Catalytic Enantioselective Synthesis of Prostaglandin E1 Methyl Ester Using a Tandem 1,4-Addition-Aldol Reaction to a Cyclopenten-3,5-dione Monoacetal
Arnold, Leggy A.; Naasz, Robert; Minnaard, Adriaan J.; Feringa, Bernard

Published in:
Journal of the American Chemical Society

DOI:
10.1021/ja015900+

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2001

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Catalytic Enantioselective Synthesis of Prostaglandin
E₁ Methyl Ester Using a Tandem 1,4-Addition–Aldol Reaction to a Cyclopenten-3,5-dione Monoacetal

Leggy A. Arnold, Robert Naasz, Adriaan J. Minnaard, and Ben L. Feringa*

Department of Organic and Molecular Inorganic Chemistry
Stratingh Institute, University of Groningen
Nijenborgh 4, 9747 AG Groningen, The Netherlands

Received March 28, 2001
Revised Manuscript Received May 4, 2001

Conjugate addition reactions are among the most important carbon-carbon bond formation reactions in organic synthesis,¹ and considerable progress has been made in the development of asymmetric Michael additions and 1,4-additions of organometallic reagents.² Recently, highly enantioselective copper-catalyzed conjugate addition reactions of diorganozinc reagents to enones have been reported.³ Among the various chiral ligands introduced for this purpose phosphoramidite ⁴, developed in our laboratories, shows nearly complete stereocontrol in the reaction of (function-alized) dialkylzinc (R₂Zn) reagents with six-, seven- and eight-membered cycloalkenones.⁵ On the basis of this methodology, catalytic routes are now available to enantiomerically pure products, embedding cyclohexane and larger rings in their structure.⁶ In contrast, the catalytic enantioselective 1,4-addition to 2-cyclopentenone is a major challenge, particularly because chiral cyclopentane structures are ubiquitous in natural products. Employing TADDO-L-based phosphoramidite ligands we obtained up to 62% ee when the Et₂Zn addition to 2-cyclopentenone was run in the presence of molecular sieves.⁷ Furthermore, with using chiral bidentate phosphoramidite ligands, the enantioselectivity improved to 83%.⁸ Chan⁹ reached 89% ee using a diphosphite ligand, whereas Pfaltz¹⁰ enhanced the enantioselectivity in this addition to 94%. Recently Hoveyda¹¹ reported ee values up to 97% using a chiral peptide-based phosphine ligand in the 1,4-addition of diethylzinc to 2-cyclopentenone. Although these catalysts give excellent enantioselectivities, the isolated yields for the 3-substituted cyclopentanones are often moderate. Possible reasons are the lower reactivity of 2-cyclopentenone in comparison with other cyclic enones, the side-reactions of the resulting zinc enolate with the starting material and the high volatility of the 1,4-addition product. Performing the reaction in the presence of an acetaldehyde increases the yield considerably.¹²

We report here the highly enantioselective catalytic tandem 1,4-addition–aldol reaction of dialkylzinc reagents to cyclopenten-3,5-dione monoacetals in the presence of aldehydes. These compounds show a higher reactivity, and the heavily function-alized products are less volatile. The usefulness of this new method is illustrated by the total synthesis of (S)-(+-)PGF₁₇ methyl ester in seven steps using achiral starting materials and only a catalytic amount of a chiral copper complex.

Monoacetals 1a and 1b were employed in the tandem 1,4-addition–aldol reaction with various aldehydes and dialkylzinc reagents (Scheme 1).¹² The catalyst was prepared in situ from 2 mol % Cu(OTf)₂ and 4 mol % (S.R)-phosphoramidite. Full conversion was reached after 16 h to provide exclusively trans substituted cyclopentanones 2a-f in isolated yields up to 76% (Table 1). Excellent stereocontrol is also observed in the subsequent aldol step, as for the hydroxy ketones 2a-f diastereomeric ratios higher than 95:5 were measured. The configuration of the main product was determined by NOESY-NMR. The adducts 2a-f were converted into the corresponding diketones 3a-f in good yields to give single diastereomers suitable for ee determination by chiral HPLC. The enantioselectivity strongly depends on the acetal moiety present in the starting material as 87% ee for enone 3a (entry 1) and 94% ee for enone 3c (entry 3) was obtained. The use of different dialkylzinc reagents, however, has no influence on the selectivity of this reaction (entries 3 and 4). The structure of the aldehyde has a minor influence: the use of benzaldehyde and p-bromo benzaldehyde shows ee values of 94% and 97%, respectively (entries 4 and 6).

We have demonstrated therefore, that in the presence of 2 mol % of (S,R)-4-Cu(OTf)₂ nearly complete stereocontrol over the formation of three consecutive stereocenters in this tandem 1,4-addition–aldol reaction is achieved, providing multifunctional cyclopentanones. These results inspired us to demonstrate the

(12) (a) Yoshida, Z.; Kimura, M.; Yoneda, S. Tetrahedron Lett. 1995, 36, 2839. (b) All compounds exhibited spectroscopic data (¹H NMR, ¹³C NMR, HRMS) in accordance with the structures. Details of the synthesis of 1a, 1b, and 5 will be published in due course.

Scheme 1

Table 1. Results of Tandem 1,4-Addition–Aldol Reactions According to Scheme 1

<table>
<thead>
<tr>
<th>entry</th>
<th>enone</th>
<th>R 2Zn</th>
<th>R’CHO</th>
<th>yield [%]¹</th>
<th>ee (3a-f) [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a</td>
<td>Et</td>
<td>Ph</td>
<td>2a</td>
<td>67 87</td>
</tr>
<tr>
<td>2</td>
<td>1a</td>
<td>n-Bu</td>
<td>Ph</td>
<td>2b</td>
<td>64 87</td>
</tr>
<tr>
<td>3</td>
<td>1b</td>
<td>Et</td>
<td>Ph</td>
<td>2c</td>
<td>76 94</td>
</tr>
<tr>
<td>4</td>
<td>1b</td>
<td>n-Bu</td>
<td>Ph</td>
<td>2d</td>
<td>69 94</td>
</tr>
<tr>
<td>5</td>
<td>1b</td>
<td>Et</td>
<td>p-Bri-Ph</td>
<td>2e</td>
<td>69 96</td>
</tr>
<tr>
<td>6</td>
<td>1b</td>
<td>n-Bu</td>
<td>p-Bri-Ph</td>
<td>2f</td>
<td>64 97</td>
</tr>
</tbody>
</table>

¹ Isolated Yields. ² Determined with HPLC (Daicel CHIRAL PAK-AD).
of 7 proceeds with 95% stereoselectivity using Zn[BH$_4$]$_2$ in ether at -30 °C. Compound 8 was isolated after chromatography as a single isomer in 63% yield with an ee of 94%. In the next step the silyl substituent was removed using Bu$_4$NF in THF/DMSO to give compound 9 (Scheme 3). This concept comprises a novel protection and deprotection sequence for enones suitable for the catalytic 1,4-addition with dialkylzincs. The cleavage of vinyl carbon-silicon bonds with Bu$_4$NF was developed by Nozaki. However, under the normal reaction conditions hydrolysis of compound 9 was observed to be caused by water in the commercial THF solution of Bu$_4$NF. Adding first sacrificial methylpropionate to remove the water by hydrolysis and only afterwards 8, the desilylated compound 9 was obtained as the only product and used without further purification. Acetylation of 9 afforded 10 in 71% yield over two steps.

The 1,3-allylic transposition of 10 with a catalytic amount of Pd(CH$_3$CN)$_2$Cl$_2$ in THF proceeded with reasonable yield and full retention of configuration to give allylic acetate 11 with the required stereochemistry. After deacetylation in the presence of K$_2$CO$_3$ in MeOH, compound 12 was obtained in excellent yield. The last step is the deprotection of the ketone functionality to provide the labile β-hydroxy ketone moiety of the prostaglandin. This conversion was realized using a catalytic amount of (NH$_4$)$_2$Ce(NO$_3$)$_6$ under nearly neutral conditions. In this way PGE$_1$ methyl ester is obtained in 7% overall yield with 94% optical purity in seven steps from 1b.

In conclusion we have demonstrated that cyclopenten-3,5-dione monoacetics give highly enantioselective tandem 1,4-addition-aldol reactions in the presence of dialkylzinc reagents and aldehydes using a catalytic amount of Cu(OTf)$_2$ and phosphoramidite ligand 4. Furthermore this reaction is the key step in a short total synthesis of PGE$_1$ methyl ester, comprising a new route to this natural product.

Acknowledgment. Financial support by the ministry of economic affairs (EET grant) is gratefully acknowledged.

Supporting Information Available: Experimental details (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA015900+

21. The analytical and spectral data (TLC, HPLC, 1H NMR, 13C NMR, CD, MS) of 12 were identical with those of authentic material (Sigma) with δ_{H} 1-51 ppm for 1.0, CH$_3$OH of 13 were identical with those of authentic material (Sigma) with δ_{C} 1-54 ppm for 1.0, CH$_3$OH.