Midinfrared spectrum of undoped cuprates: \textit{d-d} transitions studied by \textit{ab initio} methods

Coen de Graaf
Department of Theoretical Chemistry, Materials Science Center, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

Ria Broer
Department of Química Física i Centre de Recerca en Química Teòrica, Universitat de Barcelona, C/Marti i Franquets 1, 08028 Barcelona, Spain

We present results of \textit{ab initio} calculations for \textit{d-d} transitions, which arise in the midinfrared spectrum of undoped cuprate compounds. It has been suggested that these transitions arise at energies as low as 0.4 eV in La$_2$CuO$_4$ and Sr$_2$CuO$_2$Cl$_2$. We study the differences in \textit{d-d} transition energies in a series of cuprates that contains compounds in which the Cu ions are sixfold, fivefold, or fourfold coordinated. Furthermore, we analyze the dependence of the $3d_{x^2-y^2}$ to $3d_{z^2}$ excitation energy on the ratio of the in-plane and apex copper—ligand distances in the model system CuO. Our cluster calculations do not support the assignment of the 0.4–1-eV band to phonon and magnon sidebands of a \textit{d-d} transition. On the other hand, we confirm the interpretation of the peak around 1.7 eV observed in CuGeO$_3$ as arising from \textit{d-d} transitions.

I. INTRODUCTION

The undoped parent compounds of the lamellar cuprate superconductors are classified as so-called charge-transfer (CT) insulators with a band gap of about 2 eV. Recent experiments have revealed a variety of optical absorptions within the band gap of these and related compounds, the origin of which is a subject of discussion. Already in the 1960s, Mizuno and Koide discussed the origin of similar peaks observed in NiO and KNiF$_3$ and attributed the absorption to a process in which two magnons and a phonon are created.1 The phonon excitation lowers the lattice symmetry and makes the forbidden two-magnon absorption allowed. Only recently, Lorenzana and Sawatzky have proposed a theory that describes such a so-called phonon-assisted multimagnon absorption.2,3 The theory was successfully applied to La$_2$NiO$_4$ and La$_2$CuO$_4$ to reproduce both the excitation energy and the line shape of the absorption with satisfactory accuracy. However, a problem arises for La$_2$CuO$_4$ and other cuprates. For these materials the sharp peak is measured at 0.5 eV, and a broad, rather intense, sideband is observed at 0.4 eV, and a broad, rather intense, sideband is observed at higher energies, which extends up to 1.0 eV. This sideband is much weaker in La$_2$NiO$_4$. Perkins and co-workers argued that the sideband cannot be explained by phonon-assisted multimagnon absorptions in which more than two magnons are created.4–6 Their reasoning is based on the assumption that the intensity of the phonon-assisted multimagnon absorptions increases by at most a factor of 2 comparing a $S = 1$ with a $S = \frac{3}{2}$ Heisenberg antiferromagnet. This is in sharp contrast with the observed increase with a factor of 50 in the case of La$_2$NiO$_4$ and La$_2$CuO$_4$. Instead, Perkins \textit{et al}. propose to consider the possibility that the broad 0.4–1-eV bands in La$_2$CuO$_4$ are phonon and magnon sidebands of a Cu crystal field excitation at $\sim$0.5 eV. Examples are given of materials in which the latter excitations are observed with intensities comparable to La$_2$CuO$_4$. However, the explanation of Perkins \textit{et al}. also has a serious drawback, namely, cluster calculations, both \textit{ab initio} and semiempirical, predict the lowest \textit{d-d} transition to appear at energies around 1.0–1.5 eV.7,8

In this paper, we present \textit{ab initio} cluster calculations of the \textit{d-d} transition energies in a series of different copper oxides, La$_2$CuO$_4$, Sr$_2$CuO$_2$Cl$_2$, CuGeO$_3$, YBa$_2$Cu$_3$O$_6$, Ca$_2$CuO$_2$, and Sr$_2$CuO$_3$. The compounds in this series show a variety of copper coordinations, ranging from square planar for the spin-$\frac{1}{2}$ chain compounds Ca$_2$CuO$_3$ and Sr$_2$CuO$_3$ to a distorted octahedral coordination for La$_2$CuO$_4$. The other three compounds are intermediate cases: in CuGeO$_3$ and Sr$_2$CuO$_2$Cl$_2$ the Cu ions also have an octahedral coordination but the apical anions (O for CuGeO$_3$ and Cl for Sr$_2$CuO$_2$Cl$_2$) lie relatively far away, 2.76 and 2.86 Å, respectively. In YBa$_2$Cu$_3$O$_6$, the Cu$^{2+}$ ions have a fivefold coordination. Table I gives an overview of the Cu-ligand distances of the compounds considered.

In addition, we report the results obtained for La$_2$NiO$_4$ and CuO. These compounds were added for two different reasons: La$_2$NiO$_4$ because the transition energies of the \textit{d-d} excitations are experimentally rather well resolved and CuO to further investigate the dependence of the $3d_{x^2-y^2}$ to $3d_{z^2}$ transition.

**TABLE I.** Overview of the Cu-ligand distances in the series of cuprates considered. In case of nonoxygen ligands, the kind of ligand is given in parentheses.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Cu-O$_{\text{in-plane}}$ distance (Å)</th>
<th>Cu-L$_{\text{apex}}$ distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>$\pm z$</td>
</tr>
<tr>
<td>CuO</td>
<td>2.044</td>
<td>2.044</td>
</tr>
<tr>
<td>La$_2$CuO$_4$</td>
<td>1.905</td>
<td>1.905</td>
</tr>
<tr>
<td>CuGeO$_3$</td>
<td>1.942</td>
<td>1.942</td>
</tr>
<tr>
<td>Sr$_2$CuO$_2$Cl$_2$</td>
<td>1.986</td>
<td>1.986</td>
</tr>
<tr>
<td>YBa$_2$Cu$_3$O$_6$</td>
<td>1.942</td>
<td>1.942</td>
</tr>
<tr>
<td>Ca$_2$CuO$_3$</td>
<td>1.894</td>
<td>1.962</td>
</tr>
<tr>
<td>Sr$_2$CuO$_3$</td>
<td>1.954</td>
<td>1.960</td>
</tr>
</tbody>
</table>

Received 30 November 1999.

0163-1829/2000/62(1)/702(8)/$15.00 ©2000 The American Physical Society
excitation energy on the ratio of the Cu-O_{apex} and Cu-O_{in-plane} distances.

The paper is organized as follows: in the next section, we briefly review experimental data and further structural characteristics of the compounds considered. Thereafter, a description is given of the computational approach followed to obtain ab initio estimates of the d-d transition energies in the different cuprates. The next section gives an overview of all results. Attention is focused on the dependence of the different excitations energies on the structural details of the cuprate series. Final results are compared with experiment and we show that the hypothesis of Perkins et al. about the 0.4 – 1-eV band is not supported by state-of-the-art cluster calculations. Finally, we give a short summary of the most relevant conclusions.

II. EXPERIMENTAL DATA

Experimental evidence of d-d transitions in insulating cuprates was found in Raman-scattering experiments of Liu et al. and Salomon et al. They observe features of A_{2g} symmetry in the 1.5–1.7-eV region in a large series of cuprates, which have been ascribed to d-d transitions connected to the replacement of a hole from the 3d_{xy} orbital to the 3d_{z^2} orbital (for local D_{4h} symmetry: B_{1g} \otimes B_{2g} = A_{2g}). For La_{2}CuO_{4} this peak is observed at 1.70 eV, while in YBa_{2}Cu_{3}O_{6} the peak arises at 1.54 eV. Electroreflectance experiments performed by Falck et al. provide additional indications for the existence of d-d transitions in La_{2}CuO_{4}. Excitations near 1.4 and 1.6 eV have been observed, which were ascribed to final states of B_{2g} (3d_{xy}) and E_{g} (3d_{xz,wy}) site symmetry, respectively. More recently, Kuiper et al. have measured the x-ray Raman spectrum of Sr_{2}CuO_{2}Cl_{2}. The transitions to the 3d_{xy} and 3d_{xz,wy} states were located at 1.35 and 1.7 eV, while the transition to the 3d_{z^2} state could not be directly observed. However, it is argued that this transition must be hidden under the 3d_{xz,wy} peak and is accompanied by a so-called spin-flip excitation of roughly 0.2 eV. Hence, the d-d transition energy to the 3d_{z^2} state was estimated to be \sim 1.5 eV.

Several papers have reported midinfrared absorptions around 0.5 eV. Besides the work of Perkins et al., such low excitations have also been observed by Grüninger et al. in transmission and reflection measurements on YBa_{2}Cu_{3}O_{6}. By assuming a relative large interplanar magnetic coupling, the peaks observed at 0.34 and 0.46 eV could be explained by phonon-assisted magnon absorption processes. Furthermore, the absorption spectrum of Sr_{2}CuO_{2} shows a peak centered at 0.48 eV. This peak is also ascribed to a phonon-assisted bimagnon absorption and has been successfully fitted with the theory of Lorenzana and Sawatzky.

The infrared absorptions in CuGeO_{3} have been interpreted in two different ways. Terasaki et al. observe sharp peaks at 1.25, 2.88, and 3.66 eV. The lowest absorption has been ascribed to a local CT excitation between O-2p and Cu-3d orbitals. The second peak is assumed to arise from a d-d transition or possibly from an interband transition. The third peak was not explicitly assigned. On the other hand, optical absorption experiments by Bassi et al. and electron-energy-loss spectroscopy (EELS) experiments by Corradini et al. claim a different interpretation. A first peak at 1.7 eV with onset at 1.3 eV is ascribed to d-d transitions, whereas a strong exponential increase in the absorption is observed starting approximately at 3 eV attributed to the onset of CT transitions.

Finally, we list the different peaks observed in the optical spectrum of La_{2}NiO_{4}. Contrary to the cuprates listed above, the assignment of the peaks in the midinfrared spectrum of La_{2}NiO_{4} is well established. First there is the multimagron peak at 0.25 eV mentioned already. Two additional broad peaks are observed, both ascribed to d-d transitions. The first peak can be resolved in a mean peak at 1.05 eV and a shoulder at 1.25 eV, the second peak is interpreted as a superposition of two absorptions at 1.6 and 1.75 eV, respectively. By comparing these data to the experimental data for NiO, it is observed that the values for La_{2}NiO_{4} are similar to those for NiO. The additional splittings of the peaks are explained by the lower site symmetry in La_{2}NiO_{4}, i.e., D_{4h} instead of O_{h}.

Based on these considerations the following assignment can be made: the peaks at 1.05 and 1.25 eV arise from transitions to the a^2E_{g} and a^1B_{2g} states. These states originate from the g \rightarrow 3T_{2g} state in O_{h} symmetry. The peaks at 1.6 and 1.75 eV can be assigned to the transitions to b^2B_{2g} and b^2E_{g}, originating from the 3T_{1g} state, although for these peaks additional contributions from the peaks arising from the singlet state in O_{h} symmetry, a^1E_{g}, cannot be excluded beforehand.

III. STRUCTURAL INFORMATION

Although CuO does not have a rocksalt structure, we assume a simple cubic structure in which the Cu has O_{h} site symmetry. This is done in order to use the compound as a model system to study the dependence of the d-d transition energies on the ratio between the Cu-O_{in-plane} and Cu-O_{apex} distances. For this purpose, we elongate the Cu-O_{apex} distance from 2.044 Å—corresponding to the Cu-O distance in the experimental monoclinic structure—to 2.555 Å in four steps and calculate the transition energies at each of the five different ratios.

Without considering the small distortions in the crystal structure, La_{2}NiO_{4}, La_{2}CuO_{4}, and Sr_{2}CuO_{2}Cl_{2} belong to the same structural family described by the space group I4/mm. The structure is characterized by transition-metal (TM) O_{2} planes formed by corner-sharing TM O_{4} squares. These planes are interconnected by a double layer containing the apex ligands (O and Cl) and the counterions (La and Sr). Figure 1 shows the idealized crystal structure of La_{2}NiO_{4} taken from experiment and structural data for La_{2}CuO_{4} is taken from Ref. and for Sr_{2}CuO_{2}Cl_{2} from Ref. 25.

The crystal structure of CuGeO_{3} is characterized by spin-1/2 chains formed by edge-sharing CuO_{4} squares. These chains are connected by tetrahedrally coordinated Ge atoms; see Fig. 2. It is well known that CuGeO_{3} undergoes a spin-Peierls transition at 14 K, however, in the calculations we use the undistorted crystal structure with space group Pnma as determined by Völkenkle et al. Figure 3 illustrates the crystal structure of YBa_{2}Cu_{3}O_{6}. The Cu^{2+} ions with unpaired electrons are located in the distorted CuO_{2} planes intertetradically by yttrium ions. The copper ions on the corners of the unit cell have formal charge of +1 and hence possess a closed-shell configuration and therefore do not give rise to any d-d transitions. The structure has a P4/mmm space
group and the experimental data are taken from Ref. 27.

Finally, the structure of Sr$_2$CuO$_3$ and Ca$_2$CuO$_3$ closely resembles the La$_2$CuO$_4$ structure, except for the fact that copper ions are connected by oxygens in one direction only. This gives rise to the formation of virtually isolated spin-$\frac{1}{2}$ chains with large antiferromagnetic interaction. Therefore these compounds are considered to be the best experimental realizations of a one-dimensional (1D) spin-$\frac{1}{2}$ system. The space group for both compounds is $I/mmm$ and the lattice parameters are taken from Ref. 28 for Ca$_2$CuO$_3$ and Ref. 29 for Sr$_2$CuO$_3$. In the calculations the coordinate axes are chosen such that the four oxygens that coordinate the copper ions lie in the $x$-$y$ plane. With this choice the electron hole in the ground state has $3d_{x^2-y^2}$ character.

**IV. COMPUTATIONAL APPROACH**

The localized character of the $3d^{n}$ states makes the cluster model approach a natural starting point to investigate the relative energies of these states. Applications of the cluster model approach in a wide variety of systems have shown the ability of this method to calculate and predict the excitation energies of the $d$-$d$ transitions. A common choice for the cluster is to include the transition metal (TM) and the first shell of ligands ($L$). The electronic structure of these ions are described in a very accurate manner, whereas the effect of the rest of the crystal is included in a more approximate way by neglecting all interactions with the cluster atoms except for the electrostatic interaction.

Such TM-$L_x$ clusters embedded in point charges only are not appropriate for most of the materials considered here. Because of the high formal ionic charge of some of the counterions (La$^{3+}$, Ge$^{4+}$, and Y$^{3+}$) coordinating the oxygen ions in the cluster, the cluster wave function has the tendency to delocalize towards the point charges, especially when basis sets for oxygen are used that contain rather diffuse orbitals. To avoid the spurious charge flow it is necessary to account for the Pauli repulsion between the cluster ions and these...
neighboring counterions. Moreover, it has recently been found that the relative energies change by a small, although significant amount when the cluster model accounts for the Pauli repulsion between the cluster ions and the ions in the direct surrounding. The simplest way is to represent the counterions by some kind of repulsive potential, however, in the present application, we include these counterions in the cluster model, hence allowing for an accurate ab initio treatment of the Pauli repulsion. After discussing the computational scheme to obtain accurate N-electron wave functions for the different 3d\(^n\) states, we will give more details about the explicit representation of the counterions.

Atomic natural orbital (ANO) Gaussian-type functions are used to describe the one-electron orbital space. For the TM ions a (21s, 15p, 10d, 6f)/[6s, 5p, 3d, 1f] basis set is applied, for oxygen (14s, 9p, 4d)/[5s, 4p, 1d], and for chlorine (17s, 12p, 5d)/[5s, 4p, 1d]. To account for the important electron correlation effects present in the cuprates and La\(_2\)NiO\(_4\), N-electron wave functions are constructed in two different approximations. First a complete active space self-consistent-field (CASSCF) wave function is constructed with an active space that contains 9 (Cu) or 8 (Ni) electrons and ten orbitals, i.e., the five TM-3d orbitals and five orbitals with the same symmetry character, the so-called \(d'\) orbitals. Subsequently, complete active space second-order perturbation theory (CASPT2) is used to correlate the TM-3s, 3p, and 3d, and the L-ns and np (for oxygen: \(2s, 2p\), and for Cl: \(3s, 3p\)) electrons. In this approximation the CASSCF wave function is taken as zeroth-order wave function and the remaining electron correlation effects are estimated by second-order perturbation theory. All calculations are performed with MOLCAS version 4.

The explicit inclusion of the counterions in \(\text{Ca}_2\text{CuO}_3\) does not lead to serious problems. Because of the relative few number of electrons present in \(\text{Ca}^{2+}\), these counterions can be included in an all-electron (AE) level with a reasonably large basis set (e.g., [5s, 4p, 1d]) without increasing the calculation to an unmanageable size. However, for all other compounds the counterions are of such size that an AE description of these ions leads to very large calculations, and moreover, relativistic corrections need to be included for the heavier ions. For these reasons the core electrons of the counterions are described assuming a formal ionic charge of 4\(^+\) for oxygen, 2\(^+\) for Ge, 3\(^+\) for Cl, and 4\(^+\) for Cu. The AIMP for the Ge counterions in CuGeO\(_3\) is obtained with a CuO\(_4\) Ca\(_8\) cluster embedded in the cluster. The hole character of each state is given in parentheses.

The validity of a description of the core electrons with model potentials is checked for \(\text{Ca}_2\text{CuO}_3\), hence allowing for an accurate ab initio calculation of the Pauli repulsion. The reduction of the number of \(d\) functions to 2 does not affect the excitation energies, while a reduction of the basis set to double zeta valence (DZV) quality is found. These lower energies are reproduced when the inner core of the Ca ions are represented with an AIMP, combined with a basis set contraction recommended in the original reference, namely, \([2s, 3p, 3d]\). The AIMP's combined with a \([2s, 3p, 2d]\) basis set is the most appropriate choice to represent the counterions. The validity of the charge distribution of the frozen ions is obtained in a separate Hartree-Fock calculation on the [Ca\(_8\)]\(^{16+}\) fragment with a [3s, 2p] minimal basis set. Thereafter the orbitals of the CuO\(_4\) fragment are Gramm-Schmidt orthogonalized onto the Ca\(_8\) fragment and in the subsequent CASSCF/CASPT2 calculations the orbitals of the Ca ions are kept frozen. The next columns show the results of calculations in which the Ca ions are described with an AE basis set of triple zeta valence quality (TZV) quality. The excitation energies hardly change compared to the frozen ion description. However, when polarization functions are added to the Ca\(^{2+}\) ions, a drop in the excitation energies of about 0.2 eV is found. These lower energies are reproduced when the inner core of the Ca ions is represented with an AIMP, combined with a basis set contraction recommended in the original reference, namely, \([2s, 3p, 3d]\). The reduction of the number of \(d\) functions to 2 does not affect the excitation energies, while a reduction of the basis set to double zeta valence (DZV) quality (levels in the last column) increases all energies by a significant amount and tend towards the frozen ion results. Hence it can be concluded that the AIMP's combined with a \([2s, 3p, 2d]\) basis set is the most appropriate choice to represent the counterions. Note that the quality of the basis set associated with the counterions is large enough to account for dynamical electron correlation effects, and hence the \(np\) electrons are also correlated in the CASPT2 calculation. Nevertheless, it is expected that the contribution of this effect to the relative energies is rather small. In fact, we observe a very small (<0.05 eV) difference in the effect of CASPT2.

The cluster models used in the calculations are the following: CuO\(_4\)Ca\(_8\) and CuO\(_4\)Sr\(_8\) for \(\text{Ca}_2\text{CuO}_3\) and \(\text{Sr}_2\text{CuO}_3\), re-
TABLE II. Relative energies (in eV) for the $d-d$ transitions in La$_3$NiO$_4$ obtained by CASSCF and CASPT2. Energies are compared to experimental data of Perkins et al. (Ref. 5).

<table>
<thead>
<tr>
<th>State</th>
<th>CASSCF</th>
<th>CASPT2</th>
<th>Expt</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^3B_{1g}$</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>$^3E_g$</td>
<td>0.78</td>
<td>0.89</td>
<td>1.05</td>
</tr>
<tr>
<td>$^1B_{2g}$</td>
<td>1.14</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>$^3B_{2g}$</td>
<td>1.54</td>
<td></td>
<td>1.60</td>
</tr>
<tr>
<td>$^3E_g$</td>
<td>1.74</td>
<td>1.71</td>
<td>1.75</td>
</tr>
<tr>
<td>$^1A_{1g}$</td>
<td>1.84</td>
<td>1.68</td>
<td></td>
</tr>
<tr>
<td>$^1B_{1g}$</td>
<td>2.17</td>
<td>1.77</td>
<td></td>
</tr>
<tr>
<td>$^1E_g$</td>
<td>2.83</td>
<td>2.56</td>
<td></td>
</tr>
<tr>
<td>$^1B_{2g}$</td>
<td>3.32</td>
<td>3.01</td>
<td></td>
</tr>
</tbody>
</table>

respectively: CuO$_2$Y$_3$Ba$_4$ for YBa$_2$Cu$_3$O$_6$; CuO$_6$Ge$_4$ for GeCuO$_3$; Cu$_2$OCl$_3$Sr$_3$ for Sr$_2$Cu$_2$O$_3$; and TM$_2$O$_4$La$_10$ for La$_2$TM$_2$O$_4$ (TM = Cu, Ni). For the model system CuO a simple CuO$_6$ cluster is used. All clusters are embedded in a feature, which is not implemented in our programs, the calculations are done with frozen Mg$_2$ ions. These ions have ionic radii that are virtually equal: 0.86 vs 0.87 Å in a sixfold coordination and 0.71 Å for a fourfold coordination, and hence the frozen Mg$^{2+}$ ions are expected to reproduce fairly well the Pauli repulsion of the Cu$^{2+}$ ions.

V. RESULTS AND DISCUSSION

Because of the noncontroversial assignment of the peaks in the midinfrared spectrum of La$_3$NiO$_4$, we first apply the computational scheme explained in the previous section to calculate the $d-d$ transition energies in this compound. In this way an estimate can be obtained of the accuracy of the method in reproducing the relative energies of the different way an estimate can be obtained of the accuracy of the estimated transition energies for TM materials that originate from both the $^3T_{1g}$ and the $^1E_g$ state. The results for La$_3$NiO$_4$ listed in Table II clearly indicate that the present choice of the material model and approximation of the energy between these two states might be rather small. At first sight, this observation seems to give support to the suggestion made by Perkins et al. for a crystal-field excitation in this compound. In this sight, this observation seems to give support to the suggestion made by Perkins et al. for a crystal-field excitation in this series of cuprates compared to available experimental data. The different $3d^9$ states are characterized by the character of the singly occupied orbital, i.e., the hole character.

Table II lists the CASSCF and CASPT2 energies and compares them to the experimental data of Perkins et al.$^5$ The CASSCF energies already give a rather satisfactory estimate of the transition energies. The relative order of the $3d^n$ states is in agreement with the one expected from the symmetry considerations discussed above. The treatment of the remaining electron correlation by means of CASPT2 has a very similar effect on the excitation energies as observed previously for NiO, i.e., a small increase of the excitation energy for the lower $d-d$ transition and a decrease for the higher-lying states. The $b^3B_{2g}$ state is largely affected by intruder states that cause a severe breakdown of the perturbation theory. In principle, two solutions exist to this problem. The best solution is to include the intruder states in the CASSCF wave function, but in the present case this leads to an active space of unmanageable size. The other, more pragmatic, solution is to apply a level-shift technique,$^{47}$ the near degeneracies are removed by artificially shifting up in energy all external configurations by an arbitrary amount and later correcting the calculated second-order energy for the applied shift. This method works very well provided that the interac-

TABLE III. CASPT2 energies (in eV) of the $d-d$ transitions in a series of cuprates compared to available experimental data. The different $3d^9$ states are characterized by the character of the singly occupied orbital, i.e., the hole character.

<table>
<thead>
<tr>
<th>Hole character</th>
<th>x$^2$ - y$^2$</th>
<th>z$^2$</th>
<th>xy</th>
<th>yz</th>
<th>xy (expt)</th>
<th>xz</th>
<th>yz (expt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuO</td>
<td>0.00</td>
<td>0.00</td>
<td>1.02</td>
<td>1.02</td>
<td>1.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La$_2$CuO$_4$</td>
<td>0.00</td>
<td>0.99</td>
<td>1.29</td>
<td>1.57</td>
<td>1.57</td>
<td>1.4</td>
<td>1.7</td>
</tr>
<tr>
<td>CuGeO$_3$</td>
<td>0.00</td>
<td>1.75</td>
<td>1.41</td>
<td>1.70</td>
<td>1.70</td>
<td>13</td>
<td>2.9</td>
</tr>
<tr>
<td>Sr$_2$Cu$_2$O$_3$</td>
<td>0.00</td>
<td>1.18</td>
<td>1.23</td>
<td>1.50</td>
<td>1.50</td>
<td>1.4</td>
<td>1.7</td>
</tr>
<tr>
<td>YBa$_2$Cu$_3$O$_6$</td>
<td>0.00</td>
<td>1.69</td>
<td>1.21</td>
<td>1.61</td>
<td>1.61</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Ca$_2$CuO$_3$</td>
<td>0.00</td>
<td>2.15</td>
<td>1.10</td>
<td>1.65</td>
<td>1.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr$_2$CuO$_3$</td>
<td>0.00</td>
<td>2.11</td>
<td>1.08</td>
<td>1.67</td>
<td>1.53</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE IV. CASPT2 energies (in eV) of the d-d transitions in CuO for different ratios of d (Cu-O in-plane) and d (Cu-O apex).

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Hole character</th>
<th>x²−y²</th>
<th>z²</th>
<th>xy</th>
<th>zx, yx</th>
</tr>
</thead>
<tbody>
<tr>
<td>in-plane/apex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.02</td>
<td>1.02</td>
<td></td>
</tr>
<tr>
<td>0.95</td>
<td>0.00</td>
<td>0.28</td>
<td>1.03</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>0.90</td>
<td>0.00</td>
<td>0.54</td>
<td>1.04</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>0.85</td>
<td>0.00</td>
<td>0.77</td>
<td>1.05</td>
<td>1.15</td>
<td></td>
</tr>
<tr>
<td>0.80</td>
<td>0.00</td>
<td>0.98</td>
<td>1.06</td>
<td>1.18</td>
<td></td>
</tr>
</tbody>
</table>

*a*CASSCF wave function obtained as an average of 2B₁₈ and 2A₁₈, ratio 1:10.

around 0.4–0.5 eV in La₂CuO₄ and Sr₂CuO₂Cl₂. To further analyze this assumption, we performed a series of calculations on CuO varying the ratio between the in plane and apex Cu-O distance. Results are given in Table IV. It is obvious that for small distortions of the octahedral structure, the 2B₁₈ → 2A₁₈ transition has a transition energy of the order of 0.4 eV, but for larger distortions the excitation energy rapidly increases to a value of approximately 1 eV for the ratio of the two copper oxygen distances observed in La₂CuO₄. As expected, the transition in which the hole is transferred to the 3dₓᵧ orbital—the 2B₁₈ → 2B₂ₓ transition—does not depend on the ratio of the two distances, and the 2B₁₈ → 2Eₓ transition is only slightly dependent on this ratio. Note that the 2B₁₈ and 2A₁₈ state transform as the same irreducible representation in the point-group symmetry applied in the calculation, namely D₂h instead of the actual D₄h symmetry. For the smaller ratios the two states are so close in energy that in a single root optimization root flipping occurs, which prevents convergence. To avoid these problems, the 2A₁₈ state has been optimized in a weighted average calculation with the 2B₁₈ state. Expressing the orbitals of the 2A₁₈ state in this way does not significantly influence the calculated transition energies.

The structural similarity of La₂CuO₄ and Sr₂CuO₂Cl₂ results in a very similar d-d transition spectrum for both compounds. Especially, the transitions to the 2B₂ₓ and 2Eₓ states are very close in energy. The somewhat larger value for the transition to the 2A₁₈ state in Sr₂CuO₂Cl₂ can be attributed to the larger Cu−LₕDist. In this compound, for La₂CuO₄, the excitation energies of the two higher d-d transitions as proposed by Falck et al. are reproduced with reasonable accuracy. Moreover, the equivalent excitations in Sr₂CuO₂Cl₂ observed by Kuiper et al. are also calculated in the correct energy region, although the 2B₁₈ → 2Eₓ transition is found somewhat lower in the calculations. However, we cannot confirm the existence of a d-d transition around 0.4–0.5 eV. The calculated energies of 0.99 and 1.18 eV for the lowest d-d transition are larger by more than 0.5 eV. The typical accuracy of the applied method is significantly better than this difference. The comparison with the model system CuO with a ratio of the two Cu-O distances similar to that found in La₂CuO₄ and Sr₂CuO₂Cl₂ shows that the excitation energies are very similar except for the transitions to states with 3dₓᵧ, hole character. The difference for this transition is probably a consequence of the presence of the relatively large counterions.

The next compound in Table III is CuGeO₃. Although the coordination of the Cu ions is similar to that in Sr₂CuO₂Cl₂, the very different lattice structure makes the d-d spectrum less comparable to the previous discussed compounds. This is best illustrated by the fact that the calculation of the d-d transition energies for CuGeO₃ in a simple CuO₆ cluster embedded in point charges resembles the spectrum observed for Sr₂CuO₂Cl₂ quite close. Mulliken population analysis for the larger CuO₆Ge₆Cu₆ cluster indicates that the high formal ion charge of Ge is reduced to a value of roughly +3 due to the formation of bonds with the oxygen anions with important covalent contributions. The results listed in Table III confirm the assignment of the peak around 1.7 eV to d-d transitions proposed by Bassi et al. and Corradini et al.

The table shows that three states contribute to this peak, namely the states with 3dₓᵧ, and 3dₓz hole character and that the onset of this peak at 1.3 eV can be ascribed to the excitation of the 3dₓz state.

YBa₂Cu₃O₆ is the only cuprate in the series considered here with a fivefold coordination of the Cu⁺⁺ ions by O. The in-plane Cu-O distances are very similar to the previously considered cuprates, and hence hardly any change is observed for the 2B₁ → 2B₂ transition, which corresponds to moving the hole to the 3dₓz orbital. On the other hand, the absence of the sixth coordinating ligand influences the transition to the state with z² hole character (2B₁ → 2A₁). The excitation energy increases by ~0.5 eV compared to La₂CuO₄ and Sr₂CuO₂Cl₂ as a consequence of the destabilizing of the 3dₓz orbital with respect to hole occupation.

To end this section, we briefly discuss the results obtained for the spin chain compounds Cu₃CuO₃ and Sr₃CuO₃. In the first place, Table III shows that the d-d transition energies in both compounds are very similar, which is certainly expected given the similarity of the two crystal structures. Second, the changes in the d-d transitions observed for YBa₂Cu₃O₆ can be easily recognized. The a²A₂ → b²A₁ transition, corresponding to the transfer of the hole to the 3dₓz orbital further increases in energy by ~0.4 eV due to lowering the copper coordination. Furthermore, it is seen from the table that the transition to the 3dₓz state occurs at a transition energy that is very comparable to the other cuprates. The small distortion of the CuO₆ squares that form the spin chains causes a small energy difference between the 2B₂ₓ and 2B₃ₓ state, which have 3dₓz and 3dₓz hole character, respectively (see also Fig. 4).

VI. CONCLUSIONS

We have performed ab initio cluster calculations to investigate the transition energies of the different 3dⁿ states in undoped cuprates. The combination of appropriate material models and high quality quantum chemical methods to approximate the solutions of the exact Hamiltonian of this material model allows for an accurate determination of the d-d transition energies in ionic TM materials. The accuracy of the method has been established for La₃NiO₄ for which unambiguous experimental data exist regarding the d-d transitions. As previously found for the TM oxides with a simple rocksalt structure, the calculated energies are within 0.15 eV of the experimental ones.

The results listed in Table III do not confirm the existence
of a d-d transition around 0.4–0.5 eV. For all cuprates studied here, the lowest d-d transition energy is 1 eV or higher. The difference of 0.6 eV is significantly larger than the typical accuracy of the method applied in this study. On the other hand, our calculations do confirm the interpretation of the 1.7-eV peak observed in CuGeO$_3$ as arising from d-d transitions. The calculated values lie in the same region and moreover, we have found indications that the shoulder at 1.3 eV also originates from a d-d transition.

Concerning the differences in d-d transitions between the compounds in the series considered here, we conclude that the transition in which the hole is transferred to the 3d$_{yz}$ orbital hardly changes in energy within the whole series. The same is concluded for the transitions to the 3d$_{zx}$ and 3d$_{xy}$ orbitals. The only d-d transition that suffers large changes is the 3d$_{z^2}$–3d$_{x^2}$ transition, for which the excitation energy varies from 1 eV in La$_2$CuO$_4$ to more than 2 eV in Ca$_2$CuO$_3$ and Sr$_2$CuO$_3$. These trends are directly related to the coordination of the Cu ions. The in-plane coordination is very similar in all compounds, while the coordination along the z-axis changes from two ligands for La$_2$CuO$_4$ and Sr$_2$CuO$_2$Cl$_2$, to one ligand for YBa$_2$Cu$_3$O$_6$, to no ligand at all for Sr$_2$CuO$_3$ and Ca$_2$CuO$_3$.

ACKNOWLEDGMENTS

C.deG. acknowledges the financial support through the TMR activity “Marie Curie research training grants” Grant No. FMBICT983279 established by the European Community. We are very grateful to I. de P. R. Moreira and W. C. Nieuwoop for valuable help and discussions.

*Author to whom correspondence should be addressed. Electronic address: c.degraaf@qf.ubi.es

PRB 62 MIDINFRARED SPECTRUM OF UNDOPED CUPRATES: . . . 709