Stabilizing Zr and Ti Cations by Interaction With a Ferrocenyl Fragment

Ramos, Alberto; Otten, Edwin; Stephan, Douglas W.

Published in:
Journal of the American Chemical Society

DOI:
10.1021/ja9077446

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2009

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Supplementary Data For:

Stabilizing Zr and Ti Cations by Interaction With a Ferrocenyl Fragment

Alberto Ramos, Edwin Otten and Douglas W. Stephan*

All preparations were done under an atmosphere of dry, O$_2$-free N$_2$ employing both Schlenk line techniques and M. Braun or Vacuum Atmospheres inert atmosphere glove boxes. Solvents were purified employing a Grubbs’ type column system manufactured by Innovative Technology. 1H, 13C, 31P, 11B and 19F NMR spectroscopy spectra were recorded on Varian 200, 300, 400 MHz and Bruker 400 MHz spectrometers. 1H and 13C NMR spectra are referenced to SiMe$_4$ using the residual solvent peak impurity of the given solvent. 31P, 11B and 19F NMR spectra were referenced to 85% H$_3$PO$_4$, Et$_2$O·BF$_3$, and CFCl$_3$ respectively. Chemical shifts are reported in ppm and coupling constants in Hz. CD$_2$Cl$_2$ and BrC$_6$D$_5$ were used as the NMR solvents after being dried over CaH$_2$, vacuum-transferred into Young bombs and freeze-pump-thaw degassed (three cycles). Combustion analyses were performed in house employing a Perkin Elmer 2400 Series II CHNS Analyzer. UV/visible spectra were obtained using a Perkin-Elmer Lambda 900 UV/vis/near-IR spectrophotometer.

Synthesis of [Cp$_2$ZrMe][MeB(C$_6$F$_5$)$_3$] (I)

This compound was synthesized according to a literature procedure,1 which was slightly modified. In the glovebox, a vial charged with benzene (10 mL) and a stir bar was placed in the freezer at -35 °C for 2 h. After that time weighed amounts of [Cp$_2$ZrMe$_2$] (0.150 g, 0.596 mmol) and B(C$_6$F$_5$)$_3$ (0.307 g, 0.600 mmol) were added in the vial over the frozen benzene. The mixture was left to reach room temperature and was stirred for 2 h. Then, 8 mL of pentane were added and a yellow solid immediately precipitated. Solvents were decanted and the yellow solid was washed with more pentane (2 x 5 mL). After drying under vacuum for 4 h compound I was obtained (purity checked by NMR). Yield 0.374 g (82%). 1H NMR (BrC$_6$D$_5$, 400.33 MHz): δ 5.85 (s, Cp, 10H), 0.43 (s, Zr-Me, 3H), 0.25 (s, br, B-Me, 3H) ppm. 19F(1H) NMR (BrC$_6$D$_5$, 376.64 MHz): δ -133.0 (d, o-F, J = 22 , 6F), -158.7 (s, br, p-F, 3F), -163.5 (m, br, m-F, 6F) ppm. 11B NMR (BrC$_6$D$_5$, 128.44 MHz): δ -13.8 (s) ppm.

Synthesis of \([\text{Cp}_2\text{Zr}(\text{C}_5\text{H}_4)\text{Fe}(\text{C}_5\text{H}_3)]\)\([\text{MeB(C}_6\text{F}_{15})_3]\) (2a)

Ferrocene (0.058 g, 0.314 mmol) was added to a solution of 1 (0.240 g, 0.314 mmol) in 5 mL of BrC\(_6\)H\(_5\). The solution was stirred for 15 h. After this time, pentane was added and the mixture was cooled down to -35 °C to help precipitate the product. Then, solvents were decanted and the orange solid thus obtained was washed with toluene (2 x 5 mL) and dried under vacuum for 6 h. Yield 0.272 g (93%). Dark orange crystals of 2a were obtained by slow diffusion of a concentrated solution of the compound in BrC\(_6\)H\(_5\) into a layer of hexane at room temperature. Anal. Calcd. for C\(_{39}\)H\(_{22}\)BF\(_{15}\)FeZr. C, 50.18; H, 2.38. Found: C, 49.99; H, 2.11 %. UV-vis: \(\lambda_{\text{max}}\) (BrC\(_6\)H\(_5\)) = 476 nm (\(\varepsilon = 615\)).

1\(^H\) NMR (BrC\(_6\)D\(_5\), 400.33 MHz, 298 K): \(\delta\) 5.92 (s, Zr-Cp, 10H), 4.28, 4.20 (2 x m, C\(_5\)H\(_4\) 2 x 2H), 2.44 (s, Fe-Cp, 5H), 1.10 (s, B-Me, 3H) ppm.

1\(^H\) NMR (BrC\(_6\)D\(_5\), 400.33 MHz, 239 K): \(\delta\) 5.85 (s, Zr-Cp, 10H), 4.22, 4.12 (2 x m, C\(_5\)H\(_4\), 2 x 2H), 2.35 (br, \(\Delta\nu_{\text{½}} = 22\) Hz, Fe-Cp, 5H), 1.22 (s, B-Me, 3H) ppm.

1\(^H\) NMR (CD\(_2\)Cl\(_2\), 400.33 MHz, 283 K): \(\delta\) 6.57 (s, Zr-Cp, 10H), 4.85, 4.84 (2 x m, C\(_5\)H\(_4\), 2 x 2H), 3.09 (s, Fe-Cp, 5H), 0.46 (s, B-Me, 3H) ppm.

1\(^H\) NMR (CD\(_2\)Cl\(_2\), 400.33 MHz, 238 K): \(\delta\) 6.55 (s, Zr-Cp, 10H), 4.82, 4.81 (2 x m, C\(_5\)H\(_4\), 2 x 2H), 3.05 (br, \(\Delta\nu_{\text{½}} = 22\) Hz, Fe-Cp, 5H), 0.40 (s, B-Me, 3H) ppm.

1\(^H\) NMR (CD\(_2\)Cl\(_2\), 400.33 MHz, 193 K): \(\delta\) 6.52 (s, Zr-Cp, 10H), 4.79, 4.78 (2 x m, C\(_5\)H\(_4\), 2 x 2H), 3.20 (br, \(\Delta\nu_{\text{½}} = 600\) Hz, Fe-Cp, 5H), 0.33 (s, B-Me, 3H) ppm.

1\(^F\) NMR (BrC\(_6\)D\(_5\), 376.64 MHz): \(\delta\) -131.5 (d, J = 21, o-F, 6F), -163.2 (t, J = 21, p-F, 3F), -165.8 (m, m-F, 6F) ppm.

1\(^B\) NMR (BrC\(_6\)D\(_5\), 128.44 MHz): \(\delta\) -14.4 (s) ppm.

13\(^C\){\(^{1}_)\(^H\)} NMR (BrC\(_6\)D\(_5\), 100.46 MHz): \(\delta\) 171.0 (s, C\(_{1}\)-C\(_5\)H\(_4\)), 148.6 (dm, J\(_{\text{CF}}\) ~ 237, o-C\(_5\)F\(_3\)), 137.6 (dm, J\(_{\text{CF}}\) ~ 244, p-C\(_5\)F\(_3\)), 136.5 (dm, J\(_{\text{CF}}\) ~ 247, m-C\(_5\)F\(_3\)), 111.2 (s, Zr-Cp), 85.5 (s, C\(_{2/3}\)-C\(_5\)H\(_4\)), 80.4 (s, Fe-Cp), 74.7 (s, C\(_{3/2}\)-C\(_5\)H\(_4\)), 11.2 (br, B-CH\(_3\)) ppm.

X-ray Structure of Cation of 2a

Ethylene polymerization protocol

A typical procedure for ethylene polymerization: dry toluene (50 mL) was charged into a 250 mL Schlenk flask in the glovebox. The flask was connected to a Schlenk line were it was placed under ethylene (1 atm) by evacuating it for 5 seconds and refilling it with dry ethylene gas (x 5). Then, \(i\)-Bu\(_3\)Al (5 % w. in toluene) was added (0.2 mL, 50 \(\mu\)mol approx.), and the solution placed in a thermostated water bath at 25 °C and stirred at 750 rpm for 5 minutes. After that time, a solution containing the catalyst was injected
(1 mL, 2.5 µmol). This was taken to be time zero. The mixture was stirred for 10 min at the same temperature and stir rate, after which time was quenched with an HCl solution in MeOH (1 M), and poured into a beaker containing more of the latter solution (100 mL approx.). The resultant polymer was filtered, washed with MeOH and toluene and dried *in vacuo* for, at least, 15 h.

Table S1. Ethylene polymerization results

<table>
<thead>
<tr>
<th>Pre-Catalyst</th>
<th>Activity (Trial 1) (g mmol⁻¹ hr⁻¹ atm⁻¹)</th>
<th>Activity (Trial 2) (g mmol⁻¹ hr⁻¹ atm⁻¹)</th>
<th>Average Activity (g mmol⁻¹ hr⁻¹ atm⁻¹)</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Cp₂ZrMe][MeB(C₆F₅)₃] (1)</td>
<td>2802</td>
<td>2850</td>
<td>2826</td>
<td>2</td>
</tr>
<tr>
<td>[Cp₂Zr(C₅H₃)Fe(C₅H₄)] [MeB(C₆F₅)₃] (2a)</td>
<td>2826</td>
<td>3138</td>
<td>2982</td>
<td>11</td>
</tr>
</tbody>
</table>

Synthesis of [Cp₂Zr(C₅H₃Me)Fe(C₅H₄Me)][MeB(C₆F₅)₃] (2b)

Solid 1 (25 mg, 97.7 µmol) was added to a solution of 1,1′-dimethylferrocene (23 mg, 107 µmol) and B(C₆F₅)₃ (50 mg, 97.7 µmol) in 2 mL of BrC₆H₅ at -30 °C. The solution turned dark orange and was stirred for 1 h. After this time, pentane was added to precipitate the product as a dark orange oil. The supernatant was decanted and the oil triturated with pentane to give an orange powder, which was washed with pentane (2 x 2 mL) and dried under vacuum for 6 h. Yield 84 g (89%). Dark orange crystals of 2b were obtained by slow diffusion of a concentrated solution of the compound in BrC₆H₅ into a layer of cyclohexane at room temperature. Despite repeated attempts, a satisfactory elemental analysis could not be obtained.

1H NMR (BrC₆D₅, 400.33 MHz, 298 K): δ 5.92 (s, Zr-Cp, 10H), 4.26 (s, 1H, C₅H₃Me), 4.16 (s, 1H, C₅H₃Me), 3.94 (s, 1H, C₅H₃Me), 3.92 (s, 1H, C₅H₄Me), 3.78 (s, 1H, C₅H₄Me), 1.61 (s, 6H, C₅H₃Me and C₅H₄Me), 1.07 (s, 3H, BMe), 0.86 (s, 1H, C₅H₄Me), -1.29 (s, 1H, C₅H₄Me). 19F NMR (BrC₆D₅, 376.64 MHz): δ -131.6 (d, J = 21, o-F, 6F), -163.3 (t, J = 21, p-F, 3F), -165.9 (m, m-F, 6F) ppm.

11B NMR (BrC₆D₅, 128.44 MHz): δ -14.4 (s) ppm. 13C NMR (BrC₆D₅, 100.46 MHz): δ 171.9 (s, C₅H₃Me ZrC), 148.8 (dm, J₉₋₁₄ = 237, o-C₆F₅), 137.7 (dm, J₉₋₁₄ ~ 244, p-C₆F₅), 136.8 (dm, J₉₋₁₄ ~ 247, m-C₆F₅), 112.2 (d, J = 175, Zr-Cp), 93.5 (s, C₅H₃Me MeC), 92.6 (s, C₅H₃Me MeC), 87.4 (d, J = 167, C₅H₄Me CH), 85.7 (d, J = 174, C₅H₃Me CH), 85.4 (d, J = 171, C₅H₄Me CH), 85.0 (d, J = 179, C₅H₃Me CH), 81.3 (d, J = 175, C₅H₄Me CH), 79.6 (d, J = 172, C₅H₃Me CH), 78.2 (d, J = 179, C₅H₃Me CH), 12.8 (q, J = 128, C₅H₃Me), 12.7 (q, J = 128, C₅H₄Me), 11.3 (br, BMe).
X-ray Structure of Cation of 2b
Synthesis of [Cp₂Zr(C₅H₄)Fe(C₅H₅)(THF)][MeB(C₆F₅)₃] (3)

THF (3 µL, 0.037 mmol) was added to an orange solution of 2a (0.031 g, 0.033 mmol) in 0.7 mL of BrC₅D₅ giving rise to a deep blue solution containing the adduct 3 as a major product (ca. 90% by NMR). Attempts to isolate 3 as a solid led to deep blue oils containing bigger amounts of unidentified side products. Therefore, compound 3 was only characterized by NMR. UV-vis: λ_max (BrC₅H₅) = 624 nm (ε = 1240). \(^1^H\ NMR\) (BrC₅D₅, 400.33 MHz): δ 6.14 (s, Zr-Cp, 10H), 4.31 (2 x m, C₂H₅, 2 x 2H), 3.87 (s, Fe-Cp, 5H), 3.14 (br, δνₓᵧ = 145 Hz, O-CH₂), 1.36 (br, δνₓᵧ = 40 Hz, CH₂, 4H), 1.09 (s, B-Me, 3H) ppm. \(^1^F\ NMR\) (BrC₅D₅, 376.64 MHz): δ -131.7 (d, J = 20, o-F, 6F), -163.5 (t, J = 21, p-F, 3F), -166.1 (m, m-F, 6F) ppm. \(^3^P\{^1^H\}\ NMR\) (BrC₅D₅, 100.46 MHz): δ -5.78 (d, JₚH = 1.5, Zr-Cp, 10H), 4.35, 3.49 (2 x m, C₂H₅, 2 x 2H), 3.82 (s, Fe-Cp, 5H), 1.13 (s, B-Me, 3H), 0.77 (d, JₚH = 8, P-Me, 9H) ppm.

Synthesis of [Cp₂Zr(C₅H₄)Fe(C₅H₅)(PMe₃)][MeB(C₆F₅)₃] (4)

PMe₃ (4 µL, 0.038 mmol) was added to an orange solution of 2a (0.031 g, 0.033 mmol) in 3 mL of BrC₅H₅ giving rise to a purple solution of compound 4. After adding hexane, the product crystallized at room temperature giving rise to purple crystals suitable for an X-ray analysis. Yield 0.031 g (91%). Anal. Calcd. for C₄₂H₁₃BF₁₅FeP₂Zr·0.5(C₆H₅Br): C, 50.13; H, 3.34. Found: C, 49.93; H, 3.15 %. UV-vis: λ_max (BrC₅H₅) = 528 nm (ε = 1164). \(^1^H\ NMR\) (BrC₅D₅, 400.33 MHz): δ 5.78 (d, JₚH = 1.5, Zr-Cp, 10H), 4.35, 3.49 (2 x m, C₂H₅, 2 x 2H), 3.82 ppm.

PME₃ (4 µL, 0.038 mmol) was added to an orange solution of 2a (0.031 g, 0.033 mmol) in 3 mL of BrC₅H₅ giving rise to a purple solution of compound 4. After adding hexane, the product crystallized at room temperature giving rise to purple crystals suitable for an X-ray analysis. Yield 0.031 g (91%). Anal. Calcd. for C₄₂H₁₃BF₁₅FeP₂Zr·0.5(C₆H₅Br): C, 50.13; H, 3.34. Found: C, 49.93; H, 3.15 %. UV-vis: λ_max (BrC₅H₅) = 528 nm (ε = 1164). \(^1^H\ NMR\) (BrC₅D₅, 400.33 MHz): δ 5.78 (d, JₚH = 1.5, Zr-Cp, 10H), 4.35, 3.49 (2 x m, C₂H₅, 2 x 2H), 3.82 ppm.

X-ray Structure of Cation of 4
Synthesis of [TiCpFe(NP\textsubscript{t}Bu\textsubscript{3})][MeB(C\textsubscript{6}F\textsubscript{5})\textsubscript{3}] (6)

A solution of [TiCpMe\textsubscript{2}(NP\textsubscript{t}-Bu\textsubscript{3})] (0.072 g, 0.200 mmol) in 0.5 mL of BrC\textsubscript{6}D\textsubscript{5} was added dropwise to a solution of B(C\textsubscript{6}F\textsubscript{5})\textsubscript{3} (0.103 g, 0.201 mmol) in 0.5 mL of BrC\textsubscript{6}D\textsubscript{5} at -35 °C. The mixture was stirred for 5 minutes to allow the formation of a yellow solution of [TiCpMe(NP\textsubscript{t}Bu\textsubscript{3})][MeB(C\textsubscript{6}F\textsubscript{5})\textsubscript{3}] 5. Then, ferrocene (0.037 g, 0.199 mmol) was added to this solution and the mixture was stirred for 15 h at room temperature. After this time there is no starting material left in solution, and the mixture contains ~90% of compound 6 by NMR analysis and 10% of uncharacterized impurities. The same mixture was isolated as oil after addition of hexane, storage at -35 °C for 4 h and decanting the mother liquor. The oil was converted into a solid upon washing several times with hexane and drying under vacuum. A small amount of dark red crystals was obtained by cooling a solution in bromobenzene/hexane (ca. 10:1) to -35 °C. ¹H NMR (C\textsubscript{6}D\textsubscript{5}Br, 399.74 MHz, 295 K): δ 6.19 (s, Ti-Cp, 5H), 4.80 (br, ∆ν\textsubscript{½} = 31 Hz, C\textsubscript{5}H\textsubscript{4}, 2H), 4.31 (s, C\textsubscript{5}H\textsubscript{4}, 2H), 2.92 (s, Fe-Cp, 5H), 1.17 (d, J\textsubscript{PH} = 14, CH\textsubscript{3}-tBu, 27H), 1.12 (s, B-Me, 3H) ppm. ³¹P¹H NMR (C\textsubscript{6}D\textsubscript{5}Br, 161.82 MHz): δ 54.4 (br, 1P) ppm. ¹⁹F NMR (C\textsubscript{6}D\textsubscript{5}Br, 376.13 MHz): δ -131.7 (d, J\textsubscript{FF} = 21, o-C\textsubscript{6}F\textsubscript{5}, 6F), -163.9 (t, J\textsubscript{FF} = 20, p-C\textsubscript{6}F\textsubscript{5}, 3F), -166.3 (br, J\textsubscript{m-C\textsubscript{6}F\textsubscript{5}}, 6F) ppm. ¹¹B NMR (C\textsubscript{6}D\textsubscript{5}Br, 128.26 MHz): δ -14.1 (s, 1B) ppm. ¹³C¹H NMR (C\textsubscript{6}D\textsubscript{5}Br, 100.47 MHz): δ 177.0 (s, C1-C\textsubscript{5}H\textsubscript{4}), 148.7 (dm, J\textsubscript{CF} ~ 238, o-C\textsubscript{6}F\textsubscript{5}), 137.6 (dm, J\textsubscript{CF} ~ 242, p-C\textsubscript{6}F\textsubscript{5}), 136.5 (dm, J\textsubscript{CF} ~ 246, m-C\textsubscript{6}F\textsubscript{5}), 112.5 (s, Ti-Cp), 82.3 (s, C\textsubscript{2/3}-C\textsubscript{5}H\textsubscript{4}), 79.5 (s, Fe-Cp), 74.2 (s, C\textsubscript{3/2}-C\textsubscript{5}H\textsubscript{4}), 40.9 (d, J\textsubscript{PC} = 42, C(CH\textsubscript{3})\textsubscript{3}), 28.2 (s, CH\textsubscript{3}-tBu), 11.3 (br, B-CH\textsubscript{3}) ppm.

X-ray Structure of Cation of 6
DFT calculations

Calculations were performed with the Gaussian03 program using density functional theory (DFT). The geometries of $2a$, Cp_2ZrMe^+ and Cp_2ZrPh^+ were optimized (for $2a$: starting from the X-ray structure) at the B3LYP/6-31G(d) level without (symmetry) constraints. NBO analysis for the optimized structures was performed as implemented in Gaussian03. Molecular orbital representations were generated using Molekel 4.3.

Figure S2. Orbitals involved in Fe-Zr interaction (Cp$_2$Zr fragment left, (C$_5$H$_4$)FeCp fragment right)

Figure S3. 1H VT NMR of compound 2a in CD$_2$Cl$_2$.

![NMR Spectra](image)
Figure S4. 1H NMR of compound 2b in C$_6$D$_5$Br.
Figure S5. 1H NMR of compound 6 in C$_6$D$_5$Br (crude).
Figure S6. 1H NMR of compound 6 in C$_6$D$_5$Br (crystals).