

In ST-Elevation Myocardial Infarction Patients Receiving Primary Percutaneous Coronary Intervention, Admission Cardiac Troponin T and Peak Cardiac Troponin T Values Differ in Their Prognostic Properties

We read with interest the study by Hassan et al1 investigating the ability of peak cardiac troponin T (cTnT) to predict infarct size and long-term outcomes after ST elevation myocardial infarctions in patients treated with primary percutaneous coronary intervention (PCI). Although we do not disagree with the investigators’ conclusion that peak cTnT carries substantial predictive value regarding long-term outcome and infarct size, we would like to comment on several points.

We felt that the article lacked a clear articulation of the distinction between cTnT measured before primary PCI (i.e., usually at admission) and after primary PCI. It is well established that cTnT measured almost at any time point after PCI conveys powerful prognostic information regarding impaired left ventricular function and infarct size.2,3 Although admission cTnT is a predictor of long-term mortality, which appears principally related to the longer delay and recent myocardial damage,4 the association of admission cTnT and infarct size is weak at best,5 and several studies have found no such relation.2,3,6

It is unfortunate, therefore, that in conducting their analyses, Hassan et al1 appear to have mixed pre- and post-PCI samples of cTnT (given that 2% of the study population were reported to have attained peak cTnT values before PCI). It is likely that the inclusion of pre-PCI samples in this report weakened the correlations, although the impact was probably minor given the small fraction of peak cTnT values originating from pre-PCI sampling.

To confuse matters further, in the discussion section, Hassan et al1 cite ≥4 previous studies as having measured peak cTnT, when in fact closer scrutiny of the reports in question reveals that they all measured admission cTnT values,6–9 which makes comparison with the present study unhelpful at best.

Last, Hassan et al1 conclude their report by advocating the use of serial cTnT measurements to derive a peak value for optimal risk stratification after ST elevation myocardial infarction. Several recent investigations have suggested that the prognostic capacity of single-point cTnT measurements, which would constitute a much easier strategy, is comparable with that of peak values.8–10–12

Jonas Hallén, MD
Dan Atar, MD
Oslo, Norway
13 February 2009

doi:10.1016/j.amjcard.2009.02.032

β-Blocker Use and the Development of Depression

We read with interest the report by Papademetriou1 in which the investigator reported the effects of nebivolol for the treatment of hypertension in a sample of 845 subjects. Papademetriou observed that depression was not mentioned as an adverse event by subjects receiving nebivolol and used this observation to underline its favorable tolerability. However, we disagree with his suggestion that depression is a typical complaint related to β-blocker use. This is based on old research, often using questionable study designs.

Ko et al2 clearly demonstrated that depression is not more often mentioned as a side effect after β blockade than after placebo treatment. Using standardized methods of depression, we also found no significant associations between the use of β blockers and the development of depression during the first year after myocardial infarction.3 After adjustment for baseline depression, β-blocker users even had somewhat lower depression scores than non-β-blocker users at 3 months after myocardial infarction (p = 0.06). Despite some old case reports, no empirical support exists for the belief that

depression is a common side effect of β-blockade. Unfortunately, this belief once again proves difficult to correct, and an unfortunate side effect of that belief might be a continued reluctance in prescribing β-blockers for reasons of putative but unsupported depressant effects.

Jooost P. van Melle, PhD, MD
Peter de Jonge, PhD
Groningen, The Netherlands
13 February 2009

doi:10.1016/j.amjcard.2009.02.033

The Clinical Dilemma of Positive Results of High-Sensitive Troponin Assays

Since the widespread introduction of highly sensitive assays for troponin testing,1-3 it is likely that the number of patients presenting with values exceeding the limit of detection and the recommended threshold corresponding to optimal precision (coefficient of variation ≤10%) will increase further, thus raising a dilemma in the appropriate triage of these patients. According to the universal definition of acute myocardial infarction (AMI), elevated value higher than the decision level is required to establish the diagnosis of AMI.4 However, the demonstration of an increasing and/or decreasing pattern was also clearly highlighted, to help distinguish background elevated troponin levels (e.g., patients with chronic renal failure) from elevations in the same patients that indicate AMI.4 These indications are strongly supported by the recent findings of Eggers et al.,5 who showed that 0.6% of elderly subjects from a community sample and 6.7% of patients stabilized after acute coronary syndromes would have been labeled as having AMIIs according to the universal definition of AMI when diagnostic classification had been based on a single cardiac troponin result.5 In line with the former recommendations,4 the investigators also supported the introduction of a degree of troponin change >20% as a diagnostic criterion, which would probably be more appropriate to avoid diagnostic misclassification. Although this conceivably reflects the best practice so far, it raises a further dilemma concerning the appropriate triage of patients presenting with troponin values slightly higher than the diagnostic threshold in the period between the first and the second troponin results, which can be as long as 6 to 9 hours. It is widely acknowledged that time is critical for patients with AMIs, because the clinical outcome is strongly influenced by the early onset of therapy, either pharmacologic or based on percutaneous or surgical revascularisation.6 Primary percutaneous coronary intervention, for example, appears to be more effective if vessel patency is restored within 120 minutes,7 whereas anticoagulant or antiplatelet drugs should be initiated as soon as possible to result in significant clinical benefits.8

The enhanced sensitivity of the newer troponin assays will inevitably determine substantial increases in case identification, so that physicians will face the new challenge of discriminating between patients who will benefit from more aggressive treatment and those who will not, until AMI is definitely diagnosed or ruled out. Highly sensitive troponin assays offer great diagnostic and clinical opportunities, but guidelines or recommendations are urgently needed for the most appropriate management of patients and to limit the overcrowding of emergency departments.

Giuseppe Lippi, MD
Martina Montagnana, MD
Gian Cesare Guidi, MD
Verona, Italy
24 February 2009

doi:10.1016/j.amjcard.2009.02.037

The corresponding author is:
Andrew J. Boyle
505 Parnassus Avenue, Box 0103
San Francisco, California 94143
Tel: 415-514-0827
E-mail address: aboyle@medicine.ucsf.edu

In Table 2, the p values have been transcribed incorrectly. The corrected Table 2 appears below.

doi:10.1016/j.amjcard.2009.03.009

Table 2
Clinically evident complications

<table>
<thead>
<tr>
<th></th>
<th>Controls</th>
<th>ESLD</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intracranial bleed</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>Retropertitoneal bleed</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>Pseudoaneurysm</td>
<td>1 (1)</td>
<td>5 (6)</td>
<td>0.119</td>
</tr>
<tr>
<td>Complicated</td>
<td>0</td>
<td>5 (6)</td>
<td>0.029</td>
</tr>
<tr>
<td>p pseudoaneurysm: Arterio-venous fistula</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>Hematoma</td>
<td>6 (7)</td>
<td>6 (7)</td>
<td>0.882</td>
</tr>
<tr>
<td>Transfusion-requiring hematoma</td>
<td>0</td>
<td>2 (2)</td>
<td>0.172</td>
</tr>
</tbody>
</table>