Simultaneous Determination of the $\text{^{2}H}/\text{^{1}H}$, $\text{^{17}O}/\text{^{16}O}$, and $\text{^{18}O}/\text{^{16}O}$ Isotope Abundance Ratios in Water by Means of Laser Spectrometry

Kerstel, E.R.Th.; Trigt, R. van; Dam, N.J.; Reuss, J.; Meijer, H.A.J.

Published in:
Analytical Chemistry

DOI:
10.1021/ac990621e

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1999

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Simultaneous Determination of the 2H/1H, 17O/16O, and 18O/16O Isotope Abundance Ratios in Water by Means of Laser Spectrometry

Centrum voor IsotopenOnderzoek, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands

We demonstrate the first successful application of infrared laser spectrometry to the accurate, simultaneous determination of the relative 2H/1H, 17O/16O, and 18O/16O isotope abundance ratios in water. The method uses a narrow line width color center laser to record the direct absorption spectrum of low-pressure gas-phase water samples (presently 10 µl of liquid) in the 3-µm spectral region. It thus avoids the laborious chemical preparations of the sample that are required in the case of the conventional isotope ratio mass spectrometer measurement. The precision of the spectroscopic technique is shown to be 0.7% for 2H and 0.5% for 17O and 18O (δ represents the relative deviation of a sample’s isotope abundance ratio with respect to that of a calibration material), while the calibrated accuracy amounts to about 3 and 1% respectively, for water with an isotopic composition in the range of the Standard Light Antarctic Precipitation and Vienna Standard Mean Ocean Water international standards.

Quantitative information on the natural variation of isotopic abundance ratios is extremely useful, in fact often indispensable, for a wide variety of research fields. For example, the 13C/12C ratio in CH$_4$ puts important constraints on the relative contributions to the global methane budget of the various CH$_4$ sources and their isotopic behavior.1 Similarly, the data recorded on a global scale of the 13C/12C ratio in atmospheric CO$_2$ represents crucial independent information, which help to elucidate the role the oceans and the terrestrial biosphere have in the global carbon cycle, by virtue of the different rates of uptake of the two isotopic species.4–7 The same 13C/12C isotope ratio in the CO$_2$ fraction of exhaled air for breath analysis is a valuable medical diagnostic tool, e.g., for the detection of Helicobacter pylori infections by means of a 13C-labeled urea test or the quantification of the amino acid metabolism by means of a 13C-labeled leucine test.8

But arguably it is the study of the isotopic composition of water that finds application in the widest variety of disciplines, from paleoclimatology to hydrology, atmospheric chemistry, and biomedicine.

For the field of paleoclimatology, both the 18O and the 2H isotopic composition depth profiles of ice cores recovered from polar ice sheets have proven to be among the most reliable and detailed proxy temperature records of the earth’s past climate (dating back some 250 000 yr).9–11 In addition, the interrelation of the 18O and the 2H abundances is sensitive to parameters other than the local temperature at the time of the polar precipitation, such as relative humidity and temperature in the source region. Knowledge of both isotopic abundances thus provides important additional information.14 For example, rapid climate changes during the last glacial period were identified by the combined 18O–2H analysis of a small section of the Greenland “DYE 3" ice core.15 However, currently a complete analysis of such an ice core (with a total length of up to 3 km) is still prohibitively time-consuming.

Isotopic analysis of water is also an important tool in the hydrological study of groundwater and surface water systems. The 18O and the 2H isotopic signatures are indicative of the climatic conditions under which recharge took place and can be used to estimate retention times.

An example of a widespread application in biomedicine is the so-called doubly labeled water method for the quantification of...
Here, water enriched in 2\text{H} and 18\text{O} is administered and the metabolism of free-roaming animals in their natural habitat.16 The subsequent decrease in 2\text{H} (due to loss of water) and 18\text{O} (due to loss of water and CO\textsubscript{2}) content of the body water pool is measured (typically after 24 h). From this, the CO\textsubscript{2} production can be calculated and, therewith, the energy expenditure.

At the same time, however, the currently available methods for the measurement of isotope ratios in water are far more cumbersome (as well as inaccurate) than for, for example, CO\textsubscript{2}. Traditionally, all methods make use of isotope ratio mass spectrometers (IRMS) designed specifically for the purpose of measuring isotope abundance ratios. Due to the nature of the molecule, the water samples are not introduced directly into the mass spectrometer. Instead, the water is chemically converted to CO\textsubscript{2} and H\textsubscript{2}, and the 18\text{O}/16\text{O} and 2\text{H}/1\text{H} isotope ratios are measured on the respective molecules. The conventional method for 18\text{O}/16\text{O} is to bring the water sample into contact with CO\textsubscript{2} of known isotopic composition and to wait several hours for the bicarbonate reaction to establish isotopic equilibrium (up to 24 h in the case of the original static equilibrium method, often referred to as the Epstein–Mayeda technique17). The H\textsubscript{2} is most commonly produced by reduction of water over hot (~800 °C) uranium or zinc. These sample pretreatments are sometimes hazardous and almost always time-consuming, as well as the limiting factor in achieving the high accuracy demanded in the majority of studies.

An additional disadvantage of the traditional IRMS method is the virtual impossibility of measuring the 17\text{O}/16\text{O} ratio in water, due to the mass overlap of 2\text{H}12\text{C}16\text{O} and the much more abundant 18\text{O}12\text{C}16\text{O}.

It is in this light that there is much interest in alternative methods. The use of platinum catalytic equilibration of a water sample and hydrogen and/or carbon dioxide gas in combination with an IRMS appears promising.18,19 But this method too has its disadvantages: the equilibrium state is accompanied by a very large isotope fractionation (about ~740%/at room temperature), which is also extremely temperature dependent (~6%/°C). Furthermore, the gas sample arriving at the IRMS contains approximately one-quarter the original amount of deuterium, considerably decreasing the (already low) mass-3 signal, with obvious consequences for errors due to background correction, amplifier offset, and, above all, the H\textsubscript{3}+ correction. Finally, the amount of water required is rather large (typically 4–5 mL), prohibiting the use of this method in quite a number of possible applications. The latter is also true for electrolysis.20 In fact, the only realistic alternative appears to be on-line pyrolysis of water in combination with a continuous-flow IRMS. The latter method is able to deal with very small sample sizes (down to 1 μL), provides a high throughput, and is able to achieve very reasonable precisions (2% for δ2\text{H} and ~0.3% for δ18\text{O}); unfortunately the data presented by Begley and Scrimgeour are insufficient to give an estimate of the overall accuracy.21

Here we report on our efforts to use a completely different measurement technique, based on direct absorption laser spectroscopy. For most relatively small molecules the room-temperature, low-pressure gas-phase infrared spectra reveal absorptions due to individual rovibrational transitions that can each be uniquely assigned to one of the various isotopic species present. The absorption intensities of these lines, relative to that of a line belonging to the most abundant isotopic species, can be used to calculate the isotope ratio of interest. The measurement of the absorption intensity is done by recording the attenuation of a laser beam with narrow spectral line width as a function of its wavelength.

This technique has some major advantages over the traditional IRMS method: smaller sample sizes and direct measurement of isotope ratios in the water vapor, avoiding the time-consuming and inaccurate sample preparations that are otherwise required. Moreover, with the spectroscopic method, it is possible to accurately measure the 17\text{O}/16\text{O} ratio in water (in addition to the 18\text{O}/16\text{O} and 2\text{H}/1\text{H} ratios) as well as site-selective isotope ratios in more complex molecules. Both of these are impossible or completely impractical with the conventional mass spectrometer (including pyrolysis and continuous-flow systems) and provide ample opportunities for completely new research.

Spectroscopic methods have been applied previously to measure isotope ratios in other environmentally interesting molecules.22,23 However, in most of the cases the accuracy obtained was not sufficient to make the instrument truly useful. In our opinion, so far the only successful application of laser spectroscopy has been the determination of the relative 13\text{C}/12\text{C} and 2\text{H}/1\text{H} ratios in methane, using a lead salt tunable diode laser system, in a careful study reported by Bergamaschi and co-workers.2,3 They obtained precisions of, respectively, 0.5 and 3% while the overall accuracies were limited to 0.6 and 5%2 Also, the nonlaser optical method of nondispersive infrared (NDIR) has shown its usefulness in the analysis of breath for the 13\text{C}/12\text{C} isotope ratio in CO\textsubscript{2}.8 Fusch and co-workers have applied Fourier transform infrared spectroscopy to the measurement of 2\text{H}/1\text{H} ratios in liquid water samples with a precision of ~5% at low deuterium enrichment levels.24 Unfortunately, as the method relies on the large change in vibrational frequency associated with the OH bond upon 2\text{H} substitution in order to achieve isotope specificity, it cannot be used to measure the oxygen isotope ratio(s). This, together with the somewhat low accuracy, effectively restricts their method to applications in the field of biomedicine.

In this paper, we report what to the best of our knowledge is the first successful application of laser spectroscopy to the accurate determination of isotope abundance ratios in water.

EXPERIMENTAL SECTION

The apparatus, depicted in Figure 1, uses as its light source a tunable near-infrared, single-mode, color center laser (Burleigh FCL-20). It produces ~14 mW at 2.7 μm into a 3-MHz line width, when pumped with 0.7 W of a krypton ion laser (at 647 nm). The reliability of the laser system is determined almost entirely by the lifetime of the pump laser. The current laser has been...
operating for over 2000 h, since a tube refill took place two years ago. The FCL and the other optical components require only occasional readjustments, in practice only after deliberate changes to the optical layout are made.

Two spectrum analyzers and a wavelength meter continuously monitor the FCL output. Only a fraction of the output (\(1 \text{ mW}\)) is used to record direct absorption spectra in two identical gas cells, equipped with multiple-pass reflection optics. The total optical path length inside the cells is \(20 \text{ m}\). Absorptions outside the cells (due to water and carbon dioxide in the laboratory air) are corrected for by dividing the gas cell signals by the simultaneously recorded laser intensities before the gas cells. For each gas cell, the signal and laser-power beams are amplitude modulated at different frequencies and directed at the same InAs infrared detector. Signal recovery is by means of phase-sensitive detection. In this way, any drift in the operating characteristics of the detector automatically cancels out. A personal computer controls the laser tuning and data acquisition. With a step size of \(15 \text{ MHz} (0.0005 \text{ cm}^{-1})\) a complete scan over the four selected rovibrational transitions of Table 1 counts ~2000 data points and requires ~2 min.

The gas cells with a volume of \(1 \text{ L}\) are filled with \(10^{-6} \text{ L}\) water samples, using a \(10^{-6} \text{ L}\) syringe to inject the sample through a silicon membrane ("septum"), resulting in a gas cell pressure of \(13 \text{ mbar}\) (the saturated vapor pressure is \(32 \text{ mbar}\)). Therewith the signal attenuation is between 25 and 90% for each of the selected transitions and the range of water samples used in this study. This part of the spectrum has been chosen for the fact that all four major isotopic species are present in a small wavelength range and absorb with comparable intensity. The lines are pressure broadened to \(0.008 \text{ cm}^{-1}\) (hwhm).

One of the gas cells is filled with reference water with a well-known isotopic composition with respect to the internationally accepted calibration material Vienna Standard Mean Ocean Water (VSMOW). The isotopic composition of the sample water in the second gas cell is determined by comparing the relative intensities of the selected rovibrational transitions in the sample cell to those in the reference cell.

Figure 1. Schematic representation of the experimental setup: FCL-20, color center laser; Kr\(^+\), krypton ion laser; SPA1, 150-MHz FSR spectrum analyzer; SPA2, 8-GHz FSR spectrum analyzer; WLM, wavelength meter; L, 500-mm focal length lens; OC, dual-frequency optical chopper; D, InAs infrared detector.

Table 1. Rovibrational Transitions Used in This Study

<table>
<thead>
<tr>
<th>frequency (cm(^{-1}))</th>
<th>intensity(^a) (cm-molecule(^{-1}))</th>
<th>temp coeff(^b) at 300 K (K(^{-1}))</th>
<th>assignment(^c)</th>
<th>isotope</th>
</tr>
</thead>
<tbody>
<tr>
<td>3662.920</td>
<td>(1.8 \times 10^{-23})</td>
<td>(1.3 \times 10^{-3})</td>
<td>(v = (001) \rightarrow (000))</td>
<td>(^{1}\text{H}^{16}\text{O}^{1}\text{H})</td>
</tr>
<tr>
<td>3663.045</td>
<td>(7.5 \times 10^{-23})</td>
<td>(4.4 \times 10^{-3})</td>
<td>(v = (100) \rightarrow (000))</td>
<td>(^{1}\text{H}^{18}\text{O}^{1}\text{H})</td>
</tr>
<tr>
<td>3663.321</td>
<td>(6.4 \times 10^{-23})</td>
<td>(-1.5 \times 10^{-3})</td>
<td>(v = (001) \rightarrow (000))</td>
<td>(^{1}\text{H}^{17}\text{O}^{1}\text{H})</td>
</tr>
<tr>
<td>3663.842</td>
<td>(1.2 \times 10^{-23})</td>
<td>(-3.4 \times 10^{-3})</td>
<td>(v = (001) \rightarrow (000))</td>
<td>(^{1}\text{H}^{16}\text{O}^{2}\text{H})</td>
</tr>
</tbody>
</table>

\(^a\) All values are taken from the HITRAN 1996 spectroscopic database.\(^b\) The intensities are for a natural water sample with abundances: 0.998, 0.00199, 0.00038, and 0.00003 for \(^{1}\text{H}^{16}\text{O}^{1}\text{H}\), \(^{1}\text{H}^{18}\text{O}^{1}\text{H}\), \(^{1}\text{H}^{17}\text{O}^{1}\text{H}\), and \(^{1}\text{H}^{16}\text{O}^{2}\text{H}\), respectively.\(^c\) The temperature coefficients give the relative change with temperature in absorption intensity of the selected transitions. They are calculated using the HITRAN 1996 database.\(^d\) The notation for the vibrational bands is \((\nu_1, \nu_2, \nu_3)\), whereas the rotational levels are identified by the three quantum numbers \(J, K_a, K_c\).
It is customary to express the isotopic composition of a sample with respect to the isotope abundance ratio of a reference (standard) in terms of the \(\delta \)-value:

\[
\delta(x) = \frac{R_{\text{sample}}}{R_{\text{ref}}} - 1 = \frac{(n_x/n_a)_{\text{sample}}}{(n_x/n_a)_{\text{ref}}} - 1
\]

(1)

The subscript \(x \) refers to one of the rare isotopic species (\(x = ^1\text{H}^1\text{H}^1\text{O}^1\text{H}, ^1\text{H}^1\text{H}^1\text{O}^2\text{H}, ^1\text{H}^1\text{H}^1\text{O}^2\text{H} \)), while \(a \) represents the abundant isotopic species, \(^1\text{H}^1\text{O}^1\text{H}\). The number density \(n_z \) of species \(z \) (\(x, a \)) is proportional to the absorption coefficient \(\alpha_z \) of the sample at the center frequency \(\nu_2 \) of the corresponding absorption, as given by the Lambert–Beer law: \(^{25}\)

\[
\alpha_z = -\ln(l(\nu_2)/l_0) = S_z f(0)n_z l
\]

(2)

Here, \(l(\nu_2)/l_0 \) is the ratio of transmitted laser power at the center of the absorption line, \(S_z \) is the line strength of the absorption feature in question, \(f(0) \) represents the value of the normalized line shape function evaluated at \(\nu = \nu_2 \), and \(l \) is the absorption path length. In general, \(f(0) \) is inversely proportional to the line width. For a Doppler-broadened line with a hwhm of \(\Gamma_0 \): \(f(0) = (\ln(2)/\pi)^{1/2} / \Gamma_0 \) \(^{25}\) Thus \(n_z \propto \alpha_z l/(S_z) \). Since our water samples inside the gas cells are in thermal and pressure equilibrium, the line width \(\Gamma \) is the same for all rovibrational lines in one gas cell, as is the optical path length \(l \). In the superratio of eq 1 the line widths and path length therefore cancel out. Provided the temperature is kept constant and the same for both gas cells, the line strength \(S \) will also cancel, and one can replace the number densities in eq 1 with the absorption coefficients of eq 2:

\[
\delta(x) = \frac{(\alpha_x/\alpha_a)_{\text{sample}}}{(\alpha_x/\alpha_a)_{\text{ref}}} - 1 = \frac{(\alpha_x/\alpha_a)_{\text{sample}}}{(\alpha_x/\alpha_a)_{\text{ref}}} - 1 = \frac{\varphi_x}{\varphi_a} - 1
\]

(3)

The ratio \(\varphi_x = (\alpha_x/\alpha_a)_{\text{ref}} \) has been defined here for future use (see eqs 4 and 5). Although in general the line strength \(S \) is temperature dependent (predominantly through the ground-state population distribution function), the temperature coefficients of the transitions used in this study are sufficiently small that no special precautions, such as active stabilization of the gas cell temperature, have to be taken in order to avoid measurable temperature effects on the \(\delta \)-value. Which is not too surprising if one realizes that the \(\delta \)-value is only sensitive to a temperature difference between the two gas cells.

The line ratios \(\varphi \) are calculated from the experimental data as one of the free parameters in a least-squares approximation of the form

\[
-\ln \left(\frac{S_{\text{sample}}(\nu)}{P_{\text{sample}}(\nu)} \right) = -\varphi \ln \left(\frac{S_{\text{ref}}(\nu)}{P_{\text{ref}}(\nu)} \right) + \beta_0 + \beta_2(\nu - \nu_2) + \beta_4(\nu - \nu_2)^2
\]

(4)

As before, \(x \) refers to the isotopic species in question (\(x = ^1\text{H}^1\text{H}^1\text{O}^1\text{H}, ^1\text{H}^1\text{O}^1\text{H}, ^1\text{H}^1\text{O}^2\text{H} \)), while \(a \) represents the abundant isotopic species, \(^1\text{H}^1\text{O}^1\text{H}\). Strictly speaking, the conversion of these molecular \(\delta \)-values to the more common atomic \(\delta \)-values is not straightforward. Fortunately, however, principally due to the fact that the isotope abundance ratios are so small, the two are indistinguishable for all practical applications. Thus, \(\delta(^1\text{H}^1\text{O}^1\text{H}) = \delta^1\text{O}, \delta(^1\text{H}^1\text{O}^2\text{H}) = \delta^{17}\text{O}, \) and \(\delta(^1\text{H}^1\text{O}^2\text{H}) = \delta^2\text{H} \).

The so-determined \(\delta \)-values turn out to be rather sensitive to pressure differences between the sample and reference gas cells. Such pressure differences occur in practice due to our inability to inject the \(\sim 10\mu \) water samples with an uncertainty better than \(\sim 0.2 \mu \). The effect is that the line widths in the sample and reference spectra can be measurably different. Since the \(\delta \)-values

are determined as a "super" ratio of line intensities, such a line width difference amounts to 52‰, corresponding to an (average) line width in both the reference and sample spectra as a differential pressure correction using the experimental Figure 3.

In the determination of the respective correction parameters reflect the importance of spectral overlap. As the 2H, and to a lesser extent the O, measurements are afflicted with a large memory effect (the influence of the previous sample on the current measurement), it turned out to be occasionally necessary to inject three or more water samples before the measured δ-value reached its final value. To minimize the influence of this memory effect on the calibration procedure, large steps in δ-values between subsequent samples were avoided as much as possible. For the same reason, Figure 4 includes data recorded both in increasing and in decreasing order of δ-value. In the future, the gas cells may be operated at an elevated temperature in order to promote a quicker water removal from the cells.

The calibration data of Figure 4 are fit to linear functions with variable slope. The rms value of the residuals gives a good indication of the overall accuracy of the method, including all effects of sample handling. The values are 2.8, 0.7, and 1.3‰ for δH, δ17O, and δ18O, respectively. The precision of the method is given by the standard error of the individual results of one series of (typically) 15 laser scans. The current average values of these are 0.7, 0.3, and 0.5‰ for δH, δ17O, and δ18O, respectively. In the case of 17O and 18O, the precision can still be improved by increasing the number of laser scans in one run (i.e., increasing the measuring time). For δ2H the minimum standard error has already been reached at this point, indicating that the precision in this case is limited by sample-handling errors, including memory effects and isotope fractionation at the gas cell walls. In fact, extensive fractionation at the walls is to be expected, in particular for hydrogen. However, such fractionation is only

\[
1 + \delta(17O) = (1 + \delta(18O))^{0.5281}
\]

As the 2H, and to a lesser extent the O, measurements are afflicted with a large memory effect (the influence of the previous sample on the current measurement), it turned out to be occasionally necessary to inject three or more water samples before the measured δ-value reached its final value. To minimize the influence of this memory effect on the calibration procedure, large steps in δ-values between subsequent samples were avoided as much as possible. For the same reason, Figure 4 includes data recorded both in increasing and in decreasing order of δ-value. In the future, the gas cells may be operated at an elevated temperature in order to promote a quicker water removal from the cells.

The calibration data of Figure 4 are fit to linear functions with variable slope. The rms value of the residuals gives a good indication of the overall accuracy of the method, including all effects of sample handling. The values are 2.8, 0.7, and 1.3‰ for δH, δ17O, and δ18O, respectively. The precision of the method is given by the standard error of the individual results of one series of (typically) 15 laser scans. The current average values of these are 0.7, 0.3, and 0.5‰ for δH, δ17O, and δ18O, respectively. In the case of 17O and 18O, the precision can still be improved by increasing the number of laser scans in one run (i.e., increasing the measuring time). For δ2H the minimum standard error has already been reached at this point, indicating that the precision in this case is limited by sample-handling errors, including memory effects and isotope fractionation at the gas cell walls. In fact, extensive fractionation at the walls is to be expected, in particular for hydrogen. However, such fractionation is only

\[
1 + \delta(17O) = (1 + \delta(18O))^{0.5281}
\]

As the 2H, and to a lesser extent the O, measurements are afflicted with a large memory effect (the influence of the previous sample on the current measurement), it turned out to be occasionally necessary to inject three or more water samples before the measured δ-value reached its final value. To minimize the influence of this memory effect on the calibration procedure, large steps in δ-values between subsequent samples were avoided as much as possible. For the same reason, Figure 4 includes data recorded both in increasing and in decreasing order of δ-value. In the future, the gas cells may be operated at an elevated temperature in order to promote a quicker water removal from the cells.

The calibration data of Figure 4 are fit to linear functions with variable slope. The rms value of the residuals gives a good indication of the overall accuracy of the method, including all effects of sample handling. The values are 2.8, 0.7, and 1.3‰ for δH, δ17O, and δ18O, respectively. The precision of the method is given by the standard error of the individual results of one series of (typically) 15 laser scans. The current average values of these are 0.7, 0.3, and 0.5‰ for δH, δ17O, and δ18O, respectively. In the case of 17O and 18O, the precision can still be improved by increasing the number of laser scans in one run (i.e., increasing the measuring time). For δ2H the minimum standard error has already been reached at this point, indicating that the precision in this case is limited by sample-handling errors, including memory effects and isotope fractionation at the gas cell walls. In fact, extensive fractionation at the walls is to be expected, in particular for hydrogen. However, such fractionation is only

\[
1 + \delta(17O) = (1 + \delta(18O))^{0.5281}
\]

As the 2H, and to a lesser extend the O, measurements are afflicted with a large memory effect (the influence of the previous sample on the current measurement), it turned out to be occasionally necessary to inject three or more water samples before the measured δ-value reached its final value. To minimize the influence of this memory effect on the calibration procedure, large steps in δ-values between subsequent samples were avoided as much as possible. For the same reason, Figure 4 includes data recorded both in increasing and in decreasing order of δ-value. In the future, the gas cells may be operated at an elevated temperature in order to promote a quicker water removal from the cells.

The calibration data of Figure 4 are fit to linear functions with variable slope. The rms value of the residuals gives a good indication of the overall accuracy of the method, including all effects of sample handling. The values are 2.8, 0.7, and 1.3‰ for δH, δ17O, and δ18O, respectively. The precision of the method is given by the standard error of the individual results of one series of (typically) 15 laser scans. The current average values of these are 0.7, 0.3, and 0.5‰ for δH, δ17O, and δ18O, respectively. In the case of 17O and 18O, the precision can still be improved by increasing the number of laser scans in one run (i.e., increasing the measuring time). For δ2H the minimum standard error has already been reached at this point, indicating that the precision in this case is limited by sample-handling errors, including memory effects and isotope fractionation at the gas cell walls. In fact, extensive fractionation at the walls is to be expected, in particular for hydrogen. However, such fractionation is only

\[
1 + \delta(17O) = (1 + \delta(18O))^{0.5281}
\]
both cells will result in a observable to the extent that the two gas cells behave differently. If such is the case, injecting exactly the same water sample in both cells will result in a δ-value significantly different from zero.

This we do not observe. It should be noted that fractionation between the liquid and gas phases of water is avoided by working at a substantially lower pressure (13 mbar) than the saturated vapor pressure (32 mbar at room temperature); all injected liquid water quickly evaporates inside the evacuated gas cell.

The slopes of the calibration curves are all different from unity: laser spectrometry underestimates the isotope ratios. It appears as if the sample is mixed with reference water (but not vice versa, as cross-contamination would lead to a quadratic deviation,27 which is not observed). Although we have established that the sample introduction procedure cannot be blamed, we have not yet been able to eliminate this residual effect (perhaps caused by memory effects in the vacuum system).

As has become apparent over the years in numerous international ring tests, IRM S-based measurements too exhibit calibration curves with slopes smaller than unity, and in particular, for δD the deviations found are often much larger than those of the δ18O value in combination with eq 7. A pragmatic approach to these problems, in which the deviations found are often much larger than those of the δ18O value in combination with eq 7.

This we do not observe. It should be noted that fractionation between the liquid and gas phases of water is avoided by working at a substantially lower pressure (13 mbar) than the saturated vapor pressure (32 mbar at room temperature); all injected liquid water quickly evaporates inside the evacuated gas cell.

The slopes of the calibration curves are all different from unity: laser spectrometry underestimates the isotope ratios. It appears as if the sample is mixed with reference water (but not vice versa, as cross-contamination would lead to a quadratic deviation,27 which is not observed). Although we have established that the sample introduction procedure cannot be blamed, we have not yet been able to eliminate this residual effect (perhaps caused by memory effects in the vacuum system).

As has become apparent over the years in numerous international ring tests, IRMS-based measurements too exhibit calibration curves with slopes smaller than unity, and in particular, for δD the deviations found are often much larger than those of the present laser system. A pragmatic approach to these problems, in which the δ-scales are defined by a linear calibration using two different calibration waters (e.g., SLAP in addition to VSMOW), has been generally accepted and, in fact, is recommended by the IAEA.28,29 The same solution can be applied to our laser-based measurements is rather good, especially considering that the results of the deviations found are often much larger than those of the present laser system. A pragmatic approach to these problems, in which the δ-scales are defined by a linear calibration using two different calibration waters (e.g., SLAP in addition to VSMOW), has been generally accepted and, in fact, is recommended by the IAEA.28,29 The same solution can be applied to our laser-based method, even more so, since the reproducibility of the measurements is rather good, especially considering that the results of

Table 2. Slap δ-Values (%) (Referenced to VSMOW)

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Laser spectrometera</th>
<th>Consensus valueb</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ(²H)</td>
<td>-415.47 (0.85)</td>
<td>-428.0</td>
</tr>
<tr>
<td>δ(¹⁷O)</td>
<td>-28.11 (0.23)</td>
<td>-29.70</td>
</tr>
<tr>
<td>δ(¹⁸O)</td>
<td>-53.88 (0.37)</td>
<td>-55.5</td>
</tr>
</tbody>
</table>

a Based on 11 measurement series (or runs, each consisting of 15 individual laser scans) and acquired over a one-month interval. The standard error is given in parentheses. b Consensus value, recommended by the IAEA.28 The δH value results from a mixture of isotopically pure synthetic waters and is regarded to be correct in absolute terms. The δ¹⁸O is the consensus value of 25 laboratories; the true value is likely somewhat more negative.27 The δ¹⁷O value is based on the consensus δ¹⁸O value in combination with eq 7.

Table 3. Results for VSMOW and SLAP, against VSMOW and Scaled to the Slap Consensus Values as Reported in Table 2a

<table>
<thead>
<tr>
<th>Sample</th>
<th>δ(²H)</th>
<th>δ(¹⁷O)</th>
<th>δ(¹⁸O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSMOW</td>
<td>1.17 (0.60)</td>
<td>0.49 (0.27)</td>
<td>1.25 (0.66)</td>
</tr>
<tr>
<td>VSMOW</td>
<td>2.63 (0.65)</td>
<td>0.25 (0.24)</td>
<td>2.11 (0.44)</td>
</tr>
<tr>
<td>VSMOW</td>
<td>0.07 (0.95)</td>
<td>-0.22 (0.31)</td>
<td>0.35 (0.70)</td>
</tr>
<tr>
<td>VSMOW</td>
<td>0.23 (0.99)</td>
<td>0.29 (0.28)</td>
<td>0.70 (0.73)</td>
</tr>
<tr>
<td>VSMOW</td>
<td>-0.09 (0.80)</td>
<td>-0.09 (0.32)</td>
<td>-1.00 (0.33)</td>
</tr>
<tr>
<td>VSMOW</td>
<td>-1.41 (0.97)</td>
<td>-0.28 (0.39)</td>
<td>-1.66 (0.46)</td>
</tr>
<tr>
<td>VSMOW</td>
<td>1.30 (0.96)</td>
<td>-0.66 (0.19)</td>
<td>-1.82 (0.72)</td>
</tr>
<tr>
<td>VSMOW</td>
<td>0.49 (0.83)</td>
<td>0.22 (0.31)</td>
<td>0.07 (0.38)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>std dev</th>
<th>1.40</th>
<th>0.38</th>
<th>1.40</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLAP</td>
<td>-426.04 (0.47)</td>
<td>-31.23 (0.18)</td>
<td>-56.52 (0.33)</td>
<td></td>
</tr>
<tr>
<td>SLAP</td>
<td>-426.21 (0.43)</td>
<td>-30.00 (0.25)</td>
<td>-56.35 (0.38)</td>
<td></td>
</tr>
<tr>
<td>SLAP</td>
<td>-422.76 (1.55)</td>
<td>-28.74 (0.28)</td>
<td>-55.35 (0.43)</td>
<td></td>
</tr>
<tr>
<td>SLAP</td>
<td>-426.30 (0.39)</td>
<td>-29.52 (0.23)</td>
<td>-55.55 (0.31)</td>
<td></td>
</tr>
<tr>
<td>SLAP</td>
<td>-427.77 (0.29)</td>
<td>-28.84 (0.22)</td>
<td>-57.44 (0.52)</td>
<td></td>
</tr>
<tr>
<td>SLAP</td>
<td>-429.92 (0.33)</td>
<td>-30.73 (0.32)</td>
<td>-57.73 (0.48)</td>
<td></td>
</tr>
<tr>
<td>SLAP</td>
<td>-425.71 (0.80)</td>
<td>-29.39 (0.38)</td>
<td>-53.91 (0.46)</td>
<td></td>
</tr>
<tr>
<td>SLAP</td>
<td>-430.83 (1.19)</td>
<td>-28.61 (0.47)</td>
<td>-55.70 (0.82)</td>
<td></td>
</tr>
<tr>
<td>SLAP</td>
<td>-430.74 (0.51)</td>
<td>-29.63 (0.55)</td>
<td>-56.50 (0.56)</td>
<td></td>
</tr>
<tr>
<td>SLAP</td>
<td>-432.60 (0.39)</td>
<td>-30.12 (0.28)</td>
<td>-54.06 (0.54)</td>
<td></td>
</tr>
<tr>
<td>SLAP</td>
<td>-428.11 (0.36)</td>
<td>-28.88 (0.38)</td>
<td>-53.39 (0.36)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>std dev</th>
<th>2.89</th>
<th>0.81</th>
<th>1.26</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSMOW</td>
<td>1.07</td>
<td>0.38</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>SLAP</td>
<td>-426.04 (0.47)</td>
<td>-31.23 (0.18)</td>
<td>-56.52 (0.33)</td>
<td></td>
</tr>
<tr>
<td>SLAP</td>
<td>-426.21 (0.43)</td>
<td>-30.00 (0.25)</td>
<td>-56.35 (0.38)</td>
<td></td>
</tr>
<tr>
<td>SLAP</td>
<td>-422.76 (1.55)</td>
<td>-28.74 (0.28)</td>
<td>-55.35 (0.43)</td>
<td></td>
</tr>
<tr>
<td>SLAP</td>
<td>-426.30 (0.39)</td>
<td>-29.52 (0.23)</td>
<td>-55.55 (0.31)</td>
<td></td>
</tr>
<tr>
<td>SLAP</td>
<td>-427.77 (0.29)</td>
<td>-28.84 (0.22)</td>
<td>-57.44 (0.52)</td>
<td></td>
</tr>
<tr>
<td>SLAP</td>
<td>-429.92 (0.33)</td>
<td>-30.73 (0.32)</td>
<td>-57.73 (0.48)</td>
<td></td>
</tr>
<tr>
<td>SLAP</td>
<td>-425.71 (0.80)</td>
<td>-29.39 (0.38)</td>
<td>-53.91 (0.46)</td>
<td></td>
</tr>
<tr>
<td>SLAP</td>
<td>-430.83 (1.19)</td>
<td>-28.61 (0.47)</td>
<td>-55.70 (0.82)</td>
<td></td>
</tr>
<tr>
<td>SLAP</td>
<td>-430.74 (0.51)</td>
<td>-29.63 (0.55)</td>
<td>-56.50 (0.56)</td>
<td></td>
</tr>
<tr>
<td>SLAP</td>
<td>-432.60 (0.39)</td>
<td>-30.12 (0.28)</td>
<td>-54.06 (0.54)</td>
<td></td>
</tr>
<tr>
<td>SLAP</td>
<td>-428.11 (0.36)</td>
<td>-28.88 (0.38)</td>
<td>-53.39 (0.36)</td>
<td></td>
</tr>
</tbody>
</table>

a Within parentheses the standard errors (all in per mil points), as well as the standard deviation.

Figure 4 were gathered over an extended period of time (about two months). This means that the system is now ready to be applied to the biomedical doubly labeled water method to measure natural abundances, for which especially the energy expenditure, as well as to the accurate measurement of applied to the biomedical doubly labeled water method to measure two months). This means that the system is now ready to be ready to be.

The VSMOW—SLAP linear calibration and its results are summarized in Tables 2–4. In Table 2, the mean of the LS δ-values (referred to VSMOW), which determined the scale expansion factor, is compared with the respective IAEA consensus values for each of the isotopes. In Table 3, the individual measurements for VSMOW and SLAP are presented, again referenced to VSMOW and this time after linear calibration (i.e., the mean of these measurements equals the corresponding IAEA consensus value). Finally, Table 4 confronts the LS results with the MS results by comparing the current “best” values for a series of seven water samples (including VSMOW and SLAP, which define the linear calibration).

CONCLUSIONS

We have shown that laser spectrometry presents a promising alternative to conventional mass spectrometric isotope ratio analysis of water. In particular, the laser-based method is conceptually very simple and does not require cumbersome, time-consuming pretreatments of the sample before measurement. This excludes an important source of errors. Moreover, all three isotope ratios, 2H/1H, 18O/16O, and 17O/16O (virtually impossible by means of IRMS), are determined at the same time without requiring different (chemical) pretreatments of the sample.

The precision of the method is currently ∼0.7‰ for 2H/1H and 0.5‰ for the oxygen isotopes. We have shown a calibrated accuracy of about 3‰ respectively, 1‰ Since the calibration data were collected over an extended period in time, it is expected that more frequent calibration will enable us to achieve an accuracy closer to the intrinsic precision of the apparatus. In addition, the calibration procedure will be improved by the simultaneous measurement of more than one standard water (i.e., for natural abundance measurements one would use two local laboratory standards, one close to VSMOW in isotopic composition, the other close to SLAP). In particular, the standards should be chosen each at one end of the expected range of δ-values, not near to one end as is the case here for δ17O and δ18O.

Currently, the throughput is limited to about one sample per hour, comparable to that of the original, conventional methods when both δ2H and δ18O are determined and the sample preparation time is added to the actual IRMS time. With modest improvements in the detection (faster amplitude modulation and a shorter lock-in time constant), this can probably be increased by a factor of 2, the final limiting factor being the evacuation and flushing of the gas cells. However, the throughput is most easily increased by the use of multiple gas cells, allowing the parallel measurement on many more than just one sample. Considering the very modest demands on laser power, relative to the output power of the available laser system, the number of gas cells is only limited by budgetary and space constraints.

ACKNOWLEDGMENT

We thank Jaap van der Ploeg for his excellent technical support and Prof. Sigfus Johnsen and Prof. Wim Mook for their continued interest in our work. We are grateful to the Stichting FOM and the Groningen Isotech Foundation for providing financial support. E.R.Th.K. thanks the Royal Dutch Academy of Sciences (KNAW) for a young investigator fellowship.

Received for review June 10, 1999. Accepted September 7, 1999.

AC990621E