Low 30-Day Mortality After Atrial Fibrillation Ablation

Mol, Daniel; van der Stoel, Michelle D.; Balt, Jippe C.; Bhagwandien, Rohit E.; Blaauw, Yuri; van Dessel, Pascal F.H.M.; van Driel, Vincent J.H.M.; Driessen, Antoine H.G.; Elvan, Arif; Hassink, Rutger J.

Published in: Canadian Journal of Cardiology

DOI: 10.1016/j.cjca.2022.05.024

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date: 2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Low 30-Day Mortality After Atrial Fibrillation Ablation: Results From the Netherlands Heart Registration

See editorial by Andrade and Macle, pages 1619-1620 of this issue.

Catheter ablation has become a cornerstone in the treatment of atrial fibrillation (AF). Procedural complications have been reported to be low; 3.6% of patients undergoing AF ablation develop a procedural-related complication, and mortality is <0.01-0.57% depending on the study type and sample size.1-3 Most large studies only report in-hospital death or provide limited data on the cause of death.1,2 The generalizability of these studies might be limited because of differences in population characteristics and ablation volume. Therefore, we assessed 30-day mortality and report the cause of death in a large-scale registry of patients who underwent catheter AF ablation in The Netherlands.

Methods

We used data from the Netherlands Heart Registration, a nationwide registry in which 15 of 16 Dutch ablation centres participate in the value-based health care program and present AF ablation outcomes.3 The medical ethics board, MEC-U, Nieuwegein, The Netherlands, issued a waiver for informed consent. All patients who underwent catheter AF ablation between 2013 and 2020 (inclusive) were included. Participating hospitals retrieved mortality status from the municipal death registration and obtained the cause of death from the medical chart. Thirty-day mortality was categorized in procedural and nonprocedural death.

For the collected clinical data, continuous variables are presented with a mean ± SD and categorical variables with numbers and percentages. The independent t test, Mann-Whitney U test, and Fisher exact test were used to compare differences between the survivors and deceased patients. All analyses were performed on the AF procedures and not on the unique patients.

Results

In total, 30,238 AF procedures were analyzed. The vital status was available for 30,197 (99.9%) procedures in 24,151 patients. Overall, the mean age was 61 ±10 years, 53% were female, the average body mass index was 27.4 ± 4.2, and Congestive Heart Failure, Hypertension, Age (≥75 Years) (doubled), Diabetes Mellitus, Stroke (doubled), Vascular Disease, Age (65-74) Years, Sex Category (Female) (CHA2DS2-VASc) score was 1.6 ± 1.4. On average, the ablation centres performed 288 (range, 57-527) AF ablations/year.

Fifteen (0.05%) patients died within 30 days. The median time from AF ablation to death was 15 days (range, 0-30 days). Nine (0.03%) deaths were considered procedure-related, 4 (0.01%) were considered nonprocedural, and the cause of death was unknown for 2 patients (0.01%). Compared with survivors, deceased patients were older (66 ± 7 vs 61 ± 10 years; P = 0.027) and more frequently had mitral valve regurgitation (P = 0.005; Table 1). Procedure-related death included cardiac tamponade (n = 4), atrioesophageal fistula (n = 1), stroke (n = 2), pneumonia and reactive pericarditis (n = 1), and right ventricular heart failure during thrombocytosis (n = 1). The nonprocedural death included pancreas carcinoma (n = 1), palliative care because of pleural fluid suspected for malignancy (n = 1), non-natural death (n = 1), and exacerbation of preexisting pulmonary fibrosis (n = 1).

Discussion

This study presents 30-day mortality after AF ablation from all value-based health care ablation centres in The Netherlands. Only 0.1% of the mortality data were missing in a cohort of >30,000 AF ablations in >24,000 patients and 0.05% of patients died within 30 days. In The Netherlands, the crude death rate for persons aged 50-80 years was 10.8/1000 persons (0.09% for 30 days).4 Thus, the 30-day mortality rate after AF ablation was numerically lower than the crude death rate in The Netherlands.

The strength of our study relies on the cohort size, data completeness, and the description of the cause of death. In comparison, Cheng et al. reported 30-day mortality after AF ablation with admission and readmission data retrieved from a large nationwide database.5 They observed a tenfold higher mortality rate; 0.46% of patients died during the first admission or at readmission. Procedural complications and procedures performed in low-volume ablation centres (<21 AF ablations per year) were associated with increased 30-day mortality risk. Because that study only included patients who died in-hospital, the true death rate might be higher.6 In addition, a recent systematic review and meta-analysis showed that patients who underwent AF ablation in high-volume centres (≥50 AF ablations per year) had a 67% lower mortality risk after AF ablation than those treated in low-volume centres.7 In our study, 9 deaths (60% of the deaths; 0.03% of the total) were considered procedural-related, and AF ablation was performed primarily in high-volume centres with cardiothoracic surgical backup on site. The population described was relatively young and healthy;
most of the patients had a history of paroxysmal AF and the average CHA2DS2-VASc score was low.

The main limitation of this study is that the 30-day mortality was obtained in the Dutch population, and generalizability to other countries might be limited because of differences in population characteristics or ablation volume. Second, because this was a registry study, the reporting of some baseline characteristics was incomplete. However, we only provided a descriptive analysis, and by using the municipal death registration, very few values were missing for 30-day mortality.

In a setting where AF ablation is performed in high-volume centres with cardiothoracic surgical backup on site, the 30-day mortality rate was extremely low.

Acknowledgements

Joris R. de Groot and Jonas S.S.G. de Jong contributed equally to this work.

Daniel Mol, PhD

d.mol@olvg.nl

Rutger J. Hassink, MD, PhD
Michiel J.B. Kemik, MD, PhD
Karim Kraaier, MD, PhD
Wichert J. Kuijt, MD, PhD
Justin G.L.M. Luermans, MD, PhD
Pascal F.H.M. van Dessel, MD, PhD
Antoine H.G. Driessen, MD, PhD
Arif Elvan, MD, PhD

<table>
<thead>
<tr>
<th>Baseline characteristics</th>
<th>Survivors (n = 30,182)</th>
<th>Deceased patients (n = 15)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>61.4 ± 9.8</td>
<td>65.9 ± 7.1</td>
<td>0.027</td>
</tr>
<tr>
<td>Female sex</td>
<td>9816 (32.5)</td>
<td>7 (46.7)</td>
<td>0.273</td>
</tr>
<tr>
<td>Body mass index</td>
<td>27.4 ± 4.2</td>
<td>25.9 ± 2.9</td>
<td>0.073</td>
</tr>
<tr>
<td>CHA2DS2-VASc score</td>
<td>1.6 ± 1.4</td>
<td>2.5 ± 2.0</td>
<td>0.087</td>
</tr>
<tr>
<td>Left atrial volume index, mL/m²</td>
<td>15.179</td>
<td>9 ± 11.3</td>
<td>0.561</td>
</tr>
<tr>
<td>Mitral valve regurgitation</td>
<td>24,025 (93.7)</td>
<td>11 (78.6)</td>
<td>0.005</td>
</tr>
<tr>
<td>Moderate</td>
<td>1456 (6.1)</td>
<td>2 (14.3)</td>
<td>0.826</td>
</tr>
<tr>
<td>Severe</td>
<td>40 (0.2)</td>
<td>1 (7.1)</td>
<td>0.168</td>
</tr>
<tr>
<td>AF type</td>
<td>27,369 (20.0)</td>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td>Paroxysmal AF</td>
<td>19,527 (71.3)</td>
<td>11 (78.6)</td>
<td>0.826</td>
</tr>
<tr>
<td>Persistent AF</td>
<td>7300 (26.7)</td>
<td>3 (21.4)</td>
<td>0.168</td>
</tr>
<tr>
<td>LS persistent AF</td>
<td>542 (2.0)</td>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td>Ablation method</td>
<td>27,572 (50.6)</td>
<td>3 (21.4)</td>
<td>0.000</td>
</tr>
<tr>
<td>Conventional RF</td>
<td>13,954 (50.6)</td>
<td>9 (64.3)</td>
<td>0.168</td>
</tr>
<tr>
<td>Phased RF</td>
<td>389 (12.3)</td>
<td>3 (21.4)</td>
<td>0.000</td>
</tr>
<tr>
<td>Cryoballoon</td>
<td>10,141 (36.8)</td>
<td>2 (14.3)</td>
<td>0.000</td>
</tr>
<tr>
<td>Laser</td>
<td>52 (0.2)</td>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td>Other</td>
<td>36 (0.1)</td>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td>Previous ablation</td>
<td>27,657 (24.2)</td>
<td>3 (21.4)</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Data are presented as mean (± SD) or n (%).

AF, atrial fibrillation; CHA2DS2-VASc, Congestive Heart Failure, Hypertension, Age (≥ 75 Years) (doubled), Diabetes Mellitus, Stroke (doubled), Vascular Disease, Age (65-74) Years, Sex Category (Female); LS, longstanding; RF, radiofrequency.* Phased RF includes multiaxial septal catheter and multiaxial ablation catheter.

Table 1. Baseline characteristics
Funding Sources
None.

Disclosures
D. Mol reports speaker/consultancy fee from Abbott. Y. Blaauw is a proctor for Boston Scientific, Abbott, and Medtronic, and received research grants from Medtronic and Atricure. J.G.L.M Luermans reports grants from Biotronik, and a consultancy agreement with Medtronic, outside the submitted work. J.R. de Groot reports research grants to his institution from Atricure, Abbott, Boston Scientific, and Medtronic, personal fees from Atricure, Bayer, Daiichi-Sankyo, Servier, Johnson & Johnson, Novartis, and Medtronic, outside the submitted work. J.C. Balt reports consultancy fee to his institution from Abbott. J.S.S.G. de Jong reports consultancy fees from Medtronic and speaker fees from Daiichi-Sankyo and Bayer, outside the submitted work. The remaining authors have no conflicts of interest to disclose.

References