
https://research.rug.nl/en/publications/bounded-delay-for-a-free-address(d356d167-16e0-460f-93a5-c6357ee5e477).html


Acta Informatica 33, 233-254 (1996)	
I

' Springer-Verlag 1996

Bounded delay for a free address

Wim H. Hesselink t

Department of Mathematics and Computing Science, Rijksuniversiteit Groningen, Postbox 800,
9700 AV Groningen, The Netherlands

Received February 2, 1994/January 24, 1995

Abstract. The problem is to let n processes concurrently and repeatedly search for
free addresses in a range of m addresses. The search must be wait-free: a searching
process finds an address in a bounded number of steps. Three solutions are
presented. The first one has large atomic actions. The second one is only correct if
m >_ (r + 1) � n where r is the maximum number of used addresses. The third
solution is always partially correct. It is wait-free if m > r + 2 � n. This solution has
a worst-case waiting time quadratic in n and an amortized waiting time linear in n,
even linear in the number of active processes.

1. Introduction

In concurrent programming with shared memory the following problem seems to
have many applications. Assume that n processes concurrently use addresses from
a set of m addresses (actually, thoughout this paper, the word address can be
replaced by resource, number, name, etc.). Over time, a process may need a free
address or an address may become available. The problem is to implement the
search for a free address in a wait-free manner, i.e., without idle waiting primitives
and such that any searching process P obtains a free address in a bounded number
of steps of P, see [9]. Notice that wait-free implementations have an aspect of fault
tolerance: if some processes stop executing, this does not affect the functioning of
the other processes.

Since the bound on the number of steps may be large, e.g., of order quadratic in
n, the term "wait-free" is somewhat misleading. We therefore prefer the term
"bounded delay", which we shall use as a synonym.

Remark. The term "bounded delay" goes back (at least) to [8]. In that paper,
however, bounded delay stands for what now would be called weak fairness. (End
of remark)

’e-mail: wim@cs.rug.nl



234	 W.H. Hesselink

1.1 Problem specification

We assume that used.k indicates whether address k is being used. So used is an
array, as declared in

type address = 0..m � 1;

var used: array address of boolean;

initially (Vk e address :: -i used. k).

In all such quantifications, dummy k ranges over the bounded type address.
From the point of view of the processes, used is a ghost variable. So, the

processes cannot inspect used. They may modify array used only by setting
used.i:= true. Moreover, this is only allowed under the precondition �iused.i.
More precisely, each process is to perform an unbounded repetition

while true do search od,

and each execution of search performs exactly once the command

U: used.E:= true.

Here E must be a private expression of the process, i.e., an expression that cannot
be modified by other processes. Since command U is only allowed under precondi-
tion �iused.E, we have the proof obligation that every process P always satisfies

(P0)	 Pat U = i used. E.

Bounded delay for command search means that there is a constant C such that
every execution of search of any process P terminates within C actions of process P.

A process that gets an address is not kept responsible for this address. For
example, it may broadcast the address to a set of other processes and it need not
keep track of what happens to the address. In particular, the process that gets the
address may ask for a new address before the first one can be released.

We therefore assume the existence of an environment that acts as a garbage
collector. In other words, from time to time, this environment may choose an
address k that satisfies used.k and make it free by performing the atomic action

Env: <F; used.k:= false,

where F is some command that signals the availability of address k to the processes.
So, used is not a ghost variable from the point of view of the environment.

Notice that we are dealing with an abstraction: we are not interested in the
usage of the addresses or in the choice of k (i.e., the implementation of the garbage
collector); from the point of view of searching processes, it only matters that some
addresses become available again.

The number of addresses needed clearly depends on the maximal number of
addresses that can be used simultaneously. We therefore introduce a constant r and



Bounded delay for a free address 	 235

we assume that the environment preserves the invariant

(P1)	 (#k::used.k) <_ r,

where we write (# k: :  A) to denote the number of values k that satisfy A. The upper
bound r will be used to express conditions under which the algorithms are correct
and have bounded delay.

1.2 Related problems in the literature

Our problem is related to the renaming problem considered in [4]. The main
difference is that in the renaming problem a process that has obtained an address
terminates, whereas in our problem the process gives the address to the environ-
ment and starts looking for a new address; the environment may be using the
address for sometime before making it available again to the searching processes.
Therefore, the maximum number of used addresses is a parameter, r, of our
problem. This parameter may be bigger than n.

Our problem can be described as "repeated renaming", as mentioned briefly in
[2]. We regard repeated renaming, however, as an inadequate abstraction. In fact,
in the renaming problem, the address to be found is intended to serve as the new
process name. In the case of repeated renaming, this leads to unnecessary complica-
tions when the process names are to be used in the program. Moreover, in our
motivating example (cf. [9, 10] ), the process that obtains the address may lose
interest in the address long before other processes (represented here by the environ-
ment) do so. It is therefore misleading to treat the address obtained as a new name
for the obtaining process.

As mentioned in [4, 2], the renaming problem becomes trivial (requires no
communication) when the list of occurring process names is known to the pro-
cesses. In our problem there is no reason to disallow the use of process names in the
programs. Indeed, we do get simpler algorithms by using the process names to
break the symmetry. One may say therefore that our problem and the renaming
problem are disjoint up to triviality.

In spite of these differences, our algorithms can be compared with three
algorithms in [4, 5], which indeed are wait-free. More precisely, the algorithm
Unique-1 of [4] has quadratic time complexity and quadratic space complexity.
Our algorithm search2 below uses the same primitives and works in linear time and
in space proportional to r � n. The algorithm Unique-2 of [4] uses linear space, but
has exponential time complexity. The algorithm in Figure 4 of [5] uses linear space
and has cubic time complexity. Our algorithm search3 below uses stronger primi-
tives (read-and-set and consensus) and requires linear space and quadratic time
(linear time in amortized sense).

The main differences, however, are that in our setting a process is allowed to
ask for a new address long before its old addresses have been released, whereas
the processes in [4,5] ask for a new name only once, and on the other hand, that
our processes have a known identity whereas the processes of [4,5] are anony-
mous.

The paper [2] treats the renaming problem in a model with asynchronous
message passing. Here no wait-free implementation is possible. Indeed, in the
algorithms proposed, each process waits for n � t � 1 acknowledgements where



236	 W.H. Hesselink

t is the maximum number of faulty processes. This may lead to unbounded waiting
time.

1.3 Overview of the paper

The aim of our paper is to provide an implementation of search and an atomic
command F, such that the combination satisfies the requirements specified in Sect.
1.1. An additional criterion is graceful degradation: it is desirable that the algo-
rithm remains correct and possibly fair in overload situations where (P1) is
violated, i.e., the number of used addresses is bigger than specified.

We give three solutions, two more or less trivial ones and a third one that is
delicate. The first solution is presented in Sect. 2; it is fast but has a coarse grain of
atomicity. It is correct if and only if m >_ r + n. In Sect. 3, we set the stage for the
other two solutions. The second solution, search2 in Sect. 4, has a fine grain of
atomicity but requires much address space, namely m > (r + 1) - n. Actually, it
seems likely that wait-free solutions with this restricted repertoire to our problem
require at least r � n addresses.

The third solution is search3 in Sect. 5. This solution may be characterized as
a concurrent circular search of co-operating processes. In Sect. 5, we show that it is
partially correct and that m > 2 � n � 1 and a weak fairness assumption are suffi-
cient to preclude individual starvation. So this solution has graceful degradation.
In Sects. 6 and 7, we investigate its complexity under the assumption that
m > r + 2 � n. In Sect. 6, it is shown that search3 is then wait-free. So this algorithm
requires less memory space than search2 . We also show that its worst-case time
complexity is quadratic in n. In Sect. 7, we show that the amortized time complexity
is linear in the number of active processes. In Sect. 8, a modification is proposed
with better average behaviour, at least according to a small set of test simulations.
These simulations also support the claim of graceful degradation. In Sect. 9, we give
a comparison between the various solutions.

2 Using a stack and a coarse grain of atomicity

In this section, we present an efficient solution and we argue that its grain of
atomicity may be too coarse. This solution uses a stack of free addresses, as
implemented by

var x: array address of address

t: integer;

initially t = m A (V j, k E address: j : k: x. j 0 x. k).

Conceptually, the stack consists of the values x.k with 0 S k < t. Initially, all
addresses are on the stack. Using [and] to represent begin and end, we implement
search by the compound command

[ pop

U: used i := true],



Bounded delay for a free address 	 237

where i is a private variable and where pop is the atomic command

pop: <t:= t �1; i:=  x.t>.

Atomic command F of the environment is implemented by

push: <x.t:= k; t:= t + 1>.

This solution is correct if and only if r + n <� m. The incorrectness for r + n > m is
shown as follows. We assume that pop is total: execution of pop with precondition
t <� 0 is allowed and gives i some address value. Consider a situation that r ad-
dresses are used and all processes have reserved an address by executing pop. Since
r + n > m, the pigeonhole principle together with predicate (P0) implies that not all
processes have reserved different addresses. So, there are different processes, say
P and Q, that have reserved the same address i. Then the environment executes Env,
so that the next action U preserves (P1). We then let process Q execute U and now
process P violates (P0).

The correctness for r + n < m can be proved as follows. We write i.Q to denote
private variable i of process Q. We introduce a number of invariants. In all such
predicates we universally quantify over addresses j and k and processes Q and T.
The invariant (JO) is equivalent to (P0). The motivation for the other invariants is
given in the proof of invariance. The invariants (JO), (J1) and (J2) express that the
addresses found are not used, are all different and are not in the stack. Invariants
(J3) and (J4) express that the addresses in the stack are not used and are all different.
Invariant (J5) serves to determine the length of the stack. Predicate (J6) implies that
the stack is nonempty when process Q can execute pop.

(JO) Q at U	 �iused.(i.Q),

(J1) Q, T at U A Q ^ T = i.Q ^ i.T,

(J2) QatU A0<k<t �i.Q^x.k,

(J3) 0 <_ k <t	 -1used.(x.k),

(J4) 0<�j<k<t =x.j	 x.k,

(J5) (# k :: used. k) + (#T:: T at U) +t = m,

(J6) �i (Q at U) =t > 0.

The invariance is proved as follows. Predicate (JO) is preserved by pop because of
(J3) and (J6). It is preserved by command U of other processes because of (J1).
Predicate (J1) is preserved by pop because of (J2) and (J6). Predicate (J2) is
preserved by pop because of (J4); it is preserved by Env because of (JO). Predicate
(J3) is preserved by U because of (J2). It is also preserved by Env, as is easily verified.
Predicate (J4) is preserved by Env because of (J3). Predicate (J5) is preserved by pop,
U and Env, since in each case one summand increases with 1 and another summand
decreases with 1. Predicate (J6) follows from invariant (J5), postulate (P1) and
assumption r + n <_ m. A straightforward verification shows that the predicates
hold initially. The remaining details are left to the reader.

Notice that the actions pop and push must be atomic. For otherwise, invariance
of (JO) cannot be guaranteed. We regard the atomic commands pop and push as too



238	 W.H. Hesselink

coarse, however. For, both of them contain two shared variables (t and x) that can
be modified by other processes.

It follows that we have to decide which atomic commands are allowed. We do
not impose the condition, expressed in [12]: "Each expression E (in the program)
may refer to at most one variable y that can be changed by another process while
E is being evaluated, and E may refer to y at most once. A similar restriction holds
for assignment statements x:= E". We only postulate that each atomic command
S may refer to at most one variable y that can be changed by another process while
S is being executed. So we allow multiple occurrences of one shared variable in an
atomic command. Of course, our postulate is a weaker requirement for the
commands and, hence, a stronger requirement for the implementation.

Actually, apart from private actions, we shall only use atomic commands of the
following types

read: u:= x,

write: x := E,

RS:	 < u:= x; x:= C>,

Con: < if x = C then x:= E; b :=false fi>,

where x is a shared variable, C is a constant, u and b are private variables and E is
an expression in private variables. Tests of the form x = E are also used (they can
be regarded as reading). Command RS is called a read-and-set action; command
Con is called a consensus action.

Notice, that all atomic commands may be combined with arbitrary assignments
to ghost variables.

3 A naive solution

We now begin a development that leads to the other two solutions. Henceforth, the
idea of a stack of free addresses is discarded and we use boolean variables to
indicate whether an address is free.

We let the process names range over process as declared in

type process = 0..n � 1.

We introduce a boolean array free to indicate whether an address is free. It is
declared by

var free: array address of boolean;

initially (‘dk::free.k).

The environment uses F: free. k := true and, hence,

Env: <free. k := true; used. k := false>.



Bounded delay for a free address	 239

For the purpose of choosing an address, each process P may use the atomic
read-and-set action

G: <b:= free.i; free. i := false>

where i and b are private variables of P.
It is clear that the actions Env of the environment preserve or re-establish the

invariant

(P2)	 �ifree.k v �iused.k.

Predicate (P2) also holds initially. We decide that the processes will also preserve
(P2). Then free. k can be used to infer �i used. k. Since (P2) admits the possibility
that both free.k and used.k are false, we introduce a ghost variable a.k to
indicate the process that is the owner of address k. So we interpret a. k = Q to mean
that address k has been found free and that Q is the only process that can use (or
transfer) the address; a.k = 1 means that address k has no owner, and is free or
used, according to the invariant

(P3)	 (o.k = 1) - (free.k vused.k).

Ghost variable a is declared by

var a: array address of process u { 1 } ;

initially (‘dk:: a.k = 1).

It follows that (P3) holds initially. In view of the intention of a, we extend command
G of process P to

G: <b:=  free. i; free. i :=false

;ifb then a.i:=Pfi>,

and we extend the setting command of used. i to

U: < used.i:= true; a.i = I >.

Now it is easy to verify that commands G and U both preserve (P3). Moreover,
since it is only executed under precondition used.k, command Env also preserves
(P3).

Whenever command G has postcondition b, process P has obtained a free
address in i. In this way we arrive at the solution:

searchO.P =

[ repeat

choose i e address

; < b := free. i; free. i := false

;ifb then a.i:=Pfi>

until b

; U: < used.i:= true; a.i:= 1 >1.



240	 W.H. Hesselink

For the proof of partial correctness we also need the invariant

(P4)	 (a.k = Q) = (k = i.Q Afin.Q),

where fin.Q indicates that process Q is in the final stage of search: the repetition in
search is about to terminate or Q is at U.

It is easy to see that (P4) holds initially and that it is preserved by the actions of
process Q itself. It follows from (P3) and Q 1 that (P4) is preserved by the actions
of all processes P Q. Therefore (P4) is an invariant. The conjunction of (P3) and
(P4) implies (P0). This proves partial correctness of searchO.

Notice that we do not lose addresses, since the conjunction of (P2), (P3) and
(P4) implies that

(# k :: free. k) + (# k :: used. k) + (# Q :: fin. Q) = m.

This equality also shows that, if r + n < m, there are always free addresses to be
found.

The most obvious way to implement the choice of i is to modify a previous
value of i by i:= i + 1, say modulo m. Since other processes as well as
the environment may have modified free. i between two inspections in command
G, however, there is no easy way to guarantee that the repetition of searchO
terminates. In the next two sections we present two different solutions to this
problem.

4 A solution in quadratic space

Inspired by Herlihy’s algorithm for the wait-free implementation of an arbitrary
data object in [9], we can solve the problem by partitioning the address space into
n private pools, one for each process. For simplicity we assume that m is a multiple
of n, say m = c � n. Then address is the disjoint union of the sets addr.P with
P e process where addr.P is given by

ke addr.P -c�P_<k<c�(P+1).

We decide that each process fishes only in its own pool, i.e., the choice of i in search
0.P is restricted to the set addr.P. It follows that process P only sets free.k := false
for k a addr.P. This, again, implies that for k a addr.Q the predicate free.k is
stable while process Q is in its searching repetition.

It also follows that we have the invariant

(P5) k a addr.Q	 (free.k v r.k = Q vused.k).

Since, by (P1), the number of used addresses is bounded by r, we can now achieve
a terminating search if r < c. For, then, when P is in its searching repetition, (P4)
and (P5) imply that

(dk a addr.P::free.k vused.k).



Bounded delay for a free address	 241

Therefore, r <c implies the existence of an address k a addr. P with free. k. This
address remains free during the repetition. This shows that we may use

searchl.P =
[ i=c�(P+1)

repeat
is=i-1
b:= free.i; free.i := false

;ifb then a.i:=Pfi>
until b

; < used. i := true; a.i:= I>].

With respect to space complexity, this solution requires m = c � n > (r + 1) � n
addresses. Since r is often proportional to n,we regard it as a quadratic solution.
The worst-case time complexity of search] is proportional to r.

Actually, in this case, since processes do not compete at the same address, there
is a solution with simpler primitives:

search2.P =
[ i:=c�(P+1)

repeat i := i � 1 until free. i
<free. i := false; v. i := P>
<used.i := true; a.i:= 1> ].

This solution satisfies the condition of [12], see Sect. 2. It follows that our problem
of finding free addresses does not require stronger primitives than read-write
registers. So our problem has consensus number 1 in the sense of Herlihy [9].

5 A solution in linear space

We now develop a more flexible solution that requires less memory space. The idea
is to avoid individual starvation by letting each searching process find addresses for
all searching processes (this was inspired by the program in Fig. 14 of [9]). When
some process has found a free address, it offers the address to its current private
favorite. If the latter process is not searching, the process itself uses the address.

5.1 Program development

The starting point is searchO of Sect. 3 with its invariants (P2) and (P3), but now
a searching process may itself find a free address or it may obtain a free address
from another process. Just as in Sect. 3, we use ghost variable a. k to indicate the
process that owns address k. For the purpose of transferring addresses, we intro-
duce a shared variable ad declared by

var ad: array process of addressu{1},

initially (V Q :: ad. Q 1).



242	 W.H. Hesselink

We use ad.Q = 1 to indicate that process Q is searching and has not yet obtained
a free address for its own use. We give command U the form

U: < used.(ad.P):= true; Q.(ad.P):= I>.

Now specification (P0) is translated into

(Q0) Q at U � ad.Q # 1 A �iused.(ad.Q).

Moreover, when Q is at U, other processes must not be able to modify ad. Q. We
shall therefore treat ad.Q as a consensus variable that can only be modified by
processes P : Q under precondition ad.Q = 1. Since ad.Q = 1 is an invitation
for other processes to transfer an address to process Q, we postulate the invariant

(Q1) ad.Q = 1 Q is searching.

We give each process two private variables: i of type address and pf of type
process. These variables are persistent or global in the sense that they keep their
values while the process is not searching. They are initialized in an arbitrary way
and they are modified by circular incrementation, i.e., by incrementation modulo
m and n, respectively. The persistence of variable i is only used for the amortized
complexity in Sect. 7. The persistence of pf is necessary for fairness and bounded
delay.

If a process finds a free address by a successful execution of command G (see
Sect. 3), it offers this address to its "private favorite", the process pf. The act of
offering a free address to a process Q needs the precondition ad. Q = 1. Just as in
Sect. 3, a private boolean variable b is used to indicate that address i has been found
free and has not yet been transferred to some process. Therefore, array ad is
modified by consensus actions of the form

H. Q: < if ad. Q = 1 then ad. Q := i; b := false; a. i := Q fi > .

In particular, command H.pf is used to offer address i to the current private
favorite pf. This action is preceded by a circular incrementation of pf. If command
H.pf has postcondition b, address i is still available for process P itself. Therefore,
we then let P terminate its repetition and execute H.P (in this case r.i need not be
modified). If H.P also has postcondition b, address i is still available but not
needed. Then it is made free again and o. i is reset to 1.

In this way, we arrive at procedure search3 as given in Fig. 1. Notice that, since
ad.P is only modified by the consensus action H.P, it follows from (QO) that the
expression ad. P is constant while command U is being executed, as was required
in Sect. 1.

For the proof of correctness we need to argue about specific locations in the
program in combination with the value of variable b. We therefore transform the
while-program of Fig. 1 into the goto-program of Fig. 2. This goto program can be
presented as a do-od loop with a variable pc explicitly appearing in the guards and
updated at the end of each guarded command. Such a program would be in the
spirit of Back’s action systems, cf. [3], or of UNITY programs, cf. [7]. For the sake
of brevity, however, we prefer to use goto statements.

Each number in the goto-program represents one atomic command. We have
eliminated the boolean variable b and some goto statements. This is allowed since



Bounded delay for a free address
	

243

search3.P =
[ ad.P:=1; b:=false

while (ad.P = 1) A �b do
is=(i+1) modm
( b := Yree.i ; free.i := false

if b then o.i := P fi
if b then

pf := (pf + 1) mod n
( if ad.pf = 1 then ad.pf := i ; b := false ; o.i := pf fi)

fi
od

if b then
( if ad.P = I then ad.P := i; b := false fi )
if 6 then (free.i := true; a.i:�_J) fi

fi
U: (used.(ad.P) := true ; o.(ad.P) := 1)

Fig. 1. search3 as a while-program

0	 ad.P := 1
1	 if ad.P: 1 then goto 8 fi
2	 i:=(i+1)modm
3	 if free.i then free.i := false; o.i := P else goto 1 fi

4	 pf:=(pf+1) modn
5	 if ad.pf = I then ad.pf := i; a.i := pf ; goto 1 fi

6	 if ad.P = I then ad.P := i; goto 8 fi
7	 free.i := true; o.i := I
8	 used.(ad.P) := true ; a.(ad.P) := I; goto 0

4	 —. 5	 —* 6 7
1 1/

3	 �+ 1	 �. 8

1 f 1	 .l
2 0

Fig. 2. Repeated search3 as a goto-program

the program counter and b are private variables. In Fig. 2, we also give the directed
graph of the possible ways for the flow of control. This graph is only an illustration,
it is not used in the arguments. Since procedure search is contained in an un-
bounded repetition, command 8 of Fig. 2 contains goto 0.

5.2 Detailed invariants

The invariants (QO) and (Q1) postulated above are not sufficiently detailed for the
proof of correctness. So, in addition to the invariants (P2) and (P3), we now postulate
the following list of invariants. We write [r.. �) to denote the set of integers i with
r 5 i < s. We write pc to denote the program counter; this is a private variable of
the acting process (which is usually called P). We write pc. T, i. T, etc., to denote the
private variable pc, i, etc., of process T.

Predicate (RO) is a more explicit version of (Q1). Predicates (R1) and (R2)
describe the regions where process Q holds responsibility of the addresses in ad. Q



244	 W.H. Hesselink

and i.Q. Predicate (R3) serves to show that the responsibilities for i.Q and ad.Q do
not interfere.

(RO)	 ad.Q=1 =pc.Qe[1..7),

(R1) ad.Q 0 1 A pc.Q e [1..9)	 a.(ad.Q) = Q,

(R2) pc.Q E [4.. 8)	 a.(i.Q) = Q,

(R3)	 pc.Q e [4. .8)	 i.Q ad.Q.

Before we turn to the proof of invariance, we first list a number of consequences of
these predicates:

(CO)	 pc.Q = 8 . -ifree.(ad.Q) A -iused.(ad.Q),

(Cl)	 pc.Q = 7	 -ifree.(i.Q) A -iused.(i.Q),

(C2) pc.P,pc.Q e [4..8) Ai.P=i.Q	 P=Q,

(C3) pc.P,pc.Qe[l..9) Aad.P=ad.Q J.	 P=Q,

(C4)	 pc.Pe[4..8) Apc.QE[1..9)	 i.P0ad.Q.

Since Q # 1, predicate (CO) follows from (RO), (Ri) and (P3). Similarly, (Cl) follows
from (R2) and (P3). Predicate (C2) follows from (R2). Predicate (C3) follows from
(RI). Predicate (C4) follows from (R1)-(R3). Notice that the specification (QO)
follows from (RO) and (CO).

5.3 The proof of safety

We turn to the proof of invariance of (P2), (P3) and (RO) through (R3). Predicates
(P2) and (P3) hold initially. Since initially ad.Q 0 1 and pc.Q = 0 for all Q, the
predicates (RO)-(R3) hold initially, because of falsity of the antecedent.

The remainder of the proof of invariance is not more than a huge but elemen-
tary case analysis. We have checked the following proof by means of the theorem
prover NQTHM of Boyer and Moore, cf. [6], in the same way as reported in [11].

We first deal with the action Env as given in Section 3. Since Env only modifies
free and used, we notice that used and free only occur in (P2) and (P3). Just as in
Sect. 3, it is easy to see that the action Env preserves (P2) and (P3). It follows that we
need not consider action Env anymore. So we only consider the actions of the
processes. We now discuss the predicates (P2), (P3) and (RO) through (R3), con-
secutively.

Predicate (P2) is threatened only by commands 7 and 8. By (Cl), command 7 of
process P has precondition iused.(i.P) and, hence, preserves (P2). Similarly, by
(CO), command 8 has precondition i free .(ad.P) and, hence, preserves (P2).

Predicate (P3) is threatened only by commands 3, 5, 7 and 8. It is preserved by
command 3 because of (P2). It is preserved by command 5 of P because (R2) with
Q := P. Predicate (P3) is clearly preserved (established) by commands 7 and 8.

Predicate (RO) is threatened only by commands 0,1 and 6 of process Q. It is
preserved by command 0, since there pc. Q becomes 1. It is preserved by 1 because



Bounded delay for a free address 	 245

of the test ad.P:1. It is preserved by 6 since command 6 has postcondition
ad.P 0 1.

Predicate (R1) is threatened by commands 0,3,5,6,7 and 8. Command
0 preserves (R1) since the antecedent is made false. Command 3 of process
P preserves (R1) because of (P3) with k:= i.P. Command 5 of P establishes (Ri) for
Q = pf. P. Predicate (R 1) for Q # pf.P is preserved because of (C4) with Q := P and
T := Q. Command 6 of Q preserves (Ri) because of (R2). Command 7 preserves
(Ri) because of (C4) with Q:= P and T = Q. Command 8 of process P preserves
(R1) because of (C3).

Predicate (R2) is threatened only by the commands 3,5,7 and 8. Command 3 of
Q preserves (R2) since it makes pc.Q = 1 or establishes the consequent. For P Q,
command 3 of P preserves (R2) because of (P3) with k = i.P. Commands 5 and 7 of
Q preserve (R2) of Q because of the modification of pc.Q. Commands 5 and 7 of
P Q preserve (R2) of Q because of (C2). Command 8 preserves (R2) because of
(C4).

Predicate (R3) is threatened only by commands 3,5 and 6. Command 3 of
P threatens (R3) only if P = Q and free.i; then (P3) implies a.i = 1 so that (R1)
implies i.P ad. P. Therefore, (R3) is preserved. Command 5 only threatens (R3) if
ad.pf = 1 and P Q = pf and pc.Q e [4..8); but then (C2) implies i.P # i.Q.
Again (R3) is preserved. Command 6 of P preserves (R3) for P 0 Q since it does not
modify pc.Q, i.Q or ad. Q. It preserves (R3) for P = Q since pc.P becomes 8 if ad.P
changes.

This concludes the proof of invariance of (P2), (P3) and (R0)�(R3), and thus the
proof of partial correctness.

5.4 No dangling addresses

For the purpose of progress, we first show that the algorithm does not produce
dangling addresses. More precisely, we show the invariance of

(R4)	 v.k # 1	 (k = ad.(u.k) A pc.(a.k) e [1..9))

V (k = i.(a.k) A pc.(a.k) e [4..8)).

Predicate (R4) is threatened only by the commands 0, 3, 5, 6, 7 and 8. Command
0 can only falsify the consequent of (R4) if a. k = P but then the consequent is false
already, since pc.P = 0. Command 3 is relevant only if free. i and k = i, but then it
establishes the consequent of (R4). Command 5 is only relevant if ad. pf = 1. For
k = i, one uses (RO) with Q = pf to conclude that the first disjunct of the consequent
of (R4) is established. If k i then a.k does not change; for a.k = P the second
disjunct of the consequent is false, for a.k 0 P the second disjunct of the conse-
quent does not change; so predicate (R4) is threatened only when ad. (o.k) = k
holds and is made false; then the precondition has ad.(a.k) = k 0 1 so that
a.k: pf. Therefore, (R4) is preserved. Command 6 does not modify a. k. It only
threatens the consequent of (R4) if P = a. k and k = i, but in that case the first
disjunct of the consequent becomes true. Command 7 can only falsify the second
disjunct of the consequent of (R4), but in that case it also falsifies the antecedent. It
therefore preserves (R4). Command 8 can only falsify the consequent by making



246	 W.H. Hesselink

pc.P = 0, but then P = a.k and k = ad.(a.k), so that the antecedent is made false.
This proves the invariance of (R4).

It may well be that the algorithm is to be applied continuously in an environ-
ment where, over time, the number of processes may change slowly. In that case,
the number n of declared processes need not be the number of actual processes but
is only an upper bound. The bounds in the time complexity may depend both on
the constant n that occurs in the algorithm and on the number of actual processes.
We therefore assume a constant set V to be given that contains the actual
processes. So V is a subset of process and all processes Q V are regarded as always
idle, in the sense that ad.Q 1 and pc.Q = 0. Of course, processes Q e V can also
be idle, temporarily or permanently. We use the constant v to denote the number of
elements of V. It follows from (P3) and (R4) that we have

free.k vused.k v(3T E V::k = i.T vk = ad.T).

Using (P1) we now obtain

(C5)	 (# k::-ifree.k) <_ r l , where r l = r + 2� v.

We can now state the weakest possible progress assumption for search3. It is
clear that process P e V can never find a free address if all processes Q e V \ {P}
have stopped executing in a state where

(Vk:: -ifree.k A -7used.k A(3TEV\{P}::k=i.T vk=ad.T)).

This shows that starvation is possible if m <_ 2 � v - 2.
Let us therefore assume that 2 � v - 1 <- m and that the environment guarantees

that, whenever some addresses are used, eventually at least one address is made
free. The latter condition can be expressed in the temporal formula

❑ ((3k::used.k)	 O(3k::free.k)).

Under these assumptions individual starvation does not occur. In fact, assume that
process P is searching in the sense that it did not stop executing and ad.P = 1.
During this search, no other process can obtain a free address more than n times.
Since at most 2 � (v - 1) addresses are kept by processes that have stopped execut-
ing, always at least one address is used or free or kept by some active process. The
temporal formula therefore implies that free addresses remain being produced.
Therefore, eventually, P or some other process will get a free address for process P.
The details of this proof of fairness are left to the reader, since we want to
emphasize bounded delay and amortized time complexity.

6 Bounded delay

Since we cannot hope for bounded delay if it is possible that all addresses k have
ifree.k, we now postulate that r l introduced in (C5) satisfies r, < m.

In order to prove bounded delay for process Q e V, we assume that process
Q executes command 0. It now suffices to prove that ad. Q 1 holds after
a bounded number of actions of Q. For this purpose, we introduce an expression
dis(P, Q) for the number of addresses that process P must find free in command



Bounded delay for a free address	 247

3 before offering an address to process Q in command 5. The expression is defined by

dis(P, Q) =

(Q � pf.P) modn � #(pc.P = 4)

+n - #(Q =pf.P Apc.P05),

where we use # A to denote 1 if A holds, and 0 otherwise (the operator mod we use
satisfies 0 <� x mod n < n for all integers x, possibly negative).

We proceed to show that dis(P, Q) satisfies its informal specification. We first
prove that 0 <� dis(P, Q) <_ n always holds. In fact, dis(P, Q) <0 implies Q = pf.P
and pc. P = 4, but then dis(P, Q) = n � 1. On the other hand, dis(P, Q) > n also
leads to a contradiction. We next investigate how dis(P, Q) changes under the
actions of the processes. Clearly, dis(P, Q) can only change when P executes one of
the commands 3,4 or 5. Actually, dis(P, Q) does not change if P executes command
4. In fact, if P executes command 4 with pf. P : Q, it decrements both operands of
the subtraction without modifying the final summand. So dis(P, Q) is not changed.
If process P executes command 4 with pf. P = Q, the subtraction changes from � 1
to n � 1 and the final summand changes from n to 0. So, again, dis(P, Q) is not
changed. Command 5 of P only modifies dis(P, Q) if pf. P = Q. In that case,
dis(P, Q) = 0 and process P offers a free address to Q. So, the postcondition
ad.Q : 1 is satisfied. Command 3 of P only modifies dis(P, Q) if free.(i.P) holds.
In that case, process P finds a new address and dis(P, Q) is decremented with 1. This
shows that dis(P, Q) is indeed the number of addresses that process P must find free
in command 3 before offering an address to process Q in command 5.

We now define the "waiting function" wa.Q by

wa.Q = (> T e V:: dis(T, Q)).

It follows from the above arguments that wa.Q satisfies the following lemma.

Lemma 0. (a) 0 < wa.Q _< v � n.
(b) If some process increases wa.Q, the postcondition satisfies ad.Q 0 1.
(c) If some process in command 3 finds a new address, wa.Q decreases with 1.

So now we have to guarantee that sufficiently many free addresses are found in
command 3. Since process P searches through the range address in a circular way,
we define an expression wf. k for the amount of not-free addresses j in front of k.
The addresses gets weights that decrease linearly according to the number of steps
needed to reach the address from k. Writing <x> = x mod m for any integer x, we
define

wf.k = ( Y j: �ifree.j: <k � j).
)

where j ranges over addresses. Notice that address j = <k + 1> has the maximal
weight <� 1> = m � 1 and that address j = k has the minimal weight <0> = 0.
Function <�> satisfies

<<x> –<y>> = <x – Y>,

<x+1>�<x>=1� m�#(<x+1>=0).



248	 W.H. Hesselink

Since the reference point k can be incremented modulo m, it is useful to estimate the
difference

wf.<k + 1> � wf.k

= {distributivity and above rule}

(Y j: --ifree.j: <k + 1�j> � <k � j>)

= {above rule}

(j: -ifree.j:1�m�#(<k+l�j>=0))

= {counting, one-point rule}

(#j:: -ifree.j) � m � #(-ifree.<k + 1>)

5 {(C5)}

r, � m #(-ifree.(k + 1>).

Since we have r, < m by assumption, this shows that the circular incrementation of
the reference point k can only increase wf.k if the new address <k + 1> is free. Since
the act of finding a new address is contained in command 3, we define the reference
point for process Q in such a way that it has a circular incrementation in command
3 with i.Q as its new value. The reference point is defined by

ii.Q = if pc.Q:3 then i.Q else <i.Q � 1> fi.

Indeed, one can easily verify that ii.Q only changes when process Q executes
command 3 and that command 3 of Q has the effect of ii.Q := ii.Q + 1. We now
define the weight function for process Q by

wfi.Q = wf.(ii.Q).

Its main properties are contained in

Lemma 1. (a) wfi.Q decreases with at least m � r l when process Q executes com-
mand 3 with precondition t free. (i.Q).
(b) wfi.Q can only increase when some process P executes command 3 with the
precondition free.(i.P). The increase is at most r l if P = Q. It is at most m � 1 if
P Q.
(c) 0 < wfi.Q 5 r 1 m.

Proof. (a) This follows from the above calculation.
(b) If process Q executes command 3 with precondition free.(i.Q), the new

not-free address gives contribution 0 to the new value of wfi.Q. Therefore, the
above calculation implies that wfi.Q increases with at most r 1 . It is clear that other
actions of Q do not increase wfi. Q. It is also clear that a process P # Q can only
increase wfi.Q by executing command 3 with precondition free.(i.P) and that the
increase is at most m � 1.

(c) This follows from (C5) and the definitions of wfi and wf. ❑

We now combine function wfi.Q with the function wa.Q considered earlier. If
process Q executes command 3 with precondition free.(i.Q), it increments wfi.Q



Bounded delay for a free address	 249

with at most r 1 and it decrements wa.Q with 1. If some other process, say P E V
with P ^ Q, increments wfi.Q, it does so by setting free.(i.P) to false. Then wfi.Q
increases with at most m � 1 and function wa. Q decreases with 1. This implies that

vf.Q = wfi.Q + m•wa.Q

only increases when variable ad. Q 1 is being established. Whenever process
Q executes command 3, the value of vf.Q decreases with at least m � r l . This
implies that vf.Q decreases with t � (m � r 1 ) when Q executes its loop body t times
while ad.Q = 1 remains valid.

It follows from the bounds for wfi and wa that 0 <_ vf.Q <_ m � (r l + v � n). This
implies that, if Q executes its loop body t times while ad. Q = 1 remains valid, then
t <_ C where C is given by

C = m � (r l + v � n) div(m � r l ).

Consequently, during one call of search3, process Q executes its loop body at most
C + 1 times. This proves that search3.Q terminates within a bounded number of
actions of process Q.

Complexity. In order to estimate the complexity of search3, we assume that
m = e - r l for some fixed rational number c> 1. We assume that r and v (and hence
r l ) are linear in n. Then the space complexity m = e � r 1 is linear in n.

With respect to the time complexity, the time bound for search3.Q is propor-
tional to C + 1 : [e/(e � 1)] (r 1 + v � n), which is quadratic in n. If one would take
m = r l + d for some natural number d > 0, then C + 1 and the time bound for
search3.Q would be cubic in n, but it would not get worse, even if d = 1.

If we have to choose m for a fixed value of r,, we notice that the time complexity
is proportional to a/(e � 1) and the space complexity proportional to e. It seems
reasonable to choose m such that the product of these constants is minimal. A small
calculation shows that this implies e = 2.

Remark. Alternatively, the introduction of ii.Q can be avoided if one is willing to
regard commands 2 and 3 as a single atomic command. This can be justified by
means of the atomicity rule 6.26 of [1].

7 Amortized complexity of the system

In this section, we show that the amortized complexity of search3 for the combined
system of processes is linear in the number v of actual processes. Amortized
complexity is defined here as the order of an upper bound of the number of atomic
actions of all processes divided by the number of addresses found, during long
execution sequences.

For this purpose, we introduce a ghost variable /3 to count the number of
addresses found, more precisely, the number of times search3 has been completed.
So /3 is incremented with 1 whenever some process executes command 8. We
introduce a ghost variable a to measure the activity of the processes, more precisely
to count the number of times command 3 has been executed. So a is incremented
with 1 whenever some process executes command 3. It can be shown that the total
number of atomic actions of the processes is bounded by 5 � a + 4 � /3 + 3. Therefore,



250	 W.H. Hesselink

an upper bound of the asymptotic ratio a//3 is a measure for the amortized
complexity.

We shall prove that a _< A � $ + B for certain constants A and B and that A is
proportional to v. Actually, we shall prove a stronger inequality, namely that, if at
some moment a = a o and $ = /3o , then henceforth a � a0 <_ A � (/i � $o) + B. The
above arguments show that A is a measure for the amortized complexity.

Remark. The second inequality is indeed stronger than the first one. In fact, the
first inequality allows, for every number K, that /f is constant while a is incremented
K times. The second inequality however yields the bound K <_ B.

We first introduce a potential function for the slack of /i:

pot=(#TEV::pc.Te[4..9))

+(#TeV::pc.Te[1..9) Aad.T:1).

Function pot increases with 1 whenever some process finds a free address in
command 3, since then the first summand is incremented. Function pot does not
change when a process executes the then-part of command 5, since then the first
summand is decremented and the second summand is incremented because of
invariant (RO). It is easy to see that command 6 does not decrement pot. Command
8 decrements pot with 2 because of (RO). The other commands leave pot unchanged.
It now follows that 2 � /i + pot never decreases and that it increases whenever some
process finds a new address in command 3.

We use the weight function wfi of Section 6 to define a global weight function

gw=(ETeV::wfi.T).

It follows from Lemma 1 that, whenever some process P E V executes command
3 with precondition -1 free. (i.P), it decrements gw with at least m � r 1 . Whenever
some process P finds a free address in command 3, it may increment wfi.P with at
most r l and it may increment the values wfi. T for T e V\ {P} with less than m. So
it increments gw with at most r l + (v � 1) � m. Every execution of command
3 increments a with 1. It follows that (m � r j ) � a + gw only increases when some
process finds a free address in command 3 and that it then increases with at most
V m.

We now combine the assertions concerning 2 /3 + pot and (m � r 1 ) � a + gw
and obtain the result that the integer

v�m�(2�f3+ pot) �((m�r l )�a +gw)

never decreases. If we now begin a sequence of observations in a state where a = a o
and /3 = /3o , etc., then henceforth we have the invariant

(m�r l )�(a�ao)+ (gw �gwo)Sv�m�(2�fi-2�fo + pot �poto).

Since pot � poto _< 2 � v and gwo � gw <_ v � m � r 1 , we obtain

a � ao <_ A�(# � fib +v +Z�rl),



Bounded delay for a free address 	 251

where A = 2 � v � m/(m � r,). This is indeed equivalent to an inequality of the form
as announced. If we take m = e � r l as before, we get the amortized time complexity
A = 2 � v � e/(e � 1), which indeed is linear in v.

8 Average behaviour

In this section we present a modification of search3, for which the results of the
Sects. 5-7 remain valid, but which has a better average time complexity.

In fact, the average behaviour of search3 suffers from the clustering of the values
i of different processes. It is difficult to make a quantitative stochastic analysis, but
the qualitative explanation is as follows. As soon as values i are clustered together,
the processes with the rightmost values i find more free addresses so that their
values i move more slowly. It follows that such clusters tend to be preserved. This
has the effect that the processes search more or less in the same area and therefore
find less free addresses than might be expected.

8.1 A minor modification

The remedy is to give each process its own search strategy. So we replace the
circular incrementation in command 2 of Fig. 2 by i = (i + u. P) mod m, where each
process P has its own constant u.P. In order to preserve the results of the Sects.
6 and 7, we impose the condition that u.P have greatest common divisor 1 with m.
In fact, this implies the existence of a unique address w.P such that the product
satisfies <w.P � u.P> = 1. We replace the definition of ii by

ii.Q = if pc.Q : 3 then i.Q else <i.Q � u.Q> fi.

One can verify that ii.Q is modified only when process Q executes command 3 and
that it then is incremented with u.Q modulo m. We redefine wfi by

wfi.Q =(j:j: �
ifree.j: <w.Q�(ii.Q 

� j)>),

and observe that

<w.Q�(k+ u.Q �j)>= <w.Q �(k� j)+1>.

It then turns out that Lemma 1 remains valid. Therefore, with these modifications
the results of the Sects. 6 and 7 remain valid.

It remains to choose the constants u.Q. The choice u.Q = 1 for all Q is just the
old solution. The best average behaviour is to be expected if all constants u.Q are
different. So, one can just take u to be an enumeration of addresses relatively prime
torn.

If one wants a homogeneous solution, one can choose n and m in such a way
that one can take the elements u.P to form a group of invertible elements in the ring
of integers modulo m. Then all processes are treated in the same way, since
multiplication of addresses with u.Q permutes the roles of all processes and gives
process Q the role of the process P with u.P = 1. We see no reason, however, to
assume that other distributions of u lead to unfair treatment of some of the
processes.



252
	

W.H. Hesselink

r = 5 8 11 14 16

# 8 # 2 # 8 # 2 #8 # 2 # 8 	# 2 # 8 # 2
0: 3 29 2 27 3 44 2	 47 1 63
1: 8 22 5 25 8 42 7	 43 6 61
2: 8 29 6 26 7 41 5	 43 5 58
3: 6 22 4 24 4 44 3	 46 2 61
4: 6 27 4 27 4 43 2	 49 2 62
5: 5 28 5 26 3 43 2	 45 1 59

#8/#2 .23 (.72) .17 (.56) .11 (.39) .077 (.22) .047 (.11)

Fig. 3. Results with m = 18, n = 6 and u.Q = I for all Q

r = 5 8 11 14 16

# 8 # 2 # 8 #2F#8 # 2 # 8 # 2 # 8 # 2
0: 12 31 8 28 1	 6 30 5 47 3 66
1: 17 24 11 25 8 26 10 41 6 62
2: 13 26 11 25 10 24 7 42 7 58
3: 16 25 7 28 9 25 7 43 5 59
4: 14 29 11 26 8 27 5 47 5 61
5: 15 23 10 27 6 29 6 41 6 54

#8/#2 .55 (.72) .36 (.56) .29 (.39) .15 (.22) .089 (.11)

Fig. 4. Results with m = 18, n = 6 and u.Q = 1, 5, 7,11,13,17

8.2 Results of simulations

We have performed some simulations to test the effect of this modification on the
average behaviour. In these simulations we forced the environment to preserve the
quality (# k: :  used. k) = r. A random number generator was used to choose the
next acting process and, for the environment, to choose the address to be given free.
The interesting factor is the ratio between the number of actions 8 and the number
of actions 2 (or 3). This ratio may be regarded as the productivity of the search and
it can be compared with the maximal productivity (m � r)/m. In the Figs. 3 and
4 we represent the results of ten test sequences for a system of n = 6 processes and
m = 18 addresses. Each double column represents one test sequence. The first row
gives the number r of used addresses. The second row gives headers to distinguish
the columns for commands 8 and 2. The next six rows give, for each of the six
processes, the numbers (#8) of executions of command 8 and the numbers (# 2) of
executions of command 2. In the bottom row, we give the ratio # 8/ # 2, where
both quantities are summed over all processes; for comparison this ratio is followed
by the fraction (m � r)/m between parentheses. Figure 3 contains the results for
search3 as given in Fig. 2. Figure 4 contains the results for the modification
presented above. In this case we use the six values 1,5,7,11,13,17 for u.Q.
Comparison between the Figs. 3 and 4 shows that here the average performance of
the modification is twice as good as the original version.

It turns out that, even in cases where the algorithm is not guaranteed to be
wait-free, the average performance seems to be quite good. In fact, in the cases of
the two tables the algorithm is only guaranteed to be wait-free for r <_ 5. One may



Bounded delay for a free address 	 253

also notice that the first process is, generally, the least productive one. This is
a consequence of our choice to give short test sequences and to let each test
sequence begin with pf.Q = 0 for all Q. In that way, process 0 is an ill-favoured
process.

9 Comparison

The solution in quadratic space of Section 4 is simpler and has better worst-case
time complexity than the one of Section 5. It is therefore to be preferred in cases
where memory is no problem and in real time applications. It may also be preferred
because of its use of simpler primitives, especially in the form of search2.

In some applications space complexity is a bottleneck. For instance, in [9] and
[10], the addresses to be found are indices of an array of length m with elements of
type X, where the values of X may be states of a data base. In that case, quadratic
complexity of m may be prohibitive and the solution in linear space of Sect. 5, as
modified in Sect. 8, may be preferred.

We assume that, in most applications, the performance of the latter solution is
acceptable. Indeed, the worst-case time complexity may be quadratic, but the
amortized complexity is linear and the average productivity seems to be a fair
approximation of the maximal productivity that can be expected. The simulations
show that the solution has graceful degradation: it is also applicable (though no
longer wait-free) if almost all addresses are used.

We do not know other fine-grain solutions of the problem that have been
proved completely. It seems to be easy to construct hybrid solutions in between our
second and third solution, but we do not expect better behaviour from such
a solution than from our third solution with the same address space. We have
considered an alternative of our third solution in which the private favorites pf.P
are replaced by one common favorite. We rejected that solution, however, since it
only introduced more proof obligations and more communication overhead, while
having the same quadratic worst-case complexity.

References

1. Apt, K.R., Olderog, E.-R.: Verification of sequential and concurrent programs. New York:
Springer 1991

2. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R: Renaming in an asynchronous
environment. J. ACM 37 (1990) 524-548

3. Back, R.J.R., Sere, K.: Stepwise refinement of action systems. In: J.L.A. van de Snepscheut
(ed.): Mathematics of Program Construction (Lect. Notes Comput. Sci., vol. 375, pp. 115-138)
Berlin, Springer: 1989

4. Bar-Noy A., Dolev, D.: Shared-memory vs. message-passing in an asynchronous distributed
environment. In Proc. 8th ACM Symp. on principles of distributed computing, pp. 307-318,
1989

5. Borowsky, E., Gafni, A.: Immediate snapshots and fast renaming. In: Proc. 12th ACM Symp.
on principles of distributed computing, pp. 41-52, 1993

6. Boyer, R.S., Moore, J.: A computational logic handbook. Boston: Academic Press 1988
7. Chandy, K.M., Misra, J.: Parallel program design, a foundation. Reading, MA: Addison-

Wesley 1988
8. Dijkstra, E.W.: A class of allocation strategies inducing bounded delays only. Tech. Rept.,

Tech. Univ. Eindhoven, EWD 319, 1971




