Cite this: Chem. Commun., 2018, 54, 4148

Received 16th February 2018. Accepted 28th March 2018

DOI: 10.1039/c8cc01363b

Herein we present the first example of a glycol-coordinated ε-Keggin Al13 chloride (gl-ε-Al13), which is the first chelated version since discovery of Al13 in 1960. The molecular structure consists of [AlO4Al12(OH)12(OC2H4OH)12]Cl7 H2O units with chelating monoanionic ethylene glycol units replacing one bridging and one terminal oxygen site.

The hydrolysis of aluminum salts in water produces an array of polyxoaluminum clusters which are widely used in catalysis, water treatment, antiperspirant additives and pillaring agents for clays. 1,2 The Baker–Figgis–Keggin Al13 clusters, having the stoichiometry: [AlO4Al12(OH)12(OC2H4OH)12]Cl7+ are the most common multinuclear ions. The five isomers have an Al(O)4 tetra-stoichiometry: [AlO4Al12(OH)24(OH2)12]7+, are the most common Al13 isomers.3 Since discovery of Al13 in 1960. The molecular structure consists of anionic ethylene glycol units replacing one bridging and one terminal oxygen site.

The conventional hydrolysis method for Al13 synthesis brings high concentrations of counterions, usually Na+, into the system, which suppresses Al13 chloride crystallization and purification.1,2,5,12 In this work, we report a simple solvothermal method that allows the salts of the ε-Al13 isomer to crystallize in a new glycol-chelated form (gl-ε-Al13) with the ion stoichiometry: [AlO4Al12(OH)12(OC2H4OH)12]7+. The overall charge is compensated by chloride ions and the ethylene glycol eliminates the bound water molecules, possibly suppressing hydrolysis. Ethylene glycol is present as a mono-anion coordinated in a bidentate fashion. The oxo replaces a μ2-CH2-CH2-OH and a hydroxo replaces a terminal water (Fig. 2). Single crystals can be crystallized within a few hours rather than days to weeks. To the best of our knowledge, it is the first example of an ε-Al13 isomer directly crystallized as a chloride salt or in a chelated form.

The catalytic properties of the gl-ε-Al13 cluster are demonstrated by employing it as a heterogeneous catalyst for the synthesis of secondary amines via direct N-alkylation/amination of primary amines (i.e., aniline) and alcohols (i.e., benzyl alcohol). Such a catalyst is attractive as it involves green chemistry methods13,14 and could conceivably replace C–N bond formation using expensive homogeneous catalysts, such as Pd, Ru and Ir complexes.15–17 The heterogeneous catalyst is also attractive because separation does not require toxic additives, i.e., ligands and base,18 as may be the case with homogeneous catalysts. Alumina, aluminosilicates and zeolites,19–23 and the supported metal (e.g., Cu, Ni, Pd, Ag, Au, Ru and Pt) catalysts24–29 have been recently reported. As we show, the gl-ε-Al13 exhibits excellent primary amine conversion and secondary amine selectivity.

Single crystals (yield ca. 90%) of the gl-ε-Al13 were isolated as chloride salts through solvothermal synthesis carried out in a Teflon-lined stainless steel autoclave (100 mL) at 150 °C for 6 h. Aluminium chloride hexahydrate (AlCl3·6H2O, 2.4 g) was
dissolved in ethylene glycol (EG, 10 mL) under magnetic stirring, followed by adding ethanol (40 mL) to maintain a transparent solution. After being cooled down to room temperature, the mixture was centrifuged (5000 rpm) to collect the white solids, which were further washed 3 times by ethanol and dried at 60 °C. SEM images of \(\text{gl-}\text{Al}_{13} \) chloride (Fig. 1) show an octahedral morphology, with particles in the order of 3 to 30 \(\mu \text{m} \) and very smooth surfaces.

The \(\text{gl-}\text{Al}_{13} \) structure crystallizes in the cubic space group \(\text{F}4\text{3}m \) and has the formula of \([\text{Al}_{13}C_{24}H_{72}O_{40}]\text{Cl}_{7}\text{H}_{2}O \). The structure is shown in Fig. 2A and B. Structural parameters are listed in Table S1 (ESI†). The essential structure of the \(\text{c-}\text{Al}_{13} \) Keggin cluster, including the +7 overall charge, is preserved.\(^{30,31}\) Correspondingly, bond-valence analysis, performed using VaList software,\(^{32}\) indicates that the cationic \(\text{Al}_{13} \) moiety can be described by the formula \([\text{AlO}_{4}\text{Al}(\text{O})\text{H}_{12}(\text{OC}_{2}\text{H}_{4}\text{OH})_{12}]^{7+} \). As expected for the Keggin isomers, the \(\text{gl-}\text{c-}\text{Al}_{13} \) contains one crystallographically unique, tetrahedrally coordinated \(\text{Al(m)} \) cation with Al–O bond length of 1.825(4) \(\text{Å} \). It also contains twelve \(\text{Al(m)} \) cations that are each octahedrally coordinated. The inner-coordination sphere of each \(\text{Al(O)} \) includes a \(\mu_3\)-O oxo, two \(\mu_2\)-OH, two \(\mu_1\)-O-glycols and a single \(\mu_2\)-OH-glycol. The glycols are part of a bidentate chelate that terminates at the other end in a \(\mu_2\)-OH-glycol replacing what is normally a water molecule bound to the \(\text{Al}_{13} \).

Two crystallographically nonequivalent \(\text{Cl}^- \) anions, acting as counter anions, provide overall charge balance for the structure. Four \(\text{Cl}^- \) anions (Fig. 2C and D, Cl1) are located in the cavity along the axis of the \(\text{AlO}_{4} \) facets (Fig. 2C), in a ring of \(\mu_2\)-OH, and hydrogen-bond to the \(\text{Al}_{13}^{7+} \) cation,\(^{10}\) which is also indicated by the previous modeling.\(^{11}\) Another three \(\text{Cl}^- \) anions sharing positions with the crystallization water molecules (Fig. 2, Cl2) are disordered. In the crystal structure of the \(\text{gl-}\text{c-}\text{Keggin Al}_{13} \), the distorted hexagonal channels run between the molecules along [111] direction (Fig. S2, ESI†) and possess a significant free volume where additional water, ethanol or ethylene glycol, may be located and have been removed using the program Platon-Squeeze (see ESI†).\(^{33}\)

A comparison between the powder XRD and the simulated XRD patterns from single crystal analysis is shown in Fig. 3 (ESI†), which indicates high crystallinity and purity of the synthesized compound.

FT-IR and Raman spectra of \(\text{gl-}\text{c-}\text{Al}_{13} \) shown in Fig. 3 have a few similar vibrational bands belonging to species that are both Raman and IR active. Two broad bands at 3500 and 3100 cm\(^{-1} \) are assigned to the OH stretching vibrations of the \(\text{gl-}\text{c-}\text{Al}_{13} \)\(^{34}\) and hydrogen-bonded OH groups of coordinated water, respectively. Presence of water can also be confirmed by the clear water-bending mode in FT-IR at 1636 cm\(^{-1} \). In the 3000–2800 cm\(^{-1} \) region which is typical for methyl and methylene C–H stretching modes, the peaks are less clear due to underlying O–H broad band. However, 2964, 2892 and 2820 cm\(^{-1} \) bands can be assigned to CH\(_2\)-bands of ethoxy-groups of \(\text{gl-}\text{c-}\text{Al}_{13} \).\(^{35}\) These groups also give rise to CH\(_2\)-bending modes at 1469, 1419, 1412, 1369 and 1350 cm\(^{-1} \), and their overtones at 2800–2600 cm\(^{-1} \). Sharp bands at 1096, 996 and 891 cm\(^{-1} \) are assigned to Al–O–C bonds.

Fig. 1 SEM and particle-size distribution of single-crystal \(\text{gl-}\text{c-}\text{Al}_{13} \).

Fig. 2 (A) \([\text{AlO}_{4}\text{Al(OH)}_{12}(\text{OC}_{2}\text{H}_{4}\text{OH})_{12}]\text{Cl}_{7}\text{H}_{2}O \) (\(\text{gl-}\text{c-}\text{Al}_{13} \)) structure. The central \(\text{Al(O)} \) is drawn in green, the twelve \(\text{Al(O)} \) are drawn in light purple, oxygens are drawn in red, carbons are drawn in grey and hydrogens are drawn in white. (B) Ethylene glycols chelate to \(\text{Al(O)} \) by having one hydroxyl functional group replace a terminal water, forming a \(\mu_3\)-(OH–CH\(_2\)) and the other end coordinating to a bridging oxo between two \(\text{Al(O)} \) forming a \(\mu_3\)-(O–CH\(_2\)). (C and D) The located \(\text{Cl}^- \) counterions are located near a ring of \(\mu_2\)-OH and between two \(\mu_2\)-OH. The Cl(2) site is completely occupied; 5/6 of the time as \(\text{Cl}^- \) and 1/6 as a water.

Fig. 3 FT-IR and Raman spectra of single-crystal \(\text{gl-}\text{c-}\text{Al}_{13} \).
However, the presence of solvent C–OH and CH₂ bands cannot be excluded (ethanol and ethylene glycol). The strong band at 702 cm⁻¹ can be attributed to Al–O–Al structural unit of gl-ε-Al₁₃ chloride and is identical to the ε-Al₁₃. The ¹H MAS SSNMR spectrum of gl-ε-Al₁₃ chloride (Fig. 4A) shows two resonances at 1.3 ppm and 3.8 ppm, which are assigned to bridging –OH and –OCH₂. The broad resonance peak at 4–6.5 ppm is ascribed to physically adsorbed water. In the ¹³C NMR spectrum, two adjacent resonances are observed at 60.2 ppm and 63.3 ppm (Fig. 4B), which clearly indicate the coexistence of two different chemical environments for the methylene groups. One of them is slightly more deshielded than the other, probably due to hydrogen bonding. The ²⁷Al NMR spectrum (Fig. 4C) displays a sharp peak at 61.6 ppm, which can be assigned to AlO₄ species, and a broad peak centered at 60.2 ppm and 63.3 ppm (Fig. 4B), which clearly indicate the presence of multiple Al environments, as expected. The Al/Cl atom ratio of gl-ε-Al₁₃ chloride derived from XPS analysis (Fig. S4, ESI†) is 1.95, which is in accordance with the chemical formula (1.86), elemental analysis (1.85) and the SEM-EDS analysis (1.84). Spectra fitting of Cl(2p) (Fig. S4, ESI†) reveals two intensive peaks centered at 197.7 eV and 199.3 eV, which correspond to Cl₁ and Cl₂. The Cl₂/Cl₁ ratio is 0.79, which consists well with the above theoretical values 0.75.

This gl-ε-Al₁₃ chloride was used as catalyst for the N-alkylation of aniline with benzyl alcohol (Table 1). Aniline, benzyl alcohol and gl-ε-Al₁₃ were successively added to 5.0 mL Ω-xylene in a 15 mL quartz tube followed by purging with nitrogen to remove oxygen. The reactor tube was sealed and transferred into a preheated oil bath to perform N-alkylation at 150 °C and auto-generated pressure, followed by cooling in the cold water and centrifuging. The liquid products were analyzed on an Agilent 7890a GC equipped with FID and mass spectrometer. It can be seen from Table 1 that when catalyst loading reaches 0.6 mmol/1 mmol aniline, aniline 1 conversion surpasses 90% (Entry 1–4). 100% aniline conversion can be obtained by increasing alcohol/aniline ratio (Entry 2–1 and 2–2) with the compensation of more di-alkylation to form tertiary amine 5. Instead of hydrogen autotransfer (HA) or borrowing hydrogen (BH) strategy, direct N-alkylation of primary amine with alcohol over the single crystal gl-ε-Al₁₃ chloride seems to follow well what is expected from intermolecular dehydration, which were also reported by Ready et al. (0% yield of secondary amine 4 over SiO₂ and 98% yield of 4 over nanosized zeolite beta), Sreenivasulu et al. (100% selectivity of imine 3 over nano-aluminosilicate) and Srinivasu et al. (60% yield of 4 over 2-D hexagonal aluminosilicate). Extending the reaction time from 4 hours (Entry 3–1) to 12 hours (Entry 2–2) increases aniline conversion while decreases the selectivity of 4 from 99.5% to 89.7%.

These results indicate promise for the gl-ε-Al₁₃ chloride to be useful in green catalysis. However, the significance of successful synthesis of gl-ε-Al₁₃ chloride even transcends the catalytic properties. The Keggin ions are among the few cationic clusters of nanometer sizes and attempts to isolate clusters made of metals besides aluminum have met with little success. There are still few other clusters of trivalent metals, although they have been speculated about for decades. Attempts at aqueous synthesis of new metal cation clusters often fail because of uncontrolled hydrolysis – the bound water molecules deprotonated leading to uncontrolled gel formation. This point was emphasized recently by Sadeghi et al. who obtained a version of the Fe₁₃ as a Keggin cluster only by replacing the terminal water molecules with organic ligands. In this paper we suggest a simple means of accomplishing this replacement, which indicates a new strategy for expanding the library of hydrolytic clusters. The replacement of bound water molecules with bridging glycols may allow dissolution of the ε-Al₁₃ into a wider range of organic solvents (Table S8 and Fig. S5, ESI†) however the Al₁₃ was not found to be stable in those solvents. If so, it suggests a pathway for isolating new clusters that would hydrolyze uselessly in aqueous solutions, including perhaps clusters of other trivalent metals or larger aluminum clusters (e.g., Al₁₉) that build upon the Keggin structural moieties.

S. He thanks financial support from National Natural Science Foundation of China (No. 21206161), WHC acknowledges financial support by the NSF Phase-3 CCI, Center for Sustainable Materials Chemistry (NSF CHE-1606982), WHC and JCF thank...

Table 1 N-Alkylation of aniline with benzyl alcohol using single crystal gl-ε-Al₁₃ chloride salt as the catalyst

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst/reactant (mmol)</th>
<th>Reaction time (h)</th>
<th>Conversion/selectivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–1</td>
<td>ε-Al₁₃</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>0–2</td>
<td>ε-Al₁₃</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>1–1</td>
<td>0.06 ε-Al₁₃</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>1–2</td>
<td>0.19 ε-Al₁₃</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>1–3</td>
<td>0.43 ε-Al₁₃</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>1–4</td>
<td>0.6 ε-Al₁₃</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>2–1</td>
<td>0.6 ε-Al₁₃</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2–2</td>
<td>0.6 ε-Al₁₃</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3–1</td>
<td>0.6 ε-Al₁₃</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Fig. 4 MAS solid state NMR spectra of single-crystal gl-ε-Al₁₃.
the National Science Foundation (Grant CHE-1531193) for the dual-source X-ray diffractometer.

Conflicts of interest

There are no conflicts to declare.

References