Stochastic Programming with Integer Recourse

Maarten H. van der Vlerk

To Wilma
ISBN 90-72591-17-8
Subject headings: stochastic programming / integer programming / recourse models.

Published by: Labyrinth Publication
P.O. Box 662
2900 AR Capelle a/d IJssel
The Netherlands

©1995, Maarten H. van der Vlerk
All rights reserved. No part of this publication may be reprinted or utilized in any form or by any electronic, mechanical or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without written permission from the copyright owner.

ISBN 90-72591-17-8

Printed by: Ridderprint, Ridderkerk
Stochastic Programming with Integer Recourse

Proefschrift

ter verkrijging van het doctoraat in de
Economische Wetenschappen
aan de Rijksuniversiteit Groningen
op gezag van de
Rector Magnificus Dr. F. van der Woude
in het openbaar te verdedigen op
donderdag 13 april 1995
des namiddags te 1.15 uur precies

door

Maarten Hendrikus van der Vlerk

geboren op 28 oktober 1961
te Assen
Promotor: Prof. dr. W.K. Klein Haneveld
Referent: Dr. L. Stougie
Preface

This thesis reflects the main part of my work during the four years I worked at the Department of Econometrics of the University of Groningen. The National Operations Research Network in the Netherlands (LNMB) is gratefully acknowledged for financing this position.

Looking back, the recent past is maybe best characterized by the term ‘global optimization’. First of all, it refers to the excellent work of my supervisors Wim Klein Haneveld and Leen Stougie, who skillfully removed constraints of many kinds that threatened to obstruct my work. I am grateful for the personal relationships that we developed.

Secondly, during this period I obtained the opportunity to make contact with the international research community working on stochastic programming and related fields. In particular, I mention the cooperation with Rüdiger Schultz, which I am pleased to know will continue for some time to come. I am especially indebted to the members of my committee: Professors Jan Karel Lenstra, Werner Rönisch, Caspar Schweigman, and Roger Wets.

In the third place, in global optimization it is acceptable, if not necessary, to settle for sub-optimal outcomes of a search procedure that is often disrupted because of a time constraint. Therefore, the analogy makes it easier to accept the fact that the results reported in this thesis are sub-optimal and incomplete.

I thank my former colleagues for providing such a pleasant working environment. To a large extent this is due to Daan Brand, with whom I shared a working room. His friendly attitude and wide interest and knowledge made it a pleasure to work there. Jointly with Wietse Dol and Erik Frambach I initiated what is now called the 4PrX workbench. Due to their enormous efforts this computer program is nowadays widely used and appreciated. I do not know if the amount of time that I saved by using 4PrX to write this thesis compensates for the hours that I invested in developing it. Anyway, the joy of working together made it well-worth.

Lies Huizenga and Evert Schoorl of the Graduate School / Research Institute Systems, Organisations and Management have been very helpful in arranging many practical things. The publication of this thesis is financed by SOM.

Finally, I apologize to my family and friends: often a seemingly harmless question about my work triggered an over-enthusiastic, lengthy, and mostly incomprehensible answer. By far the greatest burden has been on Wilma. To her, I dedicate this thesis.

Contents

List of notations v

1 Introduction and summary 1
 1.1 Introduction ... 1
 1.2 Summary of the following chapters 3

2 Continuous recourse models 7
 2.1 Stochastic linear programming 7
 2.2 Fixed recourse ... 14
 2.3 Complete recourse 17
 2.4 Simple recourse ... 18
 2.4.1 Fixed technology matrix 20
 2.4.2 Random technology matrix 27

3 Complete integer recourse 35
 3.1 Complete mixed integer recourse 36
 3.1.1 Properties of the value function 36
 3.1.2 Continuity properties of the expected value function 37
 3.1.3 Stability ... 39
 3.2 Algorithms ... 41
 3.2.1 The integer L-shaped method 41
 3.2.2 Stochastic integer programming by dynamic programming 44

4 Simple integer recourse 45
 4.1 Introduction .. 45
 4.2 The integer expected surplus function 48
 4.2.1 Semi-periodicity: definition and application 58
 4.2.2 Continuity properties 60
 4.2.3 Differentiability properties 67
 4.2.4 Convexity on (subsets of) \(\mathbb{R} \) 70
 4.3 The integer expected shortage function 76
4.4 The one-dimensional integer expected value function........... 86

5 Simple integer recourse with random technology matrix 95
 5.1 The integer expected surplus function 96
 5.2 The integer expected shortage function 103
 5.3 The one-dimensional expected value function 105

6 The convex hull .. 111
 6.1 Relation to continuous simple recourse 112
 6.2 Definition and properties of the convex hull 116
 6.3 The convex hull of the one-dimensional expected value function 119
 6.3.1 Example: the exponential distribution 127
 6.4 The convex hull of the expected value function 133

7 Convexity by perturbation of the distribution 143
 7.1 The expected surplus function 146
 7.1.1 Convex combinations of α-approximations 151
 7.2 The expected shortage function 154
 7.3 The one-dimensional expected value function 155
 7.3.1 Representation as continuous expected value function .. 158
 7.4 The expected value function 162
 7.4.1 Optimal values of a simple integer recourse model and its α-approximations 165

Bibliography ... 167

Index ... 173

Samenvatting (summary in Dutch) 175
List of notations

Let $s \in \mathbb{R}$, $t \in \mathbb{R}^n$, ξ a random variable in \mathbb{R}, τ a random vector in \mathbb{R}^n, φ a real function, and $\alpha \in [0, 1)$.

- \mathbb{R}: set of reals
- \mathbb{R}_+: set of non-negative reals
- \mathbb{Z}: set of integers
- \mathbb{Z}_+: set of non-negative integers
- \mathbb{Z}_-: set of non-positive integers ($\mathbb{Z}_+ \cap \mathbb{Z}_- = \{0\}$)

- t_i: ith element of the vector $t = (t_1, \ldots, t_n)$
- $t(i)$: the vector $(t_1, \ldots, t_{i-1}, t_{i+1}, \ldots, t_n) \in \mathbb{R}^{n-1}$
- cx, $\langle c, x \rangle$: inner product of the vectors c and x

- n_1: dimension of vector of first-stage decision variables
- m_1: number of first-stage constraints
- n_2: dimension of vector of second-stage decision variables
- m_2: number of second-stage constraints

- g: integer expected surplus function
- g_α: α-approximation of g
- \bar{g}: expected surplus function
- h: integer expected shortage function
- h_α: α-approximation of h
- \bar{h}: expected shortage function
- Q: integer expected value function (EVF)
- Q_α: α-approximation of integer EVF
- Q^{**}: convex hull of integer EVF
- \bar{Q}: expected value function
- Q: one-dimensional EVF
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\tilde{Q}</td>
<td>one-dimensional integer EVF</td>
</tr>
<tr>
<td>Q^c</td>
<td>convex approximation of one-dimensional integer EVF</td>
</tr>
<tr>
<td>Q_α</td>
<td>α-approximation of one-dimensional integer EVF</td>
</tr>
<tr>
<td>Q^{**}</td>
<td>convex hull of one-dimensional integer EVF</td>
</tr>
<tr>
<td>v</td>
<td>integer second-stage value function</td>
</tr>
<tr>
<td>\bar{v}</td>
<td>second-stage value function</td>
</tr>
<tr>
<td>$(s)^+$</td>
<td>$\max{0, s}$</td>
</tr>
<tr>
<td>$(s)^-$</td>
<td>$\max{0, -s}$</td>
</tr>
<tr>
<td>q^+, q^-</td>
<td>vectors of simple recourse cost coefficients (+ and - are indices)</td>
</tr>
<tr>
<td>y^+, y^-</td>
<td>vectors of simple recourse variables (+ and - are indices)</td>
</tr>
<tr>
<td>$[s]$</td>
<td>integer round up of s</td>
</tr>
<tr>
<td>$\lfloor s \rfloor$</td>
<td>integer round down of s</td>
</tr>
<tr>
<td>$[s]^+$</td>
<td>$\max{0, \lceil s \rceil }$</td>
</tr>
<tr>
<td>$[s]^-$</td>
<td>$\max{0, -\lceil s \rceil }$</td>
</tr>
<tr>
<td>$[s]_\alpha$</td>
<td>round up of s with respect to $\alpha + \mathbb{Z}$</td>
</tr>
<tr>
<td>$[s]_{\alpha}$</td>
<td>round down of s with respect to $\alpha + \mathbb{Z}$</td>
</tr>
<tr>
<td>F</td>
<td>cumulative distribution function (cdf), $F(s) = \Pr{\xi \leq s}$</td>
</tr>
<tr>
<td>F_-</td>
<td>left continuous cdf, $F_-(s) = \Pr{\xi < s}$</td>
</tr>
<tr>
<td>F_α</td>
<td>α-approximation of the cdf F</td>
</tr>
<tr>
<td>f</td>
<td>probability density function (pdf)</td>
</tr>
<tr>
<td>f_α</td>
<td>α-approximation of the pdf f</td>
</tr>
<tr>
<td>F_{ξ}, f_{ξ}</td>
<td>marginal cdf/pdf of ξ</td>
</tr>
<tr>
<td>$F_{\xi</td>
<td>\tau=t}, f_{\xi</td>
</tr>
<tr>
<td>f_+</td>
<td>right continuous version of f</td>
</tr>
<tr>
<td>f_-</td>
<td>left continuous version of f</td>
</tr>
<tr>
<td>$\mathcal{E}(\lambda)$</td>
<td>exponential distribution with parameter λ</td>
</tr>
<tr>
<td>$\mathcal{N}(\mu, \sigma^2)$</td>
<td>normal distribution with mean μ and variance σ^2</td>
</tr>
<tr>
<td>$\mathcal{P}(\theta)$</td>
<td>Poisson distribution with parameter θ</td>
</tr>
<tr>
<td>$\mathcal{U}(a, b)$</td>
<td>uniform distribution with support $[a, b]$</td>
</tr>
<tr>
<td>ξ_k</td>
<td>kth mass point of the discrete random variable ξ</td>
</tr>
<tr>
<td>ξ_α</td>
<td>α-approximation of ξ</td>
</tr>
<tr>
<td>E_ξ</td>
<td>expectation with respect to ξ</td>
</tr>
<tr>
<td>μ^+</td>
<td>expectation of $(\xi)^+$</td>
</tr>
<tr>
<td>μ^-</td>
<td>expectation of $(\xi)^-$</td>
</tr>
<tr>
<td>φ^*</td>
<td>conjugate function of φ</td>
</tr>
<tr>
<td>φ^{**}</td>
<td>biconjugate function of φ</td>
</tr>
<tr>
<td>φ'_+</td>
<td>right derivative of φ</td>
</tr>
</tbody>
</table>
List of Notations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varphi')</td>
<td>left derivative of (\varphi)</td>
</tr>
<tr>
<td>(\partial \varphi)</td>
<td>subdifferential of (\varphi)</td>
</tr>
<tr>
<td>(\Delta^+ \varphi)</td>
<td>total increase of (\varphi)</td>
</tr>
<tr>
<td>(\Delta^- \varphi)</td>
<td>total decrease of (\varphi)</td>
</tr>
<tr>
<td>(</td>
<td>\Delta</td>
</tr>
</tbody>
</table>