be possible, however, to use the signals for quantitative ee determination. When primary amino acid amides were used, the line broadening was too extensive to be of use for the determination of the enantiomeric ratios. In these cases the europium ion is probably transferred to the primary amide moiety, giving rise to severe line broadening.

The ratios of several racemic and partially enriched amino acids, as determined with the europium complexes Eu-8, Eu-9, and Eu-10, were compared with the data obtained by the α-chloropropionyl chloride1 method and the sec-butylphosphonate method2 and appeared to be within the experimental error. The asymmetric synthesis from enantiomerically pure (menthyl)oxofuranone 4 affords chiral tetraacids 8, 9, and 10 in reasonable yield. Using this methodology, structural variations are readily introduced in the ligands, as shown for ligands 9 and 10. This clearly is a major advantage over the current methods described in literature.4–6

The in situ prepared europium complexes of the tetraacids 8, 9, and 10 appear to be highly suitable as chiral shift reagents for amino acids and α-alkylated amino acids in aqueous solutions. The data obtained using Eu-(R,R)-8 are in excellent agreement with the data as reported by Kido and co-workers.6 The new Eu-(R,R)-9 and Eu-(S,S)-10 complexes give large and superior diastereomeric shift differences compared to the known Eu-(R,R)-8 system.

Experimental Section

(5R)- and (5S)-5-(menthyl)-2(5H)-furanone were prepared according to the method described by Forings and co-workers.10 The 1H (at 300 MHz) and 13C NMR (at 75.43 MHz) spectra were recorded on a Varian VXR-300 spectrometer at 30 °C. The experiments with lanthanide shift reagents were performed using a Varian Gemini-200 spectrometer (at 200 MHz) at 30 °C. All shifts are denoted relative to the solvent used. The pH determinations were done on a Radiometer Copenhagen PHM 82 standard pH meter, using a Corning calibrated combination electrode. EuCl₃·5H₂O (99.95%) and the amino acids were obtained from Janssen Chimica. Merck silica gel 60 (230–400 mesh ASTM) was used.

Due to solubility limitations and presumably association effects,18 it was found to be impossible to obtain reproducible accurate rotations and analyses for the tetraacids 8, 9, and 10. Furthermore, the 1H NMR chemical shifts and coupling constants of 8, 9, and 10 are highly pH and concentration dependent.7

(4R,4'R)-1,2-Ethyleneamidino-N,N'-bis((5R)-5-(menthyl)oxy)butyrolactone ((4R,4'R)-5). A solution of 1.00 g (4.20 mmol) (5R)-5-(menthynyl)-2(5H)-furanone and 0.13 g (2.10 mmol) of ethylenediamine in 10 mL of DMF was stirred for 12 h at room temperature. The solution was taken to dryness, taken up in CH₂Cl₂ (25 mL), and washed 5 times with water (5 mL) and concentrated, after which the residue was purified by column chromatography (silica gel, ethyl acetate–ethanol 95:5) followed by crystallization from ethanol (twice), affording

Table 1. ΔΔδ Values of Several Racemic Amino Acids Compared for the Chiral Shift Reagents (R,R)-Eu-8, (R,R)-Eu-9, and (S,S)-Eu-10 (α or β Refers to the Nucleus with Greatest ΔΔδ) †

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Eu-8 (ppm)</th>
<th>Eu-9 (ppm)</th>
<th>Eu-10 (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenylglycine</td>
<td>0.41 (α)</td>
<td>0.51 (α)</td>
<td>1.51 (α)</td>
</tr>
<tr>
<td>Alanine</td>
<td>0.08 (β)</td>
<td>0.14 (β)</td>
<td>0.31 (β)</td>
</tr>
<tr>
<td>Serine</td>
<td>0.19 (β)</td>
<td>0.24 (β)</td>
<td>0.43 (β)</td>
</tr>
<tr>
<td>Threonine</td>
<td>0.27 (β)</td>
<td>0.37 (β)</td>
<td>0.54 (β)</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>0.36 (β)</td>
<td>0.33 (β)</td>
<td>1.56 (β)</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>0.38 (β)</td>
<td>0.34 (β)</td>
<td>1.53 (β)</td>
</tr>
<tr>
<td>Trp-tyrosine</td>
<td>0.21 (β)</td>
<td>0.17 (β)</td>
<td>0.89 (β)</td>
</tr>
<tr>
<td>Proline</td>
<td>0.08 (β)</td>
<td>0.18 (β)</td>
<td>0.23 (β)</td>
</tr>
<tr>
<td>Lysine</td>
<td>0.15 (β)</td>
<td>0.20 (β)</td>
<td>0.46 (α)</td>
</tr>
<tr>
<td>Histidine</td>
<td>0.25 (β)</td>
<td>0.31 (β)</td>
<td>0.74 (β)</td>
</tr>
<tr>
<td>Valine</td>
<td>0.18 (α)</td>
<td>0.26 (α)</td>
<td>0.52 (α)</td>
</tr>
<tr>
<td>α-Me-PG</td>
<td>0.14 (β)</td>
<td>0.27 (β)</td>
<td>0.89 (β)</td>
</tr>
<tr>
<td>α-Me-Phe</td>
<td>0.19 (β)</td>
<td>0.29 (β)</td>
<td>0.64 (β)</td>
</tr>
<tr>
<td>α-Alyl-PG</td>
<td>0.12 (β)</td>
<td>0.17 (β)</td>
<td>0.93 (β)</td>
</tr>
<tr>
<td>α-Me-Val</td>
<td>0.23 (β)</td>
<td>0.25 (β)</td>
<td>0.69 (β)</td>
</tr>
<tr>
<td>α-Alyl-Ala</td>
<td>0.20 (β)</td>
<td>0.22 (β)</td>
<td>0.99 (β)</td>
</tr>
</tbody>
</table>

† Recorded in D₂O at pH 10 (for (R,R)-Eu-8 and (R,R)-Eu-9) or pH 9.25 (for (S,S)-Eu-10), [S]o = 0.01 M.

The accuracy of shift reagents is generally regarded to be a function of several factors, including line broadening, chemical shift difference, and signal to noise ratio. It is generally accepted that when only one peak is observed for enantiomeric nuclei, the presence of the antipode is less than 1.5%, corresponding with an enantiomeric excess of over 97%. For some examples, see: (a) Wenzel, T. J. J. In NMR Shift Reagents; CRC Press: Boca Raton, FL, 1987. (b) Fraser, R. R.; Petit, M.; Saunder, J. K. J. Chem. Soc., Chem. Commun. 1971, 1450. (c) Ladner, W. E.; Whitesides, G. M. J. Am. Chem. Soc. 1984, 106, 7250.

(15) The accuracy of shift reagents is generally regarded to be a function of several factors, including line broadening, chemical shift difference, and signal to noise ratio. It is generally accepted that when only one peak is observed for enantiomeric nuclei, the presence of the antipode is less than 1.5%, corresponding with an enantiomeric excess of over 97%. For some examples, see: (a) Wenzel, T. J. In NMR Shift Reagents; CRC Press: Boca Raton, FL, 1987. (b) Fraser, R. R.; Petit, M.; Saunder, J. K. J. Chem. Soc., Chem. Commun. 1971, 1450. (c) Ladner, W. E.; Whitesides, G. M. J. Am. Chem. Soc. 1984, 106, 7250.

white needles, which were dried in vacuum at 40 °C for 2 h. Yield 0.80 g (1.49 mmol, 71%). Mp 114-115 °C; [α]_D +0.84 (c 0.1, CHCl_3); ²H NMR (CDCl_3): δ 0.80 (d, J = 6.64 Hz, 6H), 0.89 (m, 2H), 0.91 (d, J = 6.35 Hz, 6H), 1.07 (m, 2H), 1.25 (m, 2H), 1.43 (m, 2H), 1.49 (s, br, 2H), 1.69 (m, 2H), 1.70 (m, 2H), 2.05 (m, 2H), 2.12 (m, 2H), 2.29 (dd, J = 17.58, 2.93 Hz, 2H), 2.76 (s, 4H), 2.87 (dd, J = 17.58, 6.84 Hz, 2H), 3.34 (ddd, J = 6.84, 2.90, 0.73 Hz, 2H), 3.35 (dt, J = 10.74, 3.91 Hz, 2H), 5.44 (d, J = 0.97 Hz, 2H); ¹³C NMR (CDCl_3): δ 15.57 (CH₃), 20.76 (CH₃), 22.17 (CH₃), 23.03 (CH₂), 25.42 (CH), 31.28 (CH), 31.30 (CHd), 34.20 (CH₂), 39.52 (CH₂), 47.66 (CH), 49.33 (CH₂), 65.87 (CH), 77.02 (CH); HRMS calcd. 344.223, M⁺ +151.3 (c 0.1, CHCl₃). Further analytical data were found to be identical as described for (R,R)-6.

(4S,4'S)-1,2-Dibenzylidene-N,N'-bis((5S)-5-(1-menthylthoxy)butyl)acetone (IS,IS)-5: prepared from (5S)-5-(menthylthoxy)-2(5H)-furanone as described for (R,R)-6. Mp 116-118 °C; [α]_D +152.6 (c 0.1, CHCl₃). Further analytical data were found to be identical as described for (R,R)-6.

(4R,4'R)-1,2-Dimethylthylene-N,N'-bis((5S)-5-(1-menthylthoxy)butyl)acetone (RS,RS)-5: prepared from (5S)-5-(menthylthoxy)-2(5H)-furanone and 0.18 g (2.10 mmol) piperazine in DMF (10 mL) was stirred for 1 h at room temperature, after which crystals formed spontaneously. The crystals were filtered off and washed with small amounts of ether and dried in vacuum at 40 °C for 2 h. The white needles, which were dried in vacuum at 40 °C for 2 h. Yield 0.80 g (1.49 mmol, 71%). Mp 114-115 °C; [α]_D +0.84 (c 0.1, CHCl₃). Further analytical data were found to be identical as described for (R,R)-6.

(4S,4'S)-1,2-Dibenzylidene-N,N'-bis((5S)-5-(d-menthylthoxy)butyrolactone) (IS,IS)-5: prepared from (5S)-5-(d-menthylthoxy)-2(5H)-furanone as described for (R,R)-6. Mp 153-154 °C; [α]_D +152.6 (c 0.1, CHCl₃). Further analytical data were found to be identical as described for (R,R)-6.

Typical Procedure for the Enantiomeric Excess Determination. The Eu(III) complexes were prepared by dissolving the desired ligand in D_2O with four equivalents of NaN_3 and adding this solution to a D_2O solution of EuCl₃·6H_2O, according to the method as described by Kid0 and co-workers. Each amino acid was dissolved in D_2O with an equivalent amount of NaN_3 and an appropriate amount of NaN_3 was added to keep the final concentration at 2 M after combination with the Eu·8, Eu-9, and Eu-10 solutions. The Eu(III) solution was added in small aliquots to the amino acid solution, until the diastereomeric ratio was large enough to ensure adequate quantification.

Acknowledgment. We wish to thank Prof. Dr. R. M. Kellogg and Dr. B. Kaptein (DSM Research) for the gift of a-alkylated amino acids and amino acid amides.

Supplementary Material Available: COSY, NOESY, and Heteronuclear NOE spectra of (R,R)-8 and (R,R)-6 and H and ¹³C NMR spectra of 8, 9, and 10 (16 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.