Dynamic software infrastructures for the life sciences
Swertz, Morris A

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2008

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 05-02-2020
About the author

Curriculum Vitae

Morris Swertz was trained as MSc in information engineering and management with propadeuse in Psychology at the University of Groningen. As a young entrepreneur, his first contact with novel biomolecular tools for microbe research was in a software project for the Department of Molecular Genetics at the University of Groningen. This seeded a strong scientific interest in the dynamic field of bioinformatics and the software infrastructures to support it. As a result he started a Ph.D. in 2002 at the Groningen Bioinformatics Center under the supervision of Ritsert Jansen and Bert de Brock.

Collaborations with various colleagues served to widen his interest to the information management and analysis of biomolecular experiments on humans, livestock and plants. For two years he studied the integration of biological information resources in the international EU-BioGRID project on protein–protein interactions, co-managing a workpackage and resulting in several technical reports. Then he procured funding from the NWO-Biopartner organisation for a one year ‘sabbatical’ from his PhD project to explore alternative business models for MOLGENIS (and to hire business development, legal and software engineering support). In a multi-disciplinary team he led the development of a business plan, marketing materials, legal support documents, and several pilots of MOLGENIS and supervised software engineers assisting in the professionalization of MOLGENIS. The last two years have been spend on developing informatic concepts for building bioinformatics software, testing them in microarrays and genetical genomics and reporting the results in this thesis.

At present, he is developing an independent research line in dynamic software infrastructures for life sciences, improving and applying model-driven/generative strategies to infrastructures for microarrays, sequencing, proteomics, clinical trials, genetical genomics and systems biology.

Swertz MA, Matthijssen DI, de Brock EO, Jansen RC (Submitted) How to generate dynamic software infrastructures for systems biology: a practical example. Submitted to Bioinformatics.

Swertz MA, Oostergo RJ, de Brock EO (Submitted) A system for uniform treatment of clinical data. Submitted to the Journal of the American Medial Informatics Association.

Smedley D, Swertz MA, Wolstencroft K, Proctor G (In preparation) Technical issues concerning data compatibility and interoperability: a case example using the mouse community resources.
Grants and awards

NWO BioRANGE Grant (2005) to develop bioinformatic resources (models, methods, algorithms and software) genetical genomics. Jansen RC & Swertz MA. 175k euro/PhD position.

NWO Biopartner First Stage Grant (2004) to develop business plan for MOLGENIS. Swertz MA, de Brock EO, Jansen RC. 150k euro/1SE + investigator + consultancy support.

1st prize Informatie/NGI thesis award (2002) for MSc thesis on “transactions in federated databases” for Ordina finance Utopics, The Netherlands. 5k euro.

Best first year report "Training" (1997) Rabeling E, Swertz MA, Reinders JJ, Psychology, University of Groningen;

Best first-year report "Informatie Beheer Groep" (1996) Swertz MA & Lubbers LA, Technology management, University of Groningen;

Presentations

Invited presentation at European Bioinformatics Institute and Sanger Institute, January 2008.

Co-author on invited presentation at the 1st Annual (public) meeting for the EU Coordination FP6 action CASIMIR - Coordination and Sustainability of International Mouse Informatics Resources, November 28, Rome, Italy.

Invited presentation at the 1st Networking (invited only) meeting for the EU Coordination FP6 action CASIMIR - Coordination and Sustainability of International Mouse Informatics Resources, October 4, Corfu, Greece.

Invited presentation (co-author) at the 6th Annual meeting of the Complex Trait Consortium, May 26-29, Braunschweig, Germany.

Swertz MA, Jansen RC, de Brock EO (2007) “Generating Software Infrastructures for High-Throughput Life Science Experiments”.

Swertz MA (2004) “Information infrastructures for the life sciences by example”.

Selected presentation at the Wageningen Springschool Bioinformatics, March 31-April 2, Wageningen, The Netherlands.

Invited presentation at the Dutch Informatics Society (NGI-Noord) meeting, December 9, Groningen, The Netherlands

Posters

Swertz MA, Scheltema RA, de Brock EO, Jansen RC (2006) “Quick development of bioinformatics infrastructures using generative methods”.

Presented at the *Health Grid*, January 2004, Clermont Ferrand, France.

Reports

Business plan, 18 pages, appendixes and software.

Swertz MA, de Brock EO (2005) “Functional design of the TCC Metabase, a meta database for the controlled distribution of clinical trial databases”.

manual and technical documentation of BioGRID demonstrator and underlying meta
model.

and domain model”. Contents: on the generation of processing tools to support
research on protein-protein interaction.

de Brock EO, Jansen RC, Kounnapi M, Papadopoulos G, Stavrou A, Swertz MA,
description of the components of biogrid, expression data sources, protein and
protein-interaction data sources, and literature (classification) data sources.

de Brock EO, Dafas P, van der Horst E, Jansen RC, Kounnapi M, Kozlenkov A,
Integration requirements. Contents: use cases on gene expression, protein expression,
protein-protein interaction and knowledge manasgements, required grid components
and available technology, and initial design.

de Brock EO, Dafas P, Jansen RC, Kounnapi M, Papadopoulos G, Stavrou A, Swertz MA,
models and formats for literature, nucleotide, pathways, and microarrays.

Bolser D, de Brock EO, Dafas P, Jang M, Jansen RC, Kounnapi M, Papadopoulos G,
Stavrou A, Swertz MA, Vogiatzis D (2002) List of available data sources. Contents:
data sources with literature, ontology, expression, nucleotide, pathways, structure,
mutif, and mutation information.

Technical Report EU-BioGRID-D05, 39 pages.
Swertz MA (2001) Transacties binnen federated database systems: criteria voor ontwerp en
specificatie van FDBSs in staat tot transactionondersteuning (Transactions in federated
database systems: criteria for design and specification of FDBSs capable of
transactions).

Award-Winning MSc Thesis, University of Groningen.
Software prototypes

Data infrastructures:
LIMS-like database for the management of rodent experimental animals in the lab.

Online showcase generative methods
Generating MOLGENIS software infrastructures online, including a simple catalogue of examples. Swertz MA (2007). Published in NatRevGen.

Integration tool for biological databases.
Van der Veen, MJ, Scheltema RA, Swertz MA (2006) ‘Using context information to automatically reduce the cardinality in the schema mapping task’. MSc Artificial Intelligence project, University of Groningen.

Pilot study of LIMS-like database for two-color microarray experiments on plant, human, bacteria and mammals respectively.

Processing infrastructures:
Online tool: design an optimal genetical genomics experiment

Online tool to manage and share statistical scripts in the R language.

R package for the statistical analysis of the genetics of metabolism.

Integrative visualization of microarray, protein-interaction and literature data.