On the Robustness of Hysteretic Second-Order Systems with PID
Ouyang, Ruiyue; Jayawardhana, Bayu; Andrieu, Vincent

Published in:
Proceedings of the 51st Annual Conference on Decision and Control (CDC)

DOI:
10.1109/CDC.2012.6426470

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2012

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
On the Robustness of Hysteretic Second-Order Systems with PID: iISS approach

Ruiyue Ouyang, Bayu Jayawardhana, Vincent Andrieu

Abstract—In this paper, we study the robustness property of a second-order linear plant controlled by a proportional, integral and derivative (PID) controller with a hysteretic actuator. The hysteretic actuator is modeled by a Duhem model that exhibits clockwise (CW) input-output (I/O) dynamics (such as the Dahl model, LuGre model and Maxwell-Slip model, which describe hysteresis phenomena in mechanical friction). Based on our main result, we provide sufficient conditions on the controller gains that depend on the plant parameters such that the origin of the plant and the state of the hysteresis is globally attractive. The robustness of the closed-loop system with respect to the measurement noise is also given, using the integral input-to-state stability (iISS) concept. The applicability of the robustness analysis in the design of state observer for such systems is shown in the simulation.

I. INTRODUCTION

Hysteresis is a common nonlinear phenomenon that exists in many physical systems. The input-output (I/O) behavior of a hysteresis phenomenon can be characterized into counterclockwise (CCW) [1], clockwise (CW) [12], or even more complex I/O map (such as, butterfly map [3]). For example, in the ferromagnetic material, the hysteresis phenomena exhibits CCW I/O behavior between the electrical field and the magnetization [4], [9], [11]; in a friction-induced mechanical system, the hysteresis exhibits CW I/O behavior between the friction force and the displacement [13], [5], and in a two-bar linkage system, the hysteresis exhibits butterfly I/O behavior between the vertical force on the joint and the horizontal displacement [6].

In this paper, we study the stability property of a second-order linear plant controlled by a proportional, integral and derivative (PID) controller with a hysteretic actuator as shown in Figure 1. For the hysteretic actuator part, we consider the class of the Duhem hysteresis operator with CW I/O behavior, which can describe hysteretic friction phenomena. It has been shown in [13] that the classical friction hysteresis models such as Dahl model, LuGre model and Maxwell-Slip model can be recast into the Duhem model, which has CW I/O behavior. An example to this problem is the position control of a (micro-)vehicle where we manipulate the rotation of the wheels in order to exert forces to the vehicle’s body via friction forces.

In our previous results in [15], we show that for a certain class of Duhem hysteresis operator \(\Phi : AC(\mathbb{R}_+) \times \mathbb{R} \rightarrow AC(\mathbb{R}_+) \), where \(AC \) is the class of absolutely continuous functions, we can construct a function \(H_\circ : \mathbb{R}^2 \rightarrow \mathbb{R}_+ \) which satisfies

\[
\frac{dH_\circ(y_\Phi(t), u_\Phi(t))}{dt} \leq \dot{u}_\Phi(t)y_\Phi(t),
\]

where \(u_\Phi \in AC(\mathbb{R}_+) \) and \(y_\Phi := \Phi(u_\Phi, y_{\Phi_0}), y_{\Phi_0} \in \mathbb{R} \). This inequality immediately implies that such Duhem hysteresis operator is dissipative with respect to the supply rate \(\dot{u}_\Phi(t)y_\Phi(t) \) and has CW I/O dynamics which will be defined explicitly in Section II. The symbol \(\circ \) in \(H_\circ \) indicates the clockwise behavior of \(\Phi \). A related result on the CCW Duhem hysteresis operator is discussed in [8].

In our main result, the knowledge of \(H_\circ \) facilitates the stability analysis of the closed-loop systems. In particular, we give sufficient conditions on the plant and the controller such that the origin of the plant and the state of the hysteresis is globally attractive. The analysis provides a construction method to determine the controller gains based only on the plant parameters. The robustness of the closed-loop system with respect to the measurement noise \((d_1, d_2)\) is also given, using the integral input-to-state stability (iISS) concept. This robustness analysis can be useful in the design of state observer for such systems through the application of small-gain principle.

This paper is organized as follows. In Section II we give some notations and definitions which are used throughout the paper. In Section III we show the stability analysis for a second order system which is feedback interconnected with a CW Duhem hysteresis and a PID controller. In addition, the robustness of the closed-loop system are discussed. The simulation results are shown in Section IV.
II. PRELIMINARIES

Let $C^1(\mathbb{R}^+)$ be the space of continuously differentiable functions $f : \mathbb{R}^+ \to \mathbb{R}$. Denote $AC(\mathbb{R}^+)$ the space of absolutely continuous functions $f : \mathbb{R}^+ \to \mathbb{R}$. Define
\[\frac{dzc(t)}{dt} := \lim_{h \to 0^+} \frac{z(t+h)-z(t)}{h}.
\]

A. Counterclockwise and Clockwise dynamics

The following two definitions of the CCW and CW dynamics are based on the work by Angeli [1] and Padthe [12].

Definition 2.1: [1] A (nonlinear) map $G : AC(\mathbb{R}^+) \to AC(\mathbb{R}^+)$ is counterclockwise (CCW) if for every $u \in AC(\mathbb{R}^+)$ with the corresponding output map $y := G(u)$, the following inequality holds
\[
\liminf_{T \to \infty} \int_0^T \dot{y}(t)u(t)dt > -\infty. \tag{1}
\]

Definition 2.2: [12] A (nonlinear) map $G : AC(\mathbb{R}^+) \to AC(\mathbb{R}^+)$ is clockwise (CW) if for every $u \in AC(\mathbb{R}^+)$ with the corresponding output map $y := G(u)$, the following inequality holds
\[
\liminf_{T \to \infty} \int_0^T y(t)\dot{u}(t)dt > -\infty. \tag{2}
\]

For a nonlinear operator G, inequality (1) holds if there exists a function $H_C : \mathbb{R}^2 \to \mathbb{R}^+$ such that for every input signal $u \in AC(\mathbb{R}^+)$, the inequality
\[
\frac{dH_C(y(t), u(t))}{dt} \leq \dot{y}(t)u(t), \tag{3}
\]
holds for almost every t where the output signal $y := G(u)$.

Consequently, for a nonlinear operator G, inequality (2) holds if there exists a function $H_C : \mathbb{R}^2 \to \mathbb{R}^+$ such that for every input signal $u \in AC(\mathbb{R}^+)$, the inequality
\[
\frac{dH_C(y(t), u(t))}{dt} \leq y(t)\dot{u}(t), \tag{4}
\]
holds for a.e. t where the output signal $y := G(u)$.

B. Duhem hysteresis operator

The Duhem operator $\Phi : AC(\mathbb{R}^+) \times \mathbb{R} \to AC(\mathbb{R}^+), u_\Phi \mapsto \Phi(u_\Phi, y_{\Phi_0}) := y_{\Phi}$ is described by
\[
\dot{y}_{\Phi}(t) = f_1(y_{\Phi}(t), u_\Phi(t))\dot{u}_{\Phi_0}(t) + f_2(y_{\Phi}(t), u_\Phi(t))\dot{u}_{\Phi_0}(-t), \quad y_{\Phi}(0) = y_{\Phi_0}, \tag{5}
\]
where $\dot{u}_{\Phi_0}(t) := \max\{0, \dot{u}_{\Phi_0}(t)\}$, $\dot{u}_{\Phi_0}(-t) := \min\{0, \dot{u}_{\Phi_0}(t)\}$ (see also, [10], [11], [20]). The functions f_1 and f_2 in (5) are assumed to be C^1.

The existence of solutions to (5) has been reviewed in [10]. In particular, if for every $\xi \in \mathbb{R}$, f_1 and f_2 satisfy
\[
(\nu_1 - \nu_2)[f_1(\nu_1, \xi) - f_2(\nu_2, \xi)] \leq \lambda_1(\xi)(\nu_1 - \nu_2)^2, \tag{6}_1
\]
\[
(\nu_1 - \nu_2)[f_2(\nu_1, \xi) - f_2(\nu_2, \xi)] \geq -\lambda_2(\xi)(\nu_1 - \nu_2)^2, \tag{6}_2
\]
for all $\nu_1, \nu_2 \in \mathbb{R}$, then the solution to (5) exist and Φ maps $AC(\mathbb{R}^+) \times \mathbb{R} \to AC(\mathbb{R}^+)$. We assume further that there exists $H_C : \mathbb{R}^2 \to \mathbb{R}^+$ such that for every $u_\Phi \in AC(\mathbb{R}^+)$ and for every $y_{\Phi_0} \in (4)$ holds, where $y_{\Phi} = \Phi(u_\Phi, y_{\Phi_0})$. Such class of Duhem model is investigated in our previous results [15]. In particular, the results in [15] give the sufficient conditions for the existence of such H_C based only on the data of f_1 and f_2.

An example of the hysteresis models which has CW I/O behavior is the Dahl model. The Dahl model [5], [13] is commonly used in mechanical systems, which represents the friction force with respect to the relative displacement between two surfaces in contact. The general representation of the Dahl model is given by
\[
\dot{y}_{\Phi}(t) = \rho \left| 1 - \frac{y_{\Phi}(t)}{F_c}\right|^r \operatorname{sgn}\left(1 - \frac{y_{\Phi}(t)}{F_c}\right) \dot{u}_{\Phi}(t), \tag{7}
\]
where y_{Φ} denotes the friction force, u_Φ denotes the relative displacement, $F_c > 0$ denotes the Coulomb friction force, $\rho > 0$ denotes the rest stiffness and $r \geq 1$ is a parameter that determines the shape of the hysteresis loops.

The Dahl model can be described by the Duhem hysteresis operator (5) with
\[
f_1(\nu, \xi) = \rho \left| 1 - \frac{\nu}{F_c}\right|^r \operatorname{sgn}\left(1 - \frac{\nu}{F_c}\right), \tag{8}
\]
\[
f_2(\nu, \xi) = \rho \left| 1 + \frac{\nu}{F_c}\right|^r \operatorname{sgn}\left(1 + \frac{\nu}{F_c}\right). \tag{9}
\]

In Figure 2, we illustrate the behavior of the Dahl model where $F_c = 0.75$, $\rho = 1.5$ and $r = 3$.

Fig. 2. The input-output dynamics of the Dahl model with $F_c = 0.75$, $\rho = 1.5$ and $r = 3$.

5895
Now let us consider a simple case when \(r = 1 \), the functions (8) and (9) become
\[
f_1(\nu, \xi) = \rho \left(1 - \nu \frac{F_c}{F} \right), \quad f_2(\nu, \xi) = \rho \left(1 + \nu \frac{F_c}{F} \right).
\] (10)

It is immediate to check that the conditions as given in (6) are satisfied, which means there exists solution for this Duhem operator for all positive time.

Following the same construction procedure as in [15], we can compute explicitly \(H_\circ \) as follows
\[
H_\circ(y_\Phi(t), u_\Phi(t)) = \left\{ \begin{array}{ll}
\frac{F_c}{F} \ln \frac{F}{F(y_\Phi(t) + F_c)} + \frac{F_c}{F} \rho y_\Phi(t) & y_\Phi(t) \geq 0 \\
\frac{F_c}{F} \ln \frac{F}{F(y_\Phi(t) - F_c)} - \frac{F_c}{F} \rho y_\Phi(t) & y_\Phi(t) < 0.
\end{array} \right.
\] (11)

If \(-F_c < y_\Phi(t) < F_c\), then \(H_\circ \) satisfy (4).

III. MAIN RESULTS

Consider a feedback interconnection of a second-order single-input single-output (SISO) linear system with a PID and a hysteretic actuator as shown in Figure 1, where \(P \) represents the linear plant, \(C \) is the PID controller and \(\Phi \) represents the Duhem hysteresis operator. In Figure 1, the measurement noise is represented by the disturbance \(d_1 \) and \(d_2 \). The disturbance \(d_1 \) and \(d_2 \) can also be regarded as the estimation error which comes from the application of state observer for the plant \(P \). Later, in our simulation results, we simulate the robustness property of PID with respect to \(d_1 \) and \(d_2 \) by incorporating linear state observer for \(P \) where \(u \) and \(x_2 \) are not available for measurements.

The closed-loop system as shown in Figure 1, are given by
\[
\begin{align*}
P : & \quad \dot{x} = Ax + Bu, \\
C : & \quad \dot{z} = x_1, \\
& \quad y_c = k_iz + \left[k_p \quad k_d \right] x - k_pd_1 - k_dd_2, \\
\Phi : & \quad \dot{y}_\Phi = f_1(y_\Phi, u_\Phi)u_\Phi + f_2(y_\Phi, u_\Phi)u_\Phi - , \\
& \quad u_\Phi = -y_c, \quad u = y_\Phi,
\end{align*}
\] (12)

where \(A \in \mathbb{R}^{2 \times 2}, B \in \mathbb{R}^{2 \times 1}, C \in \mathbb{R}^{1 \times 2} \) and \(x = [x_1 \quad x_2]^T \).

For the PID controller \(C \), \(z \) is the state of the integrator, \(k_p > 0, k_i > 0 \) and \(k_d > 0 \) are the controller gains. For the Duhem hysteresis operator \(\Phi \), the functions \(f_1 \) and \(f_2 \) are assumed to be locally Lipschitz.

Theorem 3.1: Consider system (12) with \(d_1 = 0 \) and \(d_2 = 0 \). Assume that for the Duhem hysteresis operator \(\Phi \) there exists \(H_\circ : \mathbb{R}^2 \to \mathbb{R}_+ \) such that for every \(u_\Phi \in AC(\mathbb{R}_+) \) and for every admissible \(y_\Phi_0 \), (4) holds, where \(y_\Phi = \Phi(u_\Phi, y_\Phi_0) \). Suppose that either (i) the function \(H_\circ \) is proper (or radially unbounded) for every \(\xi \); (ii) the solution \(y_\Phi = \Phi(u_\Phi, y_\Phi_0) \) is bounded for every \(u_\Phi \in AC(\mathbb{R}_+) \) and every admissible \(y_\Phi_0 \). If there exists \(Q = QT > 0, L, k_p > 0, k_i > 0 \) and \(k_d > 0 \) such that the following inequalities hold for some \(w \in \mathbb{R}, v > 0 \) and the tuple \((A, L)\) is observable, then for every initial conditions \((x_0, z_0) \in \mathbb{R}^3 \)

\[
\begin{align*}
ATQ + QA + LT^2L & \leq 0 \\
QB - AT \left[k_p \quad k_d \right]^T - \left[k_i \quad 0 \right] L & = LTw \\
2 \left[k_p \quad k_d \right] B & = w^2 + v
\end{align*}
\] (13)-(15)

For the PID controller \(C \), \(k \) is the PID controller and \(P \) is the plant that satisfies GAS.

To illustrate Theorem 3.1, consider the following force-actuated mass-damper-spring system with PID controller and...
a hysteretic actuator
\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
-\frac{k}{m} & -\frac{b}{m} \\
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2 \\
\end{bmatrix} + \begin{bmatrix}
0 \\
1 \\
\end{bmatrix} u
\]
where \(x_1\) is the displacement, \(x_2\) is the velocity, \(z\) is the state of the integrator, \(k > 0\) is the spring constant, \(b > 0\) is the damping constant and \(m\) is the mass.

Corollary 3.2: Assume that for the Duhamel hysteresis operator \(\Phi\) there exists \(H_C : \mathbb{R}^2 \to \mathbb{R}_+\) such that for every \(u_\Phi \in AC(\mathbb{R}_+)\) and for every admissible \(y_\Phi = \Phi(u_\Phi, y_\Phi)\), (4) holds with \(y_\Phi := \Phi(u_\Phi, y_\Phi)\). If \(k_1 \geq \frac{k b}{2 m} \) and \(k_p \geq \frac{m k}{2 b} + \frac{b}{2 m} k_d\), then the closed-loop system (17) satisfies (13), (14) and (15) with \(L = [k\sqrt{\frac{k}{b}} \ b\sqrt{\frac{k}{b}} \ v = \frac{b}{m} v\) and
\[
Q = \begin{bmatrix}
bk_i + k k_p & -bk m k_d & m k_i \\
k k_p & m k_d \\
\end{bmatrix}.
\]
In other words, (17) is \(A\)-GAS.

In the next case, we study the robustness of the closed-loop system (12) by adding disturbances \(d_1\) and \(d_2\) to the measurement of the plant's state. This is related to the case where \(d_1\) and \(d_2\) are regarded as the state estimation error due to the application of state observer.

In [17], [2], a notion of integral input-to-state stability is introduced for the stability analysis of nonlinear systems given a bounded-energy input signal. It is shown in [2] that it is integral input-to-state stable (iISS) if the system is (a) 0-GAS and (b) dissipative with supply function \(\sigma\). In [7] it is shown that for a class of dissipative systems, the iISS gain is equal to the supply function \(\sigma\). Here, we explore the robustness of system (12) by applying the modified concept of iISS, where instead of discussing the iISS with respect to the origin, we are interested in the iISS property with respect to a set \(A\) (\(A\)-iISS). The definition of \(A\)-iISS is given as follows.

Definition 3.3: Consider a system \(\dot{\zeta} = f(\zeta, u), \zeta(0) = \zeta_0,\) where \(f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n\) is locally Lipschitz. Let \(\mathcal{A} \subset \mathbb{R}^n\) be a nonempty and closed set. It is said to be integral input-to-state stable with respect to \(\mathcal{A}\) (\(A\)-iISS) if there exist functions \(\alpha \in \mathcal{K}_\infty, \beta \in \mathcal{K}\) and \(\gamma \in \mathcal{K}\) such that, for every \(\zeta_0 \in \mathbb{R}^n\) and \(u \in L^\infty(\mathbb{R}_+)\), the unique maximal solution \(\zeta\) is global and
\[
\alpha(\|\zeta(t)\|_{\mathcal{A}}) \leq \beta(\|\zeta_0\|_{\mathcal{A}}, t) + \int_0^t \gamma(\|u(s)\|)ds \forall t \in \mathbb{R}_+, \tag{18}
\]
where \(\gamma\) is referred to as \(A\)-iISS gain.

Before we discuss the robustness of (12), we precede it with the dissipativity property of (12).

Lemma 3.4: Consider the system in (12) with \(d_1, d_2 \in C^1(\mathbb{R}_+)\) s.t. \(d_1, d_2 \in AC(\mathbb{R}_+)\). Assume that the hypotheses in Theorem 3.1 hold. Then there exists \(\mu > 0\), such that (12) is dissipative with the supply function \(\sigma(d_1, d_2) = \mu \|d_1\|_{\mathcal{A}}^2\).

Proof: Let \(V_cl = V_Q + H_C\) be the Lyapunov function for the closed-loop system, where \(V_Q\) and \(H_C\) have the same descriptions as in the proof of Theorem 3.1. Then we have
\[
\dot{V}_cl = \dot{V}_Q + \dot{H}_C,
\]
\[
\leq \dot{y}_h u - \frac{1}{2}(Lx - wu)^T (Lx - wu) + y_\Phi A_\Phi - \frac{1}{2} v^2 u^2,
\]
\[
= -\frac{1}{2}(Lx - wu)^T (Lx - wu) + k_p y_\Phi d_1 + k_d y_\Phi d_2
\]
where the last equality is obtained since \(u_\Phi = -y_\Phi + k_p d_1 + k_d d_2\). Using Young’s inequality and \(u = y_\Phi\), we have
\[
\dot{V}_cl \leq k_\Delta d_1^2 + \frac{k_p}{2} y_\Phi^2 + \frac{k_p \delta}{2} d_1^2 + \frac{1}{2} y_\Phi^2 - \frac{1}{2} y_\Phi^2
\]
where \(\epsilon\) and \(\delta\) are arbitrary positive constants. Since \(v > 0\), we can take \(\epsilon\) and \(\delta\) such that
\[
\frac{1}{\epsilon} + \frac{1}{\delta} \leq \nu \tag{19}
\]
holds. This implies that system (12) is dissipative with respect to \(\sigma\) where \(\sigma(d_1, d_2) = \mu \|d_1\|_{\mathcal{A}}^2\) and \(\mu = \max\{k_\Delta, k_p\\} \square

Theorem 3.5: Consider the system in (12) with \(d_1, d_2 \in C^1(\mathbb{R}_+)\) s.t. \(d_1, d_2 \in AC(\mathbb{R}_+)\). Assume that the hypotheses in Theorem 3.1 hold and additionally, (19) is satisfied with \(\epsilon, \delta > 0\). Assume that the functions \(f_1\) and \(f_2\) of the Duhamel operator \(\Phi\) satisfy

(B) For every compact set \(K \subset \mathbb{R}\), there exists \(c > 0\) such that
\[
\|f_1(\nu, \xi)\| \leq c, \quad \|f_2(\nu, \xi)\| \leq c, \quad \forall \nu \in K, \xi \in \mathbb{R}. \tag{20}
\]
Then (12) is iISS with respect to \(\mathcal{A}\) (\(A\)-iISS), with iISS gain \(\gamma(\|d_1\|_{\mathcal{A}}) = \mu \|d_1\|_{\mathcal{A}}^2\), where \(\mu > 0\).

Proof: The proof of Theorem 3.5 follows the same arguments as in the proof of Theorem 3.1 in [7]. Firstly, the arguments in [17] which use the converse Lyapunov theorem for GAS system are replaced by the similar arguments using the converse Lyapunov theorem for \(A\)-GAS system as discussed in [18].

Notice that the system (12) with \(d_1 = 0\) and \(d_2 = 0\) can be written explicitly as
\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\end{bmatrix} = \begin{bmatrix}
A x + B y_\Phi \\
+f_1(y_\Phi, u_\Phi) (-[(k_i 0)], k_p k_d A x - [k_p k_d B y_\Phi]) + \\
+f_2(y_\Phi, u_\Phi) (-[(k_i 0)], k_p k_d A x - [k_p k_d B y_\Phi])
\end{bmatrix}, \tag{21}
\]
where \(u_\Phi = -k_i z - [k_p k_d] x\). It can be checked that the RHS of equation (21) is locally Lipschitz. Let us write (21) by \(\zeta = f(\zeta)\) where \(\zeta = [x^T \ z \ y_\Phi]^T\). Based on the converse
Lyapunov theorem [18, Corollary 2], Theorem 3.1 implies that there exists a smooth Lyapunov function $V : \mathbb{R}^4 \to \mathbb{R}_+$ such that

- there exist \mathcal{K}_{∞} functions α_1 and α_2 such that

 \[\alpha_1(||\zeta||,A) \leq V(\zeta) \leq \alpha_2(||\zeta||,A) \quad \forall \zeta \in \mathbb{R}^4. \]

- there exists a continuous, positive definite function α_3 such that

 \[\frac{dV(\zeta)}{d\zeta} f(\zeta) \leq -\alpha_3(||\zeta||,A) \quad \forall \zeta \in \mathbb{R}^4. \]

With the disturbance d_1 and d_2, the system (12) can be written as $\dot{\zeta} = f(\zeta, d_1, d_2, \hat{d}_1, \hat{d}_2)$ where

\[
 f(\zeta, d_1, d_2, \hat{d}_1, \hat{d}_2) = \begin{bmatrix}
 x_1 \\
 f_1(y_a, u_a)(-([k_p \, 0]+[k_p \, k_d \, A]x) \\
 -[k_p \, k_d \, B y_a]-[k_p \, k_d \, A]x \\
 +f_2(y_a, u_a)(-([k_p \, 0]+[k_p \, k_d \, A]x) \\
 -[k_p \, k_d \, B y_a]-[k_p \, k_d \, A]x
\end{bmatrix},
\]

where $u_a = -k_i x - [k_p \, k_d \, x - [k_p \, k_d \, d_1 \, d_2]],$ and

\[
 \| f(\zeta, d_1, d_2, \hat{d}_1, \hat{d}_2) \| \leq c \left(1 + \mu \right) \| d_1 \|_2^2 \quad \forall (\zeta, d_1, d_2, \hat{d}_1, \hat{d}_2) \in \mathbb{B}^4_1 \times \mathbb{R}^4. \tag{22}
\]

By replacing the compact set $\mathcal{K} \subset \mathbb{R}^n$ in [7, Assumption (A)] and in the rest of the proof in [7] by \mathbb{B}^4_1, we can obtain the same lemmas as given in [7, Lemma 3.2, Lemma 3.3 and Lemma 3.4]. This together with the converse Lyapunov function for \mathcal{A}-GAS system, we can obtain the \mathcal{A}-iISS Lyapunov function similar to the proof of [7, Theorem 3.1].

We remark that the Dahl model with f_1 and f_2 given by (8) and (9), respectively, satisfies the Assumption (B) in Theorem 3.5.

IV. SIMULATION RESULTS

In this section, we simulate the force-actuated mass-damper-spring system as given in (17) in Matlab. In the simulation we set $m = 1$, $k = 1$ and $b = 2$. The friction force is modeled by the Dahl hysteresis model as described in Section II-B with $F_c = 0.75$, $\rho = 1.5$ and $r = 1$. Then (17) becomes

\[
 \begin{bmatrix}
 \dot{x}_1 \\
 \dot{x}_2 \\
 \dot{z} \\
 \dot{y}_c
\end{bmatrix} = \begin{bmatrix}
 0 & 1 & 0 & 0 \\
 -1 & -2 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 k_i z + k_p x_1 + k_d x_2
\end{bmatrix} \begin{bmatrix}
 x_1 \\
 x_2 \\
 z \\
 y_c
\end{bmatrix} + \begin{bmatrix}
 0 \\
 1 \end{bmatrix} u
\]

The control parameters are chosen as $k_p = 1$, $k_i = 1/2$ and $k_d = 1/4$. It can be easily checked that by taking $Q = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$, the inequalities (13)-(15) are satisfied.

First, let us consider the case when there is no disturbance in the system. Given the initial condition $x_{10} = -5$, $x_{20} = 10$ and $y_{\Phi 0} = 0.5$, Figure 3 shows that the state trajectories converge to the invariant set $\mathcal{A} := \{(x_1, x_2, z, y_{\Phi})| x_1 = 0, x_2 = 0, y_{\Phi} = 0\}$ in agreement with Theorem 3.1.

For the next case, we add the disturbance $d_1 = e^{-t}$ and $d_2 = e^{-2t}$ as in (12). The simulation results are shown in Figure 4, which indicate that all the state trajectories are still converging to \mathcal{A}. This is a consequence of the \mathcal{A}-iISS property of the closed-loop system as presented in Theorem 3.5.

As an example of the implementation of state observer in the closed-loop system, we assume that the velocity of the mass-damper-spring system cannot be measured, which means that the information of the velocity needs to be obtained via an observer. Here we design a linear observer for the plant, which has the following form

\[
 \dot{\hat{x}} = A \hat{x} + L_o (y - \hat{y}) \tag{24}
\]

where \hat{x} denotes the states of the observer, L_o is the observer gain, y is the output of the linear plant and \hat{y} is the output of the observer. Note that the input u is absent in (24) since it can not be measured from the output of the
hysteretic actuator. By considering u as the disturbance to the observer error dynamics, the design of the observer amounts to ensuring that the small-gain condition between the gain of the observer error dynamics and the iISS gain of (12) is fulfilled in the spirit of iISS domination [19, Proposition 1].

Due to the limited space, we show only the simulation result where we design an observer with a sufficiently fast convergence rate (so that it has a very small gain from u to the estimation error $[\begin{bmatrix} d_1 \\ d_2 \end{bmatrix}] = [\dot{x}_1 - \dot{x}_2, \dot{x}_1 - \dot{x}_2]$). Using $L_0 = [10 \ 4]^T$, $x_0 = [10 \ -5]^T$ and $\dot{x}_0 = [-10 \ 5]$, we show in Figure 5 that the observer state, the plant state and y_θ converge to zero as expected.

\begin{itemize}
 \item \textbf{Fig. 5.} The state trajectories of the closed-loop system (23) with $x_0 = [10 \ -5]^T$, $\dot{x}_0 = [-10 \ 5]$ and $y_\theta = 0.5$.
\end{itemize}

\section{V. Conclusion}

In this work we study the stability of a second order linear system with CW Duhem hysteresis, where we use the standard proportional, integral and derivative (PID) controller. In particular, we give sufficient conditions on the linear system and control parameters such that the origin of the plant and the hysteresis state is attractive. Furthermore, for the robustness analysis, we show that the closed-loop system is A-iISS with respect to the measurement noise in the closed-loop system.

\textbf{REFERENCES}