Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems

Serkan Gugercina,1, Rostyslav V. Polyugab, Christopher Beattiea, Arjan van der Schaftc

a Department of Mathematics, Virginia Tech, Blacksburg, VA 24061-0123, USA
b ABN AMRO N.V. Bank, Gustav Mahlerlaan 10, 1082 PP (PAC HQ/2015) Amsterdam, The Netherlands
c Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands

A R T I C L E I N F O

Article history:
Received 17 January 2011
Received in revised form 20 December 2011
Accepted 16 February 2012
Available online 12 July 2012

Keywords:
Model reduction
Interpolation
Port-Hamiltonian systems
Structure preservation
H_2 approximation

A B S T R A C T

Port-Hamiltonian systems result from port-based network modeling of physical systems and are an important example of passive state-space systems. In this paper, we develop a framework for model reduction of large-scale multi-input/multi-output port-Hamiltonian systems via tangential rational interpolation. The resulting reduced model is a rational (tangential) interpolant that retains the port-Hamiltonian structure; hence it remains passive. We introduce an H_2-inspired algorithm for effective choice of interpolation points and tangent directions and present several numerical examples illustrating its effectiveness.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Port-based network modeling (The Geoplex Consortium, 2009) exploits the common circumstance that the system under study is decomposable into subsystems which are interconnected through (vector) pairs of variables whose product gives the power exchanged among subsystems. This approach is especially useful for multi-physics systems, where subsystems may be associated with different categories of physical phenomena (e.g., mechanical, electrical, or hydraulic). This leads to consideration of port-Hamiltonian system representations (see The Geoplex Consortium, 2009, van der Schaft, 2000a,b and van der Schaft & Maschke, 1995 and references therein) which encode structural features related to the manner in which energy is distributed and across subsystems.

Models of complex physical systems often involve discretized systems of coupled partial differential equations which lead immediately to dynamic models having very large state-space dimension. This creates a need for model reduction methods capable of producing (comparatively) low dimension surrogate models that are able to mimic closely the original system's input/output map. It is highly desirable for the reduced model also to preserve port-Hamiltonian structure when present in the original system, so as to maintain a variety of system properties, such as energy conservation and passivity.

Preservation of port-Hamiltonian structure in the reduction of large scale port-Hamiltonian systems has been considered in Polyuga and van der Schaft (2008, 2010a, 2011b) using Gramian-based methods; we briefly review one such approach in Section 3.1. For the special case of a single-input/single-output (SISO) system, the use of (rational) Krylov methods was employed in Gugercin, Polyuga, Beattie, and van der Schaft (2009), Polyuga and van der Schaft (2010b, 2011a) and Wolf, Lohmann, Eid, and Kotyczka (2010). In particular, (Polyuga & van der Schaft, 2010b, 2011a; Wolf et al., 2010) all deal with system interpolation at single points only. In this work, we develop multi-point rational tangential interpolation of multi-input/multi-output (MIMO) port-Hamiltonian systems. Preservation of port-Hamiltonian structure by reducing the underlying full-order Dirac structure was presented in Polyuga and van der Schaft (2012) and van der Schaft and Polyuga (2009). A perturbation approach is considered in Hartmann (2009) and Hartmann, Vulcanov, and Schütte (2010). See Polyuga (2010) for an overview of recent port-Hamiltonian model reduction methods.
For general MIMO dynamical systems, interpolatory model reduction methods produce reduced models whose transfer functions interpolate the original system transfer function at selected points in the complex (frequency) plane along selected input/output directions. The main implementation cost involves solving (typically sparse) linear systems, giving a significant advantage in large-scale settings over competing Gramian-based methods (such as balanced truncation) that must contend with a variety of large-scale dense matrix operations. Indeed, a Schur decomposition is required for computing approximate Gramians in large-scale settings; see, for example, Benner, Quintana-Ortí, and Quintana-Ortí (2003), Heinkenschloss, Sorensen, and Sun (2008), Penzl (2003), Sabino (2007), Sorensen and Antoulas (2002), Stykel (2004) and references therein.

Until recently, there were no systematic strategies for selecting interpolation points and directions, but this was largely resolved by Gugercin (2005) and Gugercin, Antoulas, and Beattie (2006, 2008) who proposed an interpolatory model reduction strategy leading to \(H_2 \)-optimal reduced models. See Bunse-Gerstner, Kublicinska, Vossen, and Wilczek (2010), Kublicinska, Bunse-Gerstner, Vossen, and Wilczek (2007) and Van Dooren, Gallivan, and Absil (2008) for related work and Antoulas, Beattie, and Gugercin (2010) for a recent survey.

In this paper, we demonstrate that interpolatory model reduction for linear state-space systems can be applied to MIMO port-Hamiltonian systems so as to preserve port-Hamiltonian structure in the reduced models, preserving as a consequence passivity as well. We introduce a numerically efficient \(H_2 \)-based algorithm for structure-preserving model reduction of port-Hamiltonian systems that produces high quality reduced models in general MIMO cases. Numerical examples are presented to illustrate the effectiveness of the method.

We review in Section 2 the solution to the rational tangential inter- polation problem for general linear MIMO systems. A brief theory on port-Hamiltonian systems is given in Section 3. Structure-preserving interpolatory model reduction of port-Hamiltonian systems in different coordinates is considered in Section 4 where we show theoretical equivalence of interpolatory reduction methods using different coordinate representations of port-Hamiltonian systems and discuss which is most robust and numerically effective. \(H_2 \)-based model reduction for port-Hamiltonian systems together with the proposed algorithm is presented in Section 5 followed by numerical examples in Section 6.

2. Interpolatory model reduction

Let \(G \) be a dynamical system with state-space realization given as

\[
G : \begin{bmatrix}
E(t) \\
y(t)
\end{bmatrix} = \begin{bmatrix}
A & B \\
C & 0
\end{bmatrix} \begin{bmatrix}
x(t) \\
u(t)
\end{bmatrix}
\]

where \(A, E \in \mathbb{R}^{m \times m}, E \) is nonsingular, \(B \in \mathbb{R}^{m \times n}, \) and \(C \in \mathbb{R}^{p \times m}. \) For each \(i, x(t) \in \mathbb{R}^m, u(t) \in \mathbb{R}^n, \) and \(y(t) \in \mathbb{R}^p \) denotes, respectively, the state, input, and output of \(G. \) The Laplace transform of (1) leads to the associated transfer function \(G(s) = C(sE - A)^{-1}B. \) Following the usual convention, the underlying dynamical system and its transfer function are both denoted by \(G. \)

We wish to produce a surrogate dynamical system \(G_r \) of much smaller order with a similar state-space form

\[
G_r : \begin{bmatrix}
E \, x_r(t) \\
y_r(t)
\end{bmatrix} = \begin{bmatrix}
A & B \\
C & 0
\end{bmatrix} \begin{bmatrix}
x_r(t) \\
u(t)
\end{bmatrix}
\]

where \(A_r, E_r \in \mathbb{R}^{r \times r}, B_r \in \mathbb{R}^{r \times m}, \) and \(C_r \in \mathbb{R}^{p \times r} \) with \(r \ll n \) such that the reduced system output, \(y_r(t) \), approximates the original system output, \(y(t) \), with high fidelity as measured with respect to the \(H_2 \) norm. This will be discussed in some detail in Sections 2.2 and 5.

We construct reduced models via Petrov–Galerkin projections: two \(r \)-dimensional subspaces \(V_r \) and \(W_r \) are chosen with associated basis matrices \(V_r \in \mathbb{R}^{n \times r} \) and \(W_r \in \mathbb{R}^{n \times r} \) (\(V_r = \text{Range}(V_r) \) and \(W_r = \text{Range}(W_r) \)). Then system dynamics are approximated by approximating the full-order state \(x(t) \approx V_r x_r(t) \) and forcing

\[
W_r^T (EV_r x_r(t) - AV_r x_r(t) - Bu(t)) = 0,
\]

\[
y_r(t) = CV_r x_r(t).
\]

(“orthogonal residuals”). This leads to \(G_r \) in (2) with

\[
E_r = W_r^T EV_r, \quad B_r = W_r^T B, \quad A_r = W_r^T AV_r, \quad \text{and} \quad C_r = CV_r.
\]

The quality of this reduced model depends solely on the selection of the two subspaces \(V_r \) and \(W_r \), which we choose to enforce interpolation of \(G \) by \(G_r \).

2.1. Interpolatory Petrov–Galerkin projections

The construction of reduced models with interpolatory projections was introduced initially by De Villemagne and Skelton (1987), Yousouf and Skelton (1985) and Yousuff, Wagie, and Skelton (1985) and later put into a robust numerical framework by Grimme (1997). This framework was adapted for MIMO systems of the form (1) by Gallivan, Vandendorpe, and Van Dooren (2005). Beattie and Gugercin (2009b) later extended this to a much larger class of transfer functions, those having a generalized coprime factorization, \(H(s) = C(s)K(s)^{-1}B(s) \), where \(B(s), C(s), \) and \(K(s) \) are given meromorphic matrix-valued functions.

Given a full-order system (1), the tangential inter- polation problem seeks a reduced system, \(G_r(s) \), that interpolates \(G(s) \) at selected points \(s_i \) along (right) tangent directions \([b_i]_{i=1}^r \subset \mathbb{C}^m \).

\[
G(s_i)b_i = G_r(s_i)b_i, \quad \text{for} \quad i = 1, \ldots, r.
\]

(5)

Analogous left tangential interpolation conditions may be considered; however (5) will suffice for our purposes. Conditions forcing (5) to be satisfied by a reduced system of the form (4) are provided by Theorem 1 (see Gallivan et al., 2005).

Theorem 1. Suppose \(G(s) = C(sE - A)^{-1}B \). Given a set of distinct interpolation points \(s_i \), \(i = 1, \ldots, r \) such that \(\text{Range}(s_iE - A) \) are all invertible, there exist \(b_i \) such that

\[
V_r = \left[(s_iE - A)^{-1}Bb_1, \ldots, (s_iE - A)^{-1}Bb_r \right].
\]

Then for any \(W_r \), the reduced system \(G_r(s) = C_r(sE - A_r)^{-1}B_r \), defined via (4) satisfies (5), provided that \(s_iE - A \) and \(s_iE - A_r \) are all invertible.

Remark 2. Forcing interpolation of the full transfer function matrix (in all input and output directions) will typically inflate the reduced model order by a factor of \(m \) (the input dimension). This is neither necessary nor desirable. Effective reduced models, indeed, \(H_2 \)-optimal reduced models, can be generated by forcing interpolation along particular tangent directions.
Remark 3. Theorem 1 can be generalized to include higher-order interpolation (analogous to generalized Hermite interpolation). For example, for a point \(\hat{s} \in \mathbb{C} \) and tangent direction \(\hat{b} \), suppose, for \(k = 1, \ldots, N \), that
\[
\left(\hat{s} I - A \right)^{-1} E = \left(\hat{s} I - A \right)^{-1} B \hat{b} \in \text{Range}(V_r). \tag{7}
\]
Then, for any \(W_r \in \mathbb{C}^{n \times r} \), the reduced order system \(G_r(s) \) defined via (2) and (4) satisfies
\[
G_r^{(\ell)}(\hat{s}) \hat{b} = G_r^{(\ell)}(\hat{s}) \hat{b}, \quad \ell = 0, \ldots, N - 1, \tag{8}
\]
provided that \(sE - A \) and \(sE_r - A \) are invertible where \(G_r^{(\ell)}(s) \) denotes the \(\ell \)-th derivative of \(G_r(s) \). For details see, for example, Antoulas et al. (2010) and Gallivan et al. (2005).

Remark 4. Notice that what guarantees interpolation in Theorem 1 (as well as in Remark 3) is the subspace \(V_r \), not the specific choice of basis in (6). Hence, one may use any matrix \(V_r \) having the same range: \(V_r = W_r L \) with invertible \(L \in \mathbb{R}^{n \times n} \) and the interpolation property still holds. This is a simple consequence of the fact that the basis change from \(V_r \) to \(V \) amounts to a state-space transformation for the reduced model. When interpolation points are either real or occur in conjugate complex pairs (as always occurs in practice), then the columns of \(V \), or \(V_r \), are real or occur in conjugate pairs and may be replaced in any case with a real basis. We write \(V = [v_1, \ldots, v_r] \) to indicate that a real basis for \(V_r \) is chosen. Notice that this leads to real reduced order quantities in (4).

2.2. Interpolatory optimal \(\mathcal{H}_2 \) approximation

Let \(M(r) \) denote the set of reduced models as in (2) having state-space dimension \(r \). Given a stable full order system \(G(s) = C(sE - A)^{-1}B \), the optimal-\(\mathcal{H}_2 \) approximation to \(G(s) \) of order \(r \) is a solution to
\[
\| G - G_r \|_{\mathcal{H}_2} = \min_{G \in M(r)} \| G - G_r \|_{\mathcal{H}_2}, \tag{9}
\]
where \(\| G \|_{\mathcal{H}_2} = \sqrt{\frac{1}{2\pi} \int_0^{\infty} \|G(j\omega)\|^2 \; d\omega} \). The optimization problem (9) is nonconvex, so obtaining a global minimizer is difficult in the best of circumstances. Typically local minimizers are sought instead and as a practical matter, the usual approach is to find reduced models satisfying first-order necessary conditions for \(\mathcal{H}_2 \)-optimality. There are a variety of methods that have been developed to do this. They can be categorized as Lyapunov-based methods such as (Halevi, 1992; Hyland & Bernstein, 1985; Spanos, Milman, & Mirgner, 1992; Wilson, 1970; Yan & Lam, 1999; Zigic, Watson, & Beattie, 1993) and interpolation-based methods such as (Beattie & Gugercin, 2007, 2009a; Bunse-Gerstner et al., 2010; Gugercin, 2005; Gugercin et al., 2006, 2008; Kubalinska et al., 2007; Meier & Luenberger, 1967; Van Dooren et al., 2008). Although both frameworks are theoretically equivalent (Gugercin et al., 2008), interpolation-based methods carry some significant computational advantages and that will be our focus.

Interpolation-based \(\mathcal{H}_2 \)-optimality conditions for SISO systems were introduced by Meier and Luenberger (1967). Interpolatory \(\mathcal{H}_2 \)-optimality conditions for MIMO systems have recently been developed by Bunse-Gerstner et al. (2010), Gugercin et al. (2008) and Van Dooren et al. (2008).

Theorem 5. Suppose that \(G_r(s) = \sum_{i=1}^{r} \frac{1}{s - \lambda_i} c_i b_i^r \) is the best \(r \)-th order approximation of \(G = C(sE - A)^{-1}B \) with respect to the \(\mathcal{H}_2 \) norm and that it has only simple poles. Then for each \(k = 1, 2, \ldots, r \)
\[
(a) G_r(-\hat{\lambda}_k)b_k = G_r(-\hat{\lambda}_k)b_k, \tag{10}
\]
\[
(b) c_i^r G_r(-\hat{\lambda}_k)b_k = c_i^r G_r(-\hat{\lambda}_k), \quad \text{and} \tag{11}
\]
\[
(c) c_i^r G_r(-\hat{\lambda}_k)b_k = c_i^r G_r(-\hat{\lambda}_k)b_k. \tag{12}
\]

Theorem 5 asserts that any solution to the optimal-\(\mathcal{H}_2 \) problem (9) must be a bitangential Hermite interpolant to \(G \) at the mirror images of the reduced system poles. This would be a straightforward construction, if the reduced system poles and residues were known a priori. However, they are not and the Iterative Rational Krylov Algorithm (IRKA) (Gugercin et al., 2008) resolves the problem by iteratively correcting the interpolation points by reflecting the current reduced system poles across the imaginary axis to determine the next set of interpolation points. The next tangent directions are residue directions taken from the current reduced model. Upon convergence, the necessary conditions of Theorem 5 are met. IRKA applies interpolatory model reduction at each step using
\[
V_r = \{ (sI - A)^{-1}B_1, \ldots, (sI - A)^{-1}B_r \} \tag{13}
\]
\[
W_r = \{ (sI - A)^{-1}C_1 c_1, \ldots, (sI - A)^{-1}C_r c_r \}
\]
where \(s_1, b_1, c_1 \), and \(c_r \), are respectively, the interpolation points, and right and left tangent directions at step \(k \) of IRKA. Note that the Hermite bitangential interpolation conditions (10)--(12) enforce a choice on \(W_r \), as in (13) in contrast to Theorem 1 where \(W_r \) could be chosen arbitrarily. \(V_r \) and \(W_r \) are not constructed explicitly as defined in (13), but rather real matrices with ranges that span the corresponding subspaces are chosen as discussed in Remark 4. For details on IRKA, see Gugercin et al. (2008).

3. Linear port-Hamiltonian systems

In the absence of algebraic constraints, linear port-Hamiltonian systems take the following form (Polyuga & van der Schaft, 2011b; The Geoplex Consortium, 2009; van der Schaft, 2000a)
\[
G : \begin{cases} \dot{x} = (J - R)Qx + Bu, \\ y = B^{-1}Qx, \end{cases}
\]
where \(J = -J^T, Q = Q^T, R = R^\circ \geq 0 \) is the energy matrix; \(R \) is the dissipation matrix; \(J \) and \(B \) determine the interconnection structure of the system. \(H(x) = \frac{1}{2} x^T Q x \) defines the total energy (the Hamiltonian). For all cases of interest, \(H(x) \geq 0. \) Note that the system (14) has the form (1) with \(E = I, A = (J - R)Q, \) and \(C = B^{-1}Q \).

The state variables \(x \in \mathbb{R}^n \) are called energy variables; the total energy \(H(x) \) is expressed as a function of \(x, u, y \in \mathbb{R}^m \) called power variables; the scalar product \(u^T y \) is the power supplied to the system. Thus,\[
\frac{1}{2} x^T Q x = u^T y - x^T Q R x < u^T y \]
and so port-Hamiltonian systems are passive with changes in total system energy bounded by the work done on the system. We assume throughout that \(Q \) is positive definite. In the case of zero dissipation \((R = 0) \), the \(\mathcal{G} \) of (14) is both lossless and stable. For positive semidefinite \(R, \mathcal{G} \) could be either stable or asymptotically stable in general; and for \(R \) strictly positive definite, the system is asymptotically stable. We assume that \(\mathcal{G} \) is merely stable except in Section 5 where we assume asymptotic stability in order to assure a bounded \(\mathcal{H}_2 \) norm.

Example 1. Consider the ladder network illustrated in Fig. 1, with \(C_1, C_2, L_1, L_2, R_1, R_2, R_3 \) being, respectively, the capacitances,
inductances, and resistances of idealized linear circuit elements described in the figure. The port-Hamiltonian representation of this physical system has the form (14) with

\[Q = \text{diag}(C^{-1}_1, L^{-1}_1, C^{-1}_2, L^{-1}_2), \]
\[J = \text{tridiag} \begin{pmatrix} -1 & -1 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & -1 \end{pmatrix}, \]
\[B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}, \]
\[R = \text{diag}(0, R_1, 0, R_2 + R_3). \]

and \(R = \text{diag}(0, R_1, 0, R_2 + R_3). \)

The state vector \(x \) is given by \(x^T = [q_1, q_2, \phi_1, \phi_2] \) with \(q_1, q_2 \) being the charges on the capacitors \(C_1, C_2 \) and \(\phi_1, \phi_2 \) being the fluxes over the inductors \(L_1, L_2 \) correspondingly. The inputs of the system, \(\{u_1, u_2\} \) are given by the current \(i \) on the left side and the voltage \(U \) on the right side of the ladder network. The port-Hamiltonian outputs \(\{y_1, y_2\} \) are the voltage over the first capacitor \(U_{C_1} \) and the current through the second inductor \(L_2 \).

The system matrices \(A, B, C \) and \(E \) of (1) follow directly from writing the linear input-state differential equation for this system. \(Q \) may be derived from the Hamiltonian \(H(x) = \frac{1}{2} x^T Q x \). Once \(A \) and \(Q \) and \(E \) are known, it is easy to derive the dissipation matrix \(R \), and the structure matrix \(J \), corresponding to the Kirchhoff laws, such that \(A = (J - R)Q \). The output matrix \(C = B^T Q \).

Recall from Polyuga (2010), Polyuga and van der Schaft (2011b) and The Geoplex Consortium (2009) that the port-Hamiltonian system (14) may be represented in co-energy coordinates as

\[\dot{e} = Q(J - R)e + QBu, \quad y = B^T e. \]
(16)

The state transformation (Polyuga, 2010; The Geoplex Consortium, 2009) between energy coordinates, \(x \), and co-energy coordinates, \(e \), is given by

\[e = Qx. \]
(17)

Example 1 (Continued). The co-energy state vector, \(e \), for the ladder network above is given as \(e^T = [U_{C_1}, \phi_1, U_{C_2}, \phi_2] \) with \(U_{C_1}, U_{C_2} \) being the voltages on the capacitors \(C_1, C_2 \) and \(\phi_1, \phi_2 \) being the currents through the inductors \(L_1, L_2 \), respectively.

3.1. Balancing for port-Hamiltonian systems

To make the presentation self-contained, we review a recent structure-preserving, balancing-based model reduction method for port-Hamiltonian systems, the *effort-constraint method* (Polyuga, 2010; Polyuga & van der Schaft, 2008, 2011b, 2012; van der Schaft & Polyuga, 2009), which will be used for comparisons in our numerical examples.

Consider a full order port-Hamiltonian system realized as in (14) with respect to energy coordinates. Consider the associated *balancing transformation*, \(T_b \), defined in the usual way (see Antoulas, 2005 for a complete treatment): \(T_b \) simultaneously diagonalizes the observability Gramian, \(G_o \), and the controllability Gramian, \(G_c \), so that

\[T_b^{-1} G_o T_b^{-T} = \text{diag}(\sigma_1, \sigma_2, \ldots, \sigma_n), \]

where \(\sigma_1, \ldots, \sigma_n \) are the Hankel singular values of the system \(G(s) \). This balancing transformation is the same that is used in the context of regular balanced truncation.

The state-space transformation associated with balancing (as with any linear coordinate transformation), will preserve port-Hamiltonian structure in (14). Defining balanced coordinates, as \(x_o = T_b x \), we have

\[\dot{x}_o = (J_b - R_b)Q_b x_o + B_b u, \quad y = (B_b)^T Q_b x_b. \]

where \(B_b = T_b B, T_b R_b = R_b = R_b^T \geq 0 \) is the dissipation matrix, \(T_b^T Q_b T_b = Q_b \) is the structure matrix and \(T_b^{-T} Q_b T_b^{-1} = Q_b = Q_b^T > 0 \) is the energy matrix – all represented in balanced coordinates. Split the state vector, \(x_o \), into dominant and codominant components: \(x_o = [x_{o1}^T x_{o2}^T]^T \) with \(x_{o1} \in \mathbb{R}^{r} \). Regular balanced truncation directly truncates the codominant state-space components, in effect forcing the system to evolve under the constraint \(x_{o2} = 0 \). This destroys port-Hamiltonian structure in the induced reduced system determining the evolution of \(x_{o1} \). In contrast to this, the *effort-constraint method* produces the following reduced order port-Hamiltonian system

\[\dot{x}_{o1} = (J_{b11} - R_{b11})S_{b1} x_{o1} + B_{b1} u, \quad y_{r} = (B_{b1})^T S_{b1} x_{o1}. \]

where \(S_{b1} = Q_{111} - Q_{112}(Q_{222})^{-1} Q_{211} \) is the Schur complement of the energy matrix \(Q_b \) in balanced coordinates; the other matrices are of corresponding dimensions. The relationship of the effort-constraint method to the reduction of the underlying (full-order) Dirac structure is discussed in Polyuga (2010), Polyuga and van der Schaft (2012) and van der Schaft and Polyuga (2009). A more direct approach is given in Polyuga and van der Schaft (2011b); another approach using scattering coordinates can be found in Polyuga and van der Schaft (2008).

Remark 6. The effort-constraint method can be formulated with Petrov–Galerkin projections (Polyuga, 2010; Polyuga & van der Schaft, 2012; van der Schaft & Polyuga, 2009). Even though a balancing transformation is used in developing the effort-constraint method as explained above, the method is not equivalent to the usual balanced truncation method. Note that balanced truncation does not preserve port-Hamiltonian structure. For more details, see Polyuga (2010).

4. Interpolatory model reduction of port-Hamiltonian systems

Note that Theorem 1 may be applied to a port-Hamiltonian system with an arbitrary choice of \(W_r \). As a result, \(A_r \) will have the form \(W_r^T (J - R) W_r \), which is not evidently in the desired form \((J - R) Q \), with skew-symmetric \(J \), symmetric positive semidefinite \(R \), and positive definite \(Q \). Below, we consider choices for \(W_r \) that preserve port-Hamiltonian structure.

4.1. Interpolatory projection in energy coordinates

We first show how to achieve interpolation and preservation of port-Hamiltonian structure simultaneously in the original energy coordinate representation. The choice of \(W_r \) plays a crucial role.
Theorem 7. Suppose $G(s)$ is a linear port-Hamiltonian system, as in (14). Let $[s_i]_{i=1}^r \subset \mathbb{C}$ be a set of r distinct interpolation points with corresponding tangent directions $[b_i]_{i=1}^r \subset \mathbb{C}^n$, both sets being closed under conjugation. Construct a real matrix V, from (6) using $A = (J - R)Q$ and $E = I$, so that (cf. Remark 4)

$V_r = \| (s_i - (J - R)Q)^{-1} B b_1, \ldots, (s_i - (J - R)Q)^{-1} B b_r \|.$

Define $W_r = Q V_r (V_r^T Q V_r)^{-1}$ and $J_r = W_r^T J W_r$. $Q_r = V_r^T Q V_r$, $R_r = W_r^T R W_r$, and $B_r = W_r^T B$.

The reduced model

$G_r: \begin{cases} \dot{x}_r = (J_r - R_r)Q x + B_r u, \\
y_r = B_r^T x_r \end{cases}$

is port-Hamiltonian, passive, and

$G(s_i) b_i = G_r(s_i) b_i$, for $i = 1, \ldots, r$.

That is, G_r interpolates $G(s)$ at $[s_i]_{i=1}^r$ along the tangent directions $[b_i]_{i=1}^r$.

Proof. Define real interpolatory basis matrices for each realization as

$V_r = \| (s_i - (J - R)Q)^{-1} B b_1, \ldots, (s_i - (J - R)Q)^{-1} B b_r \|.$

$\tilde{V}_r = \| (s_i - (J - R)Q)^{-1} B b_1, \ldots, (s_i - (J - R)Q)^{-1} B b_r \|.$

Without loss of generality, we may assume that $V_r = TV_r$, since any change of basis that makes V_r real will make V_r real as well, starting from each of the primitive (complex) bases given. Then we define, following the construction of Theorem 7, $W_r = Q V_r$ and $\tilde{W}_r = Q \tilde{V}_r$. Observe that $W_r = T^TW_r$. So, $J_r = W_r^T J W_r = W_r^T J W_r = \tilde{W}_r^T J \tilde{W}_r = \tilde{W}_r^T \tilde{J} \tilde{W}_r = \tilde{Q}_r$. $R_r = W_r^T R W_r = W_r^T R W_r = \tilde{R}_r$, and $B_r = W_r^T B = \tilde{B}_r$.

Remark 10. One may conclude from Theorem 9 that prior to calculating an interpolatory reduced model, there may be little advantage in first applying a state-space transformation, e.g., applying a balancing transformation, T_h, as described in Section 3.1 or transforming to co-energy coordinates with $T = Q$ as in (17). Indeed, choosing a realization that exhibits advantageous sparsity patterns that will likely be the most effective choice. If we choose T to satisfy $T^T Q = \phi$ (for example, if T is a Cholesky factor for Q), then, with respect to the new x-coordinates (called “scaled energy coordinates”), we find that $\tilde{Q} = I$ and so $W_r = \tilde{V}_r$. Notice that in this case, scaled energy coordinates and scaled co-energy coordinates become identical. Notwithstanding these simplifications, unless the original Q is diagonal (so that the transformation to scaled energy coordinates preserves sparsity), there appears to be little justification for global coordinate transformations preceding the construction of an interpolatory reduced model.

5. \mathcal{H}_2-reduction of port-Hamiltonian systems

Inspired by the optimal \mathcal{H}_2 model reduction method described in Section 2.2, we propose here an algorithm similar to IRKA of Gugercin et al. (2008) that is consistently observed to produce high quality port-Hamiltonian reduced models of port-Hamiltonian systems.

Algorithm 1. (IRKA-PH) IRKA for MIMO port-Hamiltonian systems.

Let $G(s) = B^T Q(sI - (J - R)Q)^{-1} B$ as in (14).

(1) Choose initial interpolation points $[s_1, \ldots, s_r]$ and tangent directions $[b_1, \ldots, b_r]$. Both sets closed under conjugation.

(2) Construct a (real) matrix (cf. Remark 4):

$V_r = \| (s_i - (J - R)Q)^{-1} B b_1, \ldots, (s_i - (J - R)Q)^{-1} B b_r \|.$

(3) Calculate $W_r = Q V_r (V_r^T Q V_r)^{-1}$

(4) Repeat until convergence

(a) Calculate $J_r = W_r^T J W_r$, $R_r = W_r^T R W_r$, $Q_r = V_r^T Q_r$ and $B_r = W_r^T B$.

(b) For $A_r = (J - R)Q$, compute $A_r x_k = \lambda_k y_k A_r = \lambda_k y_k'$ with $y_k' = \delta_i$ for left and right eigenvectors y_k' and x_k associated with λ_i.

(c) $B_r i \leftarrow \lambda_i$ and $B_r i \leftarrow y_k'B_r$ for $i = 1, \ldots, r$.

(d) Compute a (real) matrix (cf. Remark 4):

$V_r = \| (s_i - (J - R)Q)^{-1} B b_1, \ldots, (s_i - (J - R)Q)^{-1} B b_r \|.$

(e) Calculate $W_r = Q V_r (V_r^T Q_r)^{-1}$

(5) The final reduced model is given by

$J_r = W_r^T J W_r$, $R_r = W_r^T R W_r$, $B_r = W_r^T B$, $Q_r = V_r^T Q_r$, and $C_r = B_r^T Q_r$.

Algorithm 1 is an adaptation of IRKA (Gugercin et al., 2008). It enforces (10), one of the first-order \mathcal{H}_2-optimality conditions, at every step. It is generally not possible to satisfy all optimality conditions (10)-(12) while still retaining port-Hamiltonian structure, so the remaining conditions (11)-(12) are abandoned in order to preserve port-Hamiltonian structure. This trade-off may also be viewed with regards to the choice for W_r: choosing V_r as in (13) forces (10); additionally choosing W_r as in (13) would force (11)-(12); but instead, we choose W_r as in Theorem 7 in order to preserve port-Hamiltonian structure. (See, however, Remark 13).

The convergence behavior of IRKA-PH appears similar to that of IRKA, which has been studied in detail in Gugercin et al. (2008); see also Antoulas et al. (2010). Effective initialization strategies have been proposed in Gugercin et al. (2008), although random initialization often performs very well. We illustrate the robustness of IRKA-PH with regard to initialization in Section 6.

Theorem 11. Let $G(s) = B^TQs(I - JR^{-1}Q)^{-1}B$ be an asymptotically stable, port-Hamiltonian system as in (14). Suppose IRKA-PH as described in Algorithm 1 converges to a reduced model

$$G_r(s) = \sum_{i=1}^{r} \frac{1}{s - \lambda_i} c_i b_i^T,$$

with r distinct poles, $\{\lambda_1, \ldots, \lambda_r\}$. Then $G_r(s)$ is port-Hamiltonian, asymptotically stable, and passive. Moreover, $G_r(s)$ satisfies the necessary condition (10), for H_2 optimality: $G_r(s)$ interpolates $G(s)$ at $-\lambda_i$ along the tangent directions b_i for $i = 1, \ldots, r$.

Notice that $G(s)$ must be asymptotically stable in any case for the H_2 norm to be well defined.

Proof. Port-Hamiltonian structure, and thus passivity, are direct consequences of the construction of G_r in Theorem 7. The H_2-optimality condition (10) results from the assignment of interpolation points, s_i, and tangent directions, b_i, in Step 4-c throughout the iteration. Upon convergence, $s_i = -\lambda_i$ and b_i is the right residue of G_r corresponding to the pole λ_i.

To prove asymptotic stability we proceed as follows. Referring to Theorem 9, we can assume that $G = I$ without loss of generality. Since any choice of a real matrix with the same range as V in Steps 2 and 4-d of Algorithm 1 may be made, choose V_r to be orthogonal, i.e., $V_r^TV_r = I_r$. Then $W_r = V_r$, and the associated reduced quantities are given by one-sided projection: $A_r = V_r^TA_rV_r$, and $B_r = C_r = V_r^TB_r$. Let $A_r = X_rX_r^{-1}$ be the eigenvalue decomposition of A_r, with $X_r = \text{diag}(\lambda_1, \ldots, \lambda_r)$. The tangent directions b_i satisfy $b_i, \ldots, b_r = B_rV_rX_r^{-1}$. Define $V_r = (-\lambda_i - A_r)^{-1}B_r$, for $i = 1, \ldots, r$ and $V_r = [v_1, v_2, \ldots, v_r]$. From the definition of V_r, we have

$$A_rV_r + \hat{V}_rA_r^T + BB_rV_rX_r^{-1} = 0.$$

(22)

Since the projecting subspace, \mathcal{V}_r, which determines G_r, has converged, Range$(V_r) = \text{Range}(V_r)$ and there is a nonsingular matrix, M_r, such that $V_r = V_rM_r$. Define $N_r = M_rX_r$ and rearrange (22) to get

$$AV_rN_r + V_rN_rA_r^T + BB_r^T = 0.$$

(23)

Premultiplying by V_r^T yields

$$A_rN_r + N_rA_r^T + BB_r^T = 0.$$

(24)

Since $G_r(s)$ is passive, we know that A_r has no eigenvalues in the open right-half plane. To prove asymptotic stability of $G_r(s)$, we need to show further that A_r has no eigenvalues on the imaginary axis. Assume the contrary, so that for some nontrivial vector, z_r.

and real ω, $z^*A_r = \omega z_r$ and $A_r z_r = -\omega z_r$. Multiply (24) by z^* from the left and by z_r from the right to find: $B_r^T z_r = 0$.

Now, multiplying (23) from the right by z_r, leads to $A_r(V_rN_r z_r) = \omega (V_rN_r z_r)$, which contradicts the asymptotic stability of $G(s)$. Therefore, the poles of $G_r(s)$ must lie in the open left half-plane and $G_r(s)$ is asymptotically stable. □

Remark 12. Let $\mathcal{P}(r)$ denote the set of port-Hamiltonian systems with state-space dimension r as in (20) and consider the problem:

$$\|G - G_r\|_{H_2} = \min_{G_r \in \mathcal{P}(r)} \|G - \hat{G}_r\|_{H_2}$$

(25)

where G and G_r are both port-Hamiltonian. This is the problem that we would prefer to solve and it is a topic of current research. Note that although IRKA-PH generates a reduced-order port-Hamiltonian model, G_r, satisfying a first-order necessary condition for H_2 optimality, this condition is not a necessary condition for G_r to solve (25), that is, for G_r to be the optimal reduced-order port-Hamiltonian system approximation to the port-Hamiltonian system G_r. Nonetheless, we find that reduced-order models produced by IRKA-PH have much superior H_2 performance compared to other approaches. This is illustrated in Section 6.

Remark 13. IRKA-PH, as described in Algorithm 1, produces a reduced order port-Hamiltonian model G_r, which satisfies the first-order necessary condition of H_2-optimality (10). The remaining two conditions for H_2-optimality, (11) and (12), will be satisfied if in addition:

$$\text{Range}[(\lambda_iI + (J - RQ)^{-1}Bb_i, \ldots, (\lambda_iI + (J - RQ)^{-1}Bb_i)]$$

$$= \text{Range}(\lambda_iI + (J - RQ)^{-1}B_{x_1}, \ldots, (\lambda_iI + (J - RQ)^{-1}B_{x_1})$$

(26)

where λ_i are reduced system poles and b_i, c_i are the corresponding (vector) residues in the expansion (21) for $i = 1, \ldots, r$. The condition (26) allows retention of port-Hamiltonian structure while enforcing the H_2-optimal bitangential interpolation conditions (10)-(12). Typically (26) will not hold; however the special case when $J = 0$ will lead to (26) with $b_i = c_i$ implying satisfaction of H_2 optimality conditions for the reduced system.

6. Numerical examples

We illustrate the preceding theoretical discussion on three port-Hamiltonian systems. The first two are of modest dimension allowing us to compute H_2 and H_{∞} system errors explicitly for full comparisons. Then, to illustrate that our proposed method can be easily applied in large-scale settings as intended, we consider a large-scale model in the third example.

6.1. MIMO mass–spring–damper system

The full model we consider is a mass–spring–damper system shown in Fig. 2, with masses m_i, spring constants k_i, and damping constants $c_i \geq 0$, $i = 1, \ldots, n/2$. q_i is the displacement of the mass m_i. The inputs u_1, u_2 are the external forces applied to the first two masses m_1, m_2. The port–Hamiltonian outputs y_1, y_2 are the velocities of the masses m_1, m_2. The state variables are as follows: x_1 is the displacement q_1 of the first mass m_1, x_2 is the momentum p_1 of the first mass m_1, x_3 is the displacement q_2 of the second mass m_2, x_4 is the momentum p_2 of the second mass m_2, etc.

A minimal realization of this port-Hamiltonian system corresponding to three masses, three springs and three dampers, i.e., $n = 6$, is $G(s) = B^TQ(s - (J - R))^{-1}B$ where $B \in \mathbb{R}^{6 \times 6}$, $R \in \mathbb{R}^{6 \times 6}$ are
zero matrices except the entries $B(2, 1) = B(4, 2) = 1; J(1, 2) = J(3, 4) = J(5, 6) = 1, J(2, 1) = J(4, 3) = J(6, 5) = -1$; and $R(2, 2) = c_1, R(4, 4) = c_2$, and $R(6, 6) = c_3$. Also,

$$Q = \begin{bmatrix}
 k_1 & 0 & -k_1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 & 0 \\
 -k_1 & 0 & k_2 + k_1 & 0 & -k_2 & 0 \\
 0 & 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & -k_2 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
$$

and $A = (J - R)Q$.

Each additional mass–spring–damper cell increases the dimension of the system by two. This will lead to a zero entry in the $(n - 1, n - 1)$ position and an entry of $-c_{n/2}/m_{n/2}$ in the (n, n) position. The superdiagonal of A will have $k_{n/2-1}$ in the $(n - 2, n - 1)$ position and $1/m_{n/2}$ in the $(n - 1, n)$ position. The subdiagonal of A will have 0 in the $(n - 1, n - 2)$ position and $-k_{n/2-1} - k_{n/2}$ in the $(n, n - 1)$ position. Additionally A will have $k_{n/2-1}$ in the $(n, n - 3)$ position.

We used a 100-dimensional mass–spring–damper system with $m_1 = 4, k_1 = 4$, and $c_1 = 1$. We consider three methods: (1) our proposed method in Algorithm 1 denoted $IRKA-PH$; (2) the effort-constraint method (19) of Polyuga (2010), Polyuga and van der Schaft (2008, 2011b, 2012) and van der Schaft and Polyuga (2009) denoted $EffBal$, and (3) one step of interpolatory model reduction without the H_∞ iteration, denoted $1stepIntrp$. $IRKA-PH$ and $1stepIntrp$ are connected in the following way: We choose a set of interpolation points and tangential directions; then using the interpolatory projection in Theorem 7, a reduced model is produced which we assign to $1stepIntrp$. The same interpolation points and directions are used to initialize $IRKA-PH$. This allows us to evaluate how well $IRKA-PH$ corrects interpolation points and directions, in terms of H_2 and H_∞ behavior.

Using each of the three methods, we reduce the order to $r = 2, 4, \ldots, 20$ (increments of two). For $IRKA-PH$, initial interpolation points are chosen as logarithmically spaced points between 10^{-3} and 10^{-1}; and the corresponding directions are the dominant right singular vectors of the 2×2 transfer function matrix at each interpolation point. These same points and directions are also used for $1stepIntrp$. The resulting relative H_2 and H_∞ error norms for each order r are illustrated in Fig. 3. Several observations are immediate. First of all, with respect to both the H_2 and H_∞ norms, $IRKA-PH$ significantly outperforms the other methods. For $1stepIntrp$, the performance hardly improves as r increases unlike $IRKA-PH$ for which both the H_2 and H_∞ errors decay consistently. The initial interpolation point and direction selection does not yield a satisfactory interpolatory reduced-order model; however, instead of searching for better interpolation data in an ad hoc way, our proposed method automatically corrects interpolation data throughout the iteration and yields significantly smaller error. To see this effect more clearly, we plot in Fig. 4 the initial interpolation point selection, denoted by $s^{(0)}$, and the final/converged interpolation points, denoted by $s^{(final)}$, together with the mirror images of the original system poles, denoted by $-\lambda_i$. Starting with logarithmically placed points, $IRKA-PH$ iteratively corrects the points so that upon convergence they automatically align themselves in a way that balances the original system poles across the imaginary axis. This is similar to what one finds in the analysis of iterative methods where Ritz values provide effective aggregate information about the spectrum, better than is possible even with a subset of exact eigenvalues. Note that full-order poles are computed here only to obtain this figure and are not needed by $IRKA-PH$.

The second observation concerning Fig. 3 is that $IRKA-PH$ achieves smaller error with less computational effort than $EffBal$; the main cost is sparse linear solves. No dense matrix operations are needed, unlike the balancing-based approaches where Lyapunov equations need to be solved. Even though our proposed method is H_2-based, it produces satisfactory H_∞ performance as well. This is consistent with experiences with $IRKA$ (Gugercin et al., 2008), which usually exhibits good H_∞ performance.

Consider, in Fig. 5, how the H_2 and H_∞ errors evolve during $IRKA-PH$ for $r = 20$, the largest reduction order. The figure reveals convergence within seven or eight steps. The large initial relative errors are reduced drastically already after two steps of the iteration, illustrating the effectiveness of $IRKA-PH$.

Next, we investigate the effect of different initializations on the performance of $IRKA-PH$. For brevity, we only illustrate the $r = 20$ case. We make 5 different initializations and denote by $s^{(0)}$ the set
of initial interpolation points corresponding to the jth selection. \(\delta_0^{(1)} \) will be the same as what was used earlier, i.e., 20 points logarithmically spaced between \(10^{-3} \) and \(10^{-1} \). For \(\delta_0^{(2)} \), we choose 20 points logarithmically spaced between \(-10^{-5} \) and \(-10^{-2} \). Note that this is a poor selection since these initial interpolation points lie in the left-half plane in proximity of the poles. We consciously make this (bad) choice to see the effect on convergence. For \(\delta_3^{(1)} \), we choose complex points in the right-half plane with real parts that are logarithmically spaced between \(10^{-5} \) and 1 and imaginary parts that are logarithmically spaced between \(10^{-3} \) and \(10^{-1} \), and such that the set is closed under conjugation. These points are arbitrarily selected and are unrelated to the spectrum of \(A \). For \(\delta_0^{(3)} \), we make the situation even worse than for \(\delta_0^{(2)} \). We choose 20 poles of the original system, \(G(s) \), and perturb them by 0.1% to obtain our starting points. This is a very bad selection in two respects: (1) the interpolation points lie in the left-half plane; and (2) they are extremely close to system poles and make the linear system \((sE - A)v_t = Bb\) very poorly conditioned. Finally, for \(\delta_0^{(3)} \) we choose, once again, 20 original system poles, but this time reflect them across the imaginary axis to obtain initialization points. Associated directions are taken as before to be dominant right singular vectors of the transfer function evaluated at each interpolation point.

Fig. 6 shows the evolution of relative \(H_\infty \) and \(H_\infty \) norms for \(\text{IRKA-PH} \) for these 5 different selections. In all cases, \(\text{IRKA-PH} \) converges to the same reduced-model in almost the same number of steps. As expected, \(\delta_0^{(2)} \) and \(\delta_0^{(3)} \) are the worst initializations, starting with relative errors bigger than 1 in the \(H_\infty \) norm. However, the algorithm successfully corrects these points and drives them towards high-fidelity interpolation points and tangent directions. Even though \(\delta_0^{(3)} \) seems to be the best initialization – it starts with the lowest initial error – it converges to the same reduced-model as the iteration that started with \(\delta_0^{(1)} \) and also in the same number of steps. \(\delta_0^{(4)} \) achieves this without the need for original poles. This numerical evidence suggests robustness of \(\text{IRKA-PH} \) to the extent that it is able to correct bad initializations. Indeed, \(\text{IRKA-PH} \) could be expected to be more robust and converge faster than the original \(\text{IRKA} \), which typically exhibits fast convergence. The reasons are twofold. First, unlike \(\text{IRKA} \), regardless of initialization, every intermediate reduced model is stable; hence interpolation points never appear in the left-half plane. This smooths convergence behavior. Secondly, unlike \(\text{IRKA} \) which uses an oblique projector, \(\text{IRKA-PH} \) is theoretically equivalent to using an orthogonal projector (with respect to an inner product weighted by \(Q \)).

For all these reasons, we expect \(\text{IRKA-PH} \) to be numerically robust and rapidly convergent. Throughout our numerical experiments using a wide variety of different initializations, we have never experienced a convergence failure of \(\text{IRKA-PH} \). \(\text{IRKA-PH} \) always converges to the same reduced-model regardless of initialization; even a search for a counterexample spanning thousands of trials failed to produce even a single case of either convergence failure or convergence to a different model in the \(r = 20 \) case. Indeed this was true throughout the range \(8 \leq r \leq 20 \) : \(\text{IRKA-PH} \) converged to the same reduced-model for many different initializations for \(r = 8 : 2 : 20 \). Only for \(r = 2, r = 4 \), and \(r = 6 \) and then only after several trials were we able to make \(\text{IRKA-PH} \) converge to a different reduced model. Indeed, only one different model emerged and it had only marginally better performance than the more easily found system.

We present one further comparison for the \(r = 20 \) case contrasting time domain simulations for full and reduced models. \(G \) has 2 inputs and 2 outputs. To make the time-domain illustrations simpler, we only compare the outputs of the subsystem relating the first input, \(u_1 \), to the first output, \(y_1 \). The results for the other 3 subsystems display the same behavior. As input, we choose a decaying sinusoid \(u_1(t) = e^{-0.05t} \sin(5t) \) and run simulations for \(T = 50 \) s. The results are shown in Fig. 7. In Fig. 7(a), we plot the simulation results for the whole time interval. To give a better illustration, in Fig. 7(b), we zoom into the time interval \([0, 10]\) s, showing that 1StepIntrp leads to the largest deviation. In Fig. 7(c), we give the absolute value of the error between the true system output and the reduced ones. As is clear from this figure and as expected from the earlier analysis as shown in Fig. 3, \(\text{IRKA} \) yields the smallest deviation. The maximum absolute values of the output errors, i.e. max \(|y_1(t) - y_{1, \text{red}}(t)| \) where \(y_{1, \text{red}}(t) \) denotes the first output due to the reduced models are

\[
\begin{array}{ccc}
\text{IRKA-PH} & 1\text{StepIntrp} & \text{EffBal} \\
1.31 \times 10^{-3} & 1.09 \times 10^{-2} & 3.96 \times 10^{-3}
\end{array}
\]

6.2. MIMO port-Hamiltonian ladder network

As a second port-Hamiltonian system, we consider an \(n \)-dimensional ladder network as shown in Fig. 8. We take the current \(I \) on the left side and the voltage \(U \) on the right side of the ladder network as the inputs. The port-Hamiltonian outputs are the voltage over the first capacitor \(U_C \), and the current through the last inductor \(I_{in/2} \). The state variables are as follows: \(X_t \) is the charge
of equations; the principal cost is sparse linear solves. IRKA while preserving structure and with no need to solve Lyapunov \((B)\) matrix will be of the similar structure as in (15) with ones in the

\[
\begin{align*}
\mathbf{C}_1, \mathbf{q}_1, & \quad \mathbf{R}_1 L_1, \phi_1 \\
\mathbf{R}_1 L_1, \phi_1, & \quad \mathbf{C}_1, \mathbf{q}_1
\end{align*}
\]

Our proposed method. We show, for example, that IRKA-PH can perform as well as or sometimes better than RegBal, which is known to yield high-fidelity \(H_\infty\) and \(H_2\) performance (though it does not preserve port-Hamiltonian structure).

We consider a 100-dimensional port-Hamiltonian network with \(C_1 = 0.1, L_i = 0.1, \) and \(R_i = 3\) for \(i = 1, \ldots, 50\) and \(R_{51} = 1.\) For this model, we compare IRKA-PH to EffBal, regular balanced truncation (denoted by \(\text{RegBal}\)) and regular IRKA. Note that \(\text{RegBal}\) and IRKA do not preserve port-Hamiltonian structure. We include these methods in our comparisons to better illustrate the effectiveness of our proposed method. We show, for example, that IRKA-PH can perform as well as or sometimes better than \(\text{RegBal}\), which is known to yield high-fidelity \(H_\infty\) and \(H_2\) performance (though it does not preserve port-Hamiltonian structure).

We reduce the order to \(r = 1, 2, \ldots, 10\) (increments of one). The resulting relative \(H_2\) and \(H_\infty\) errors are shown in Fig. 9. The \(H_2\) character of our method is clear. IRKA-PH outperforms EffBall for every \(r\). Interestingly, IRKA-PH is better than even \(\text{RegBal}\) for each \(r = 1, \ldots, 5\). \(\text{RegBal}\) is better for \(r = 6, 7, 8\), but for \(r = 9, 10,\) IRKA-PH is as good as \(\text{RegBal}\). IRKA-PH achieves this performance while preserving structure and with no need to solve Lyapunov equations; the principal cost is sparse linear solves. IRKA yields the best \(H_2\) performance as it should, since it produces \(H_2\) optimal reduced-order models. \(\text{RegBal}\) is best in terms of \(H_\infty\) performance. Indeed, it is tailored towards \(H_\infty\) error reduction and is not constrained to preserve structure. However, the \(H_2\)-based IRKA-PH performs as well as \(\text{EffBal}\) in terms of \(H_\infty\) error norm. This one more shows that, similar to IRKA, IRKA-PH provides high-fidelity not only in the \(H_2\) norm but also in the \(H_\infty\) norm.

Similar to the previous example, we illustrate the convergence behavior of IRKA-PH, in this case for \(r = 10\), in Fig. 10. In this case, the convergence is even faster than the previous example, with the algorithm converging after five to six steps. For this model, we have initialized the interpolation points for \(\text{IRKA-PH}\) arbitrarily as logarithmically spaced points between \(10^{-2}\) and \(10^1\). As before, the initial tangent directions are chosen as the leading right singular vector of \(\mathbf{G}(s)\) evaluated at the chosen interpolation points.

As we did in the previous example, we experiment with different initialization strategies for IRKA-PH. For brevity, we only illustrate the \(r = 10\) case. We consider 5 different initializations, \(s_0^{(j)}\) for \(j = 1, \ldots, 5\) for the interpolation points. \(s_0^{(1)}\) is what we used earlier. For \(s_0^{(2)}\), we choose \(r = 10\) original system poles and perturb them by 0.1% as the starting points. This is a very poor choice since the interpolation points are very close to the system poles. For \(s_0^{(3)}\), we choose 10 points logarithmically spaced between \(-10^{-5}\) and \(-10^{-1}\). Once again, these interpolation points

\[
\begin{align*}
q_1 & \quad \text{of} \quad C_1, \mathbf{x}_2 \quad \text{is} \quad \text{the flux} \quad \phi_1 \quad \text{of} \quad L_1, \mathbf{x}_3 \quad \text{is} \quad \text{the charge} \quad q_2 \quad \text{of} \quad C_2, \mathbf{x}_4 \quad \text{is} \quad \text{the flux} \quad \phi_2 \quad \text{of} \quad L_2, \quad \text{etc. The directions chosen for the internal currents of the network are shown by plus- and minus-signs in Fig. 8. A minimal realization of this port-Hamiltonian ladder network for order } n = 4 \text{ is given in Example 1. Adding another LC pair to the network, which would correspond to an increase of the dimension of the model by two, will modify the system matrices as follows: the sub-diagonal of the matrix } \mathbf{A} \text{ will contain additionally } r^{-1} L_{n/2-1}, -C_{n/2} \text{ with the plus-sign in the } (n/2 + 1, n/2) \text{ position. The super-diagonal of } \mathbf{A} \text{ will contain } -C_{n/2}, L_{n/2} \text{ with the minus-sign in the } (n/2, n/2 + 1) \text{ position. Furthermore, the main diagonal of } \mathbf{A} \text{ will have } \frac{R_{n/2-1}}{L_{n/2-1}} \text{ in the } (n - 2, n - 2) \text{ position, zero in the } (n - 1, n - 1) \text{ position, and } -\frac{R_{n-1} L_{n} - L_{n-1} R_{n}}{t_{n/2}} \text{ in the } (n, n) \text{ position. The } \mathbf{B} \text{ matrix will be of the similar structure as in (15) with ones in the } (1, 1) \text{ and } (n, 2) \text{ positions and zeros in the rest.}
\end{align*}
\]
are also in the left-half plane; a strategy one would usually avoid. \(\delta_0^{[4]}\) correspond to choosing 10 points logarithmically spaced between \(10^{-8}\) and \(10^{-4}\). And finally, for \(\delta_0^{[5]}\), we choose some arbitrary complex numbers where the real parts are distributed between \(10^{-3}\) and \(10^{-2}\) and the imaginary parts are distributed between \(10^{-2}\) and \(10^{0}\) together with their complex conjugate pairs. Once the starting points are chosen, the corresponding directions are the dominant right singular vectors of the transfer function at each interpolation point. Fig. 11 shows the evolution of the relative \(\mathcal{H}_2\) error during IRKA-PH for these 5 different selections. As before, in all five cases, IRKA-PH converges to the same reduced-model in almost the same number of steps illustrating the robustness of IRKA to different initializations.

6.3. Mass–spring–damper system with \(n = 20000\)

In the previous two examples, to have a thorough analysis of the models with as many system norm computations as possible, we have chosen a very modest system size of 100. In this example, to illustrate that we can effectively apply our method in large-scale settings, we modify the mass–spring–damper model to have a full model of order \(n = 20000\). Then, using IRKA-PH, we reduce the order to \(r = 20, r = 30, r = 40\) and \(r = 50\). In each case, the initial interpolation points are chosen as logarithmically spaced points between \(10^{-2}\) and \(10^{-1}\) with the corresponding tangential directions chosen as the leading singular vectors of the transfer function at these points. Before we present the results, we note that even at this scale, the method took less than one minute to converge with a rather straightforward implementation in Matlab. We have not tried to optimize the performance; we have simply used the Matlab sparse linear solves as is. The algorithm is expected to perform faster with the appropriate optimization of the code.

The sigma plots, i.e. \(\|G(s)\|_2\) vs. \(s\), of the full-order model \(G(s)\) and three of the four reduced models are plotted in Fig. 12. We omitted the 40th order approximation to simplify the figure as the \(r = 40\) approximation was visually indistinguishable from the \(r = 50\) one. Except the \(r = 20\) case, all the reduced models provide a high quality approximation to the full-order model of order \(n = 20000\). To illustrate the approximation quality further, we display sigma plots of the error models in Fig. 13. As \(r\) increases, the quality of the approximation improves consistently; for \(r = 50\), we obtain an approximate relative \(\mathcal{H}_\infty\) error of \(7.90 \times 10^{-4}\). Hence, with the proposed algorithm, we are able to reduce a port-Hamiltonian system of order \(n = 20000\) in a numerically effective structure-preserving way using interpolation. Moreover, with the \(\mathcal{H}_2\)-inspired interpolation point and tangential direction selection, the reduced-model of order \(r = 50\) is accurate to a relative error of \(7.90 \times 10^{-4}\).

The phase plots of the original model \(G(s)\) and the three of the four reduced-models are shown in Fig. 14. Once again we have left the 40th order approximation out due to the same reason as before. To make the figure simpler, we only show the phase plot of the subsystems relating the first input \((u_1(t))\) to the first output \((y_1(t))\). Similar to the sigma plot, Fig. 14 illustrates that plots for the full model \(G\) and for the reduced model \(G_{40}\) and \(G_{50}\) are virtually indistinguishable. \(G_{40}\) shows some deviations around the low frequencies (as in the sigma plot). And as expected, \(G_{50}\) has the largest deviation. The phase plots for the other 3 subsystems have a similar pattern and are omitted for brevity.

We conclude this example by illustrating time domain simulations for the same subsystem as above (from the first input \(u_1(t)\) to the first output \(y_1(t)\)). We plot the results only for \(G, G_{50}\) and
\(G_{90} \) to make the illustrations more readable. First we use a decaying exponential \(u_1(t) = e^{-0.05t} \sin(5t) \) and run all three models for \(T = 50 \) s. The simulations are run using the Matlab ode45 solver (taking advantage of the sparsity of the matrices in the full-order simulations). The results are shown in Fig. 15(a). Both reduced-models follow the full-order output very accurately. The maximum value of the absolute errors in the output responses are \(1.32 \times 10^{-3} \) for \(G_{20} \) and \(6.15 \times 10^{-3} \) for \(G_{50} \). Accurate approximations are obtained in a fraction of the time, indeed. While the full-order simulation took 4.62 s, the reduced-order simulations took 0.066 s for \(G_{20} \) and 0.068 s for \(G_{50} \); more than 98% reduction in simulation time. Of course, these gains will be significantly magnified when the full-order model needs to be simulated over and over again for different input selections. The second input we try is a square wave that oscillates between 1 and \(-1\) with a period of 0.2 \(\pi\) s for the time interval 0–20 s. Fig. 15(b) shows the corresponding outputs. Once more, both reduced models display a high-fidelity match. For this second input, the max value of the absolute errors in the output responses are \(7.38 \times 10^{-3} \) for \(G_{20} \) and \(5.85 \times 10^{-3} \) for \(G_{50} \). Once again, the simulation of the reduced-order models took a fraction of the time that took the full-order simulation. The simulation for \(G \) took 9.15 s. On the other hand, it took 0.44 s for \(G_{20} \) and 0.46 s for \(G_{50} \); more than 95% reduction in simulation time. As the original system dimension increases even further, these gains in simulation times would be one of the biggest advantages of model reduction.

7. Conclusions

We have developed a framework for reducing multi-input/multi-output port-Hamiltonian systems via tangential rational interpolation. By choosing the projection subspaces appropriately, we obtain reduced-order models that are not only rational tangential interpolants of the original system but they also retain the original port-Hamiltonian structure. Thus, they are guaranteed to be passive. An \(H_\infty \)-inspired algorithm is introduced for choosing the interpolation points and tangent directions for high-fidelity approximations. Several numerical examples show the effectiveness of the proposed method.

Acknowledgments

We would like to thank the anonymous referees for their valuable comments.

References

Serkan Gugercin is an Associate Professor in the Mathematics Department at Virginia Polytechnic Institute and State University, Blacksburg, VA, USA and a member of the Interdisciplinary Center for Applied Mathematics there. He received his B.S. degree in Electrical and Electronics Engineering in 1996 from Middle East Technical University, Ankara, Turkey; and his M.S. and Ph.D. degrees in Electrical Engineering from Rice University, Houston, TX, USA, in 1999 and 2003, respectively. His primary research interests include dynamical systems, scientific computation, and model reduction and control of large-scale systems.

Christopher Beattie is a Professor in the Mathematics Department at Virginia Tech and member of the Interdisciplinary Center for Applied Mathematics (ICAM) there. He has degrees from Duke University in Biomedical Engineering, Mechanical Engineering, and Computer Science; and a doctorate in Mathematical Sciences from Johns Hopkins University (1982). His principal research interests are in scientific computing and large scale computational linear algebra, with an emphasis on iterative Krylov methods. His primary focus is on model reduction of large scale dynamical systems with a goal of developing practical and rigorous computational algorithms for efficient manipulation and simulation of systems arising from physical models described by systems of partial differential equations.

Arjan van der Schaft (1955) received the undergraduate and Ph.D. degrees in Mathematics from the University of Groningen, The Netherlands, in 1979 and 1983, respectively. In 1982 he joined the Department of Applied Mathematics, University of Twente, Enschede, where he was appointed as a full professor in Mathematical Systems and Control Theory in 2000. In September 2005 he returned to Groningen as a full professor in Mathematics. He has served as Associate Editor for Systems and Control Letters, Journal of Nonlinear Science, SIAM Journal on Control, and the IEEE Transactions on Automatic Control. Currently he is Associate Editor for Systems and Control Letters, Journal of Geometric Mechanics, and Editor-at-Large for the European Journal of Control. Arjan van der Schaft is a Fellow of the Institute of Electrical and Electronics Engineers (IEEE).