Specific Increase in Local IL-17 Production During Recovery From Primary RSV Bronchiolitis

Tina E. Faber,1* Henk Groen,2 Martine Welfing,1 Koos J.G. Jansen,3 and Louis J. Bont4
1Department of Pediatrics, Medical Center Leeuwarden, Leeuwarden, The Netherlands
2Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands
3Pediatric Intensive Care Unit, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
4Department of Pediatric Infectious Diseases, University Medical Center Utrecht, Wilhelmina Children’s Hospital, Utrecht, The Netherlands

Although Respiratory syncytial virus (RSV) bronchiolitis is the most important cause of hospital admission for infants during the winter season, the pathogenesis is largely unknown. Interleukin-17 (IL-17) concentrations were studied in nasopharyngeal aspirates from 21 non-ventilated and 17 ventilated infants admitted to hospital with RSV bronchiolitis at time of admission and discharge from the hospital. On admission, nasopharyngeal concentrations of most cytokines and chemokines were lower in non-ventilated infants than in ventilated infants, reaching statistical significance for Eotaxin, IL-1α, and IL-6. During course of disease, nasopharyngeal concentrations of most cytokines and chemokines decreased, reaching statistical significance for IL-6 and IP-10. However, nasopharyngeal IL-17 concentrations were higher at discharge than at admission in children with non-ventilated RSV disease (209–101 pg/ml, \(P = 0.008 \)), a response pattern not observed in ventilated RSV patients nor for other cytokines or chemokines. It is speculated that local IL-17 production may be involved during convalescence from RSV bronchiolitis in non-ventilated patients by facilitating innate and adaptive antiviral immune responses. The role of IL-17 in the pathogenesis of RSV bronchiolitis is to be explored further. J. Med. Virol. 84:1084–1088, 2012.

© 2012 Wiley Periodicals, Inc.

KEY WORDS: respiratory syncytial virus; cytokines and chemokines; interleukin-17; innate immune responses

INTRODUCTION

Human respiratory syncytial virus (RSV) is a species in the genus *Pneumovirus*, family *Paramyxoviridae*. RSV bronchiolitis is the most common cause of hospitalization for infants during the winter season. Prematurity, chronic lung disease, congenital heart disease, Down’s syndrome, and neuromuscular disease are conditions associated with severe course of disease [Welliver, 2003; Bloemers et al., 2007; Resch et al., 2009]. However, most children hospitalized for RSV bronchiolitis were healthy until infected. Viral loads have been associated with disease severity [DeVincenzo et al., 2005; Houben et al., 2010]. The precise mechanisms underlying human RSV bronchiolitis are largely unknown and most likely multi-factorial, in which both immunological and non-immunological responses, as well as genetic susceptibility play a role.

Interleukin-17 (IL-17) or IL-17A is a member of a family of cytokines with pro-inflammatory effector function. The IL-17 family, including IL-17A to IL-17F, represents a distinct signaling system and has been linked to many immune and auto-immune related diseases such as rheumatoid arthritis, lupus, allograft rejection and anti-tumor immunity, and specifically for IL-17F, allergic airway inflammation and asthma [Aggarwal and Gurney, 2002; Kawaguchi et al., 2009]. It was originally described as a product of Th17 cells, a distinct CD4+ T-cell subset bearing the IL-23 receptor [Korn et al., 2009]. It has now become clear that IL-17 is produced by various cells from the adaptive and innate immune system, such as...
γδ-T-cells, Tc17 cells, and invariant natural killer T-cells (iNKT)-cells [Korn et al., 2009; Xie et al., 2009; Cua and Tato, 2010]. Although effector functions are incompletely understood, it is appreciated that IL-17 is capable of inducing a specific pro-inflammatory immune response through the production of many other cytokines, chemokines, and prostaglandins. During infection, IL-17 induces a tissue response required for clearance of bacteria, viruses, and fungi, possibly through induction of a neutrophil response [Onishi and Gaffen, 2010]. There are only limited data on the role of IL-17 in the defense against viral infections, in particular against RSV infection. In the current study, it was hypothesized that IL-17 production plays a role during convalescence of RSV disease. IL-17 was therefore studied during the acute phase and at recovery of disease in a cohort of infants hospitalized for RSV bronchiolitis. Differences in severity of disease was differentiated by need for mechanical ventilation. It was shown that local IL-17 production increases during recovery in children with hospitalized non-ventilated RSV bronchiolitis, suggesting that IL-17 may play a protective role against the development of severe RSV disease requiring mechanical ventilation.

MATERIALS AND METHODS

Patients
Children aged under 13 months with symptoms of lower respiratory tract infection admitted to the pediatric ward of two hospitals in The Netherlands were included during two consecutive winter seasons. Symptoms of lower respiratory tract infection were severe chest cough, wheezing, hoarseness, stridor, shortness of breath, cyanosis, and apnea. Children were included after nasopharyngeal aspirates were found positive for RSV by direct immunofluorescence, diagnosis was later confirmed by culture and polymerase chain reaction (PCR). Infants born prematurely with congenital heart disease or chronic lung disease, infants with wheezing illness before RSV bronchiolitis was diagnosed, and patients using corticosteroids or bronchodilators were not included. Differences in severity of RSV disease was differentiated by need for mechanical ventilation. All infants admitted to the pediatric intensive care unit were intubated and mechanically ventilated, therefore stay at the intensive care unit was identical to the requirement of mechanical ventilation. The study was performed in compliance with relevant laws and institutional guidelines and in accordance with the ethical standards of the Declaration of Helsinki and approved by the local Medical Ethics Committee at the Medical Center Leeuwarden. All parents or guardians gave written consent to participate in this study.

Nasopharyngeal Aspirates
Undiluted nasopharyngeal aspirates were taken within 24 hr after admission and at discharge from the hospital. Nasopharyngeal secretions were gently aspirated by an experienced physician with a 3.3 mm suction catheter, placed on ice immediately and stored at −80°C for later analysis. Xylometazoline or NaCl 0.9% nasal spray was not given in the 6 hr prior to aspiration. Cytokine and chemokine concentrations were measured in all aspirates using a highly specific multiplex assay [De Jager et al., 2003]. Sample collection and processing has been described previously [Bont et al., 2001; Schuurhof et al., 2011]. Samples were weighed, diluted as necessary, sonicated, centrifuged, and duplicate assays were performed on each. In addition to IL-17 (detection limit 10–5,000 pg/ml), the following cytokine and chemokine concentrations were measured: Eotaxin, IL-1α, IL-6, Interferon (IFN) inducible protein 10 (IP-10), IL-1β, Monokine induced by IFN-γ (MIG), macrophage inflammatory protein 1α (MIP-1α), soluble intercellular adhesion molecule 1 (sICAM1), and IFN-γ (detection limits 5–5,000 pg/ml).

Statistical Analysis
Paired cytokine and chemokine concentrations at time of admission in non-ventilated and ventilated infants were compared by Mann–Whitney U test. Mann–Whitney U test was also used to compare paired cytokine and chemokine concentrations at time of admission versus time of discharge from the hospital in both non-ventilated and ventilated patients. All tests of significance were two-sided. P-values < 0.05 were considered to be statistically significant.

RESULTS
The patients investigated consisted of 21 non-mechanically ventilated infants and 17 mechanically ventilated infants. Except for length of hospital stay, no significant differences were found in baseline characteristics between infants with or without need for mechanical ventilation. There was an equal distribution of male infants in both groups (45% vs. 59%). The median age at time of admission and the percentage of infants born prematurely before 37 weeks gestation was similar in non-ventilated and ventilated infants (14 vs. 9 weeks, and 14% vs. 29%, respectively). In both groups, a similar number of children had been ill ≥3 days before admission (76% vs. 53%). Median length of hospital stay was significantly longer in children with severe RSV disease requiring mechanical ventilation (6 days vs. 10 days; Table I). Concentrations of IFN-γ were below the level of detection in all samples. For each inflammatory mediator, analyses were made comparing time of admission to discharge in non-ventilated as well as ventilated patients. Furthermore, cytokine and chemokine concentrations at time of admission were compared in both groups. Finally, an attempt was made to analyze emerging patterns during course of disease. At time of admission, there was no difference in IL-17 concentration between non-ventilated and ventilated infants (101 pg/ml vs. 72 pg/ml; not significant). Median

nasopharyngeal concentrations of Eotaxin, IL-1α, and IL-6 were lower in non-ventilated patients (18 vs. 118 pg/ml, 368 vs. 4,001 pg/ml, 362 vs. 12,500 pg/ml, respectively; \(P < 0.001 \)). IL-17 concentrations were significantly higher at discharge than at admission (209 pg/ml vs. 101 pg/ml; \(P = 0.0083 \)) in non-ventilated infants. IL-17 concentrations did not increase during course of disease in ventilated infants (Fig. 1). Concentrations of other cytokines and chemokines followed equal patterns in both groups, and either decreased (\(P < 0.05 \) for IL-6 and IP-10) or remained stable (\(P \geq 0.05 \) for Eotaxin, IL-1α, IL-1β, MIG, MIP1α, and sICAM1) during hospitalization (Table II). In both ventilated and non-ventilated infants, length of hospital stay was not correlated to IL-17 concentration at discharge. Furthermore, length of hospital stay was not correlated to the difference in IL-17 concentration between admission and discharge. Age at admission was not correlated to IL-17 concentration at time of admission nor at time of discharge.

DISCUSSION

In this study, local IL-17 production increased during the course of disease in non-ventilated infants with RSV bronchiolitis. Other inflammatory mediators either decreased or remained stable during course of disease in both ventilated and non-ventilated infants. These results could suggest that local IL-17 may play a protective role against the development of severe RSV bronchiolitis requiring mechanical ventilation. Furthermore, it implies that mechanisms that determine disease severity are apparently different than those that are involved in resolution of disease.

At time of admission, children requiring mechanical ventilation for RSV disease had higher levels of Eotaxin, IL-1α, and IL-6. Although it is not known whether cytokine concentrations are affected by mechanical ventilation, these results are in accordance with previous research showing high initial concentrations of pro-inflammatory mediators in children with most severe disease [Sheeran et al., 1999; Garafalo et al., 2001; Smyth et al., 2002; Welliver et al., 2002; McNamara et al., 2004]. Therefore, this study confirms that development of more severe RSV bronchiolitis is associated with a more robust cascade of inflammatory responses. Because most of these mediators can be produced by airway epithelium in response to RSV infection, this observation suggests, as is generally accepted in the case of RSV, a critical role for the epithelium as a first line of defence [McNamara et al., 2003].

IL-17 is a pleiotropic cytokine, originally thought to be produced only by T-cells, but is now known to be produced by innate immune cells, such as dendritic cells, iNKT and γδ-T-cells. The IL-17 receptor is expressed ubiquitously in many tissues, including the lungs [Cua and Tato, 2010]. The role of IL-17 in host defence against viruses is understood incompletely. In general, antiviral defence depends heavily on type I IFNs, which are not known to be regulated by IL-17. Nevertheless, during experimental influenza infection, IL-17 production by CD8+ T-cells protects mice against disease and death [McKinstry et al., 2009; Xie et al., 2009; Onishi and Gaffen, 2010]. In this study, IL-17 increases during the course of disease in

TABLE I. Subject Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Non-ventilated infants ((n = 21))</th>
<th>Ventilated infants ((n = 17))</th>
<th>Non-ventilated vs ventilated infants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of male infants</td>
<td>9 (43%)</td>
<td>10 (59%)</td>
<td>NSa</td>
</tr>
<tr>
<td>Prematurity (amenorrhoe <37 weeks of gestation)</td>
<td>3 (14%)</td>
<td>5 (29%)</td>
<td>NSa</td>
</tr>
<tr>
<td>Age at admission (median in weeks after birth ((CI)))</td>
<td>14 (13–26)</td>
<td>9 (6–29)</td>
<td>NSa</td>
</tr>
<tr>
<td>Symptoms (\geq 3) days before admission</td>
<td>16 (76%)</td>
<td>9 (53%)</td>
<td>NSa</td>
</tr>
<tr>
<td>Length of hospital stay (median in days ((\text{min–max})))</td>
<td>6 (3–13)</td>
<td>10 (5–28)</td>
<td>(P < 0.001 b)</td>
</tr>
</tbody>
</table>

\(\text{NS} \), not significant; \(\text{NA} \), not applicable to non-ventilated infants.

aFisher’s exact test;
bMann–Whitney U test.

Fig. 1. Local IL-17 concentration increases during course of disease in non-ventilated infants with RSV bronchiolitis. IL-17 concentration increases from time of admission to discharge from the hospital in 19 out of 21 (90%) non-ventilated children hospitalized for RSV bronchiolitis (median 101–209 pg/ml; \(P = 0.0083 \)) and remains stable in ventilated infants (median 72–41 pg/ml; not significant).
Eotaxin 18 22 118 137 NS NS
IL-1 132 203 31–150 6,666
IP10 325 132 221 121
MIP-1α 201–453 1–278 142–201 65–251
MIG 1,173 574 1,463 1,018
MIP-1α 2,243 2,382 2,325 2,499
sICAM 40,459 40,986 46,820 32,982

In conclusion, IL-17 levels in the airways of RSV bronchiolitis patients increase during the course of disease.

TABLE II. Chemokine and Cytokine Analysis of Nasopharyngeal Aspirates of Ventilated and Non-Ventilated Infants With RSV Bronchiolitis During Course of Disease

<table>
<thead>
<tr>
<th></th>
<th>Non-ventilated infants</th>
<th>Ventilated infants</th>
<th>Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Admission (1) Discharge (2)</td>
<td>Admission (3) Discharge (4)</td>
<td>P (1) vs (2)</td>
</tr>
<tr>
<td>IL-17</td>
<td>101±</td>
<td>209</td>
<td>72</td>
</tr>
<tr>
<td>IL-6</td>
<td>362±</td>
<td>47</td>
<td>12,500</td>
</tr>
<tr>
<td>IP10</td>
<td>107–3,021</td>
<td>28–97</td>
<td>6,666–24,750</td>
</tr>
<tr>
<td>Eotaxin</td>
<td>201–453</td>
<td>1–278</td>
<td>118</td>
</tr>
<tr>
<td>IL-1α</td>
<td>94–868</td>
<td>49–1,629</td>
<td>2,080–9,703</td>
</tr>
<tr>
<td>IL-1β</td>
<td>132</td>
<td>130</td>
<td>203</td>
</tr>
<tr>
<td>MIG</td>
<td>1,173</td>
<td>574</td>
<td>1,463</td>
</tr>
<tr>
<td>MIP-1α</td>
<td>2,243</td>
<td>2,382</td>
<td>2,325</td>
</tr>
<tr>
<td>siCAM</td>
<td>40,459</td>
<td>40,986</td>
<td>46,820</td>
</tr>
</tbody>
</table>

NS, not significant.

Cytokine concentrations in median± and quartiles# in pg/ml.

In contrast to local IL17 concentrations which increase (↑) during course of disease in non-ventilated children with RSV (specifically P = 0.0083), other inflammatory mediators show the same pattern in non-ventilated and ventilated children and either decrease (↓) during course of disease, such as IL-6 and IP10, or remain stable (→) such as Eotaxin, IL-1α, IL-1β, MIG, MIP-1α and siCAM.
REFERENCES

De Jager W, te Velthuis H, Prakken BJ, Kuis W, Rijkers GT. 2003. Macrophage inflammatory protein 1 alpha CD4þ cells are the activated T cells expressed granzyme B (GrB), Foxp3, interleukin 17 (IL-17), at higher levels in Th1/Th2 cytokines) is associated with severe forms of respiratory syncytial virus bronchiolitis. J Infect Dis 184:393–399.

