On coagulation in advanced chronic liver disease and the origin of freshwater eels

To the Editor:
We would like to thank Dr. Tripodi for his interest in our work.1

The conundrum of haemostatic balance in patients with advanced chronic liver disease (ACLD) shares several similarities with the mystery of the freshwater eel. Reports on the presumed origin of the European eel go back to Aristotle who, due to the absence of reproductive organs at the yellow eel stage, considered them a spontaneous generation, e.g. derived from mud. It was not until 1922 that Johannes Schmidt located the origin of all European eel (Anguilla anguilla) to the Saragossa Sea (Atlantic Ocean) by capturing the smallest eel larvae. Nonetheless, the spawning of the European eel has never been observed in the wild, and thus, key aspects of its biology remain obscure. Notably, Aristotle also recognized the capability of blood to clot, which – in the context of ACLD – remains enigmatic in 2022. Although our knowledge on mechanisms leading to bleeding and thrombosis in patients with ACLD is steadily increasing, bleeding and clot formation are hard to study ‘in the wild’, limiting the available evidence mostly to experimental, genetic, and blood-/plasma-based laboratory investigations.

In this regard, different stages of ACLD have been extensively characterized by quantifying levels of coagulation factors and proteins involved in fibrinolysis,2,3 with studies identifying profound differences throughout the course of ACLD. Functional assays such as thromboelastography4 and rotational thromboelastometry have reinforced the clinical observation of a hypercoagulable state at advanced stages, as identified by increased endogenous thrombin potential in thrombomodulin-modified thrombin generation assays (TM-TGA). It has been hypothesized that this presumed hypercoagulable state promotes further deterioration via the development portal vein thrombosis (PVT) or even liver disease progression due to parenchymal extinction via a ‘congestive escalator’.5 However, TM-TGA are not the most capable test for detecting the presumed ‘hypercoagulable state’, as it failed to predict thrombotic events including PVT in one1 and another well-conducted longitudinal study.6

This could be explained by considerable variations in ex vivo thrombin generation capacity over time (an aspect that seems understudied), which may compromise the predictive ability of baseline values that have been acquired (long) before the occurrence of the clinical outcome. While this emphasizes the need for further studies on the clinical significance of TM-TGA results, the findings of our studies may have put the final nails in the coffin of the (mis)use of FVIII/PC as a surrogate for the presumed ‘hypercoagulable state’. First, its association with TM-TGA results is confounded by liver disease severity. Second, it is unrelated to bleeding and thrombotic events. Third, its link with clinical endpoints is much better explained by associated well-established disease-driving mechanisms that are not directly related to coagulation.

Accordingly, we very much agree with Dr. Tripodi when he refers to ‘laboratory biomarkers’ or ‘biochemical hypercoagulability’ and underlines the potentially overwhelming contribution of circumbential risk factors to bleeding and thrombosis in ACLD, which – apart from the contribution of portal hypertension to gastrointestinal bleeding events – seems poorly defined. Finally, accumulating evidence suggests that plasma-based studies only scratch the surface of the pathophysiology of thrombosis in ACLD. Recent observations regarding the composition of portal vein ‘thrombi’7 question current paradigms, as intimal hyperplasia rather than fibrin-rich thrombi seemed to be their main constituent. As a heretical thought, one may even conclude that very limited histological data8 has provided more insights into the potential role of thrombosis in liver disease progression than a multitude of conventional coagulation studies. Accordingly, it may be hypothesized that one has to delve into the thrombotic crime scene (i.e., the tissues of the portal and intrahepatic vasculature) and the Saragossa Sea to gain further insights into ‘thrombus’ formation and the spawning of the European/American eel, respectively.

We would like to conclude that our study failed to substantiate the link between the haemostatic balance and haemostasis-related clinical outcomes. However, it shifted another unknown unknown to the long list of known unknowns in our field: We have learned that FVIII/PC should not be used as an indicator of the presumed ‘hypercoagulable state’ – surrogate markers for bleeding and thrombosis in ACLD have yet to be established.

Financial support
No funding specific to this work was received.

Conflict of interest
M.M. served as a speaker and/or consultant and/or advisory board member for AbbVie, Gilead, Collective Acumen, and W. L. Gore & Associates and received travel support from AbbVie and

Received 18 May 2022; accepted 19 May 2022; available online 7 June 2022
https://doi.org/10.1016/j.jhep.2022.05.029
Gilead. Be.Sc. received travel support from AbbVie, Ipsen, and Gilead. T.L. has nothing to disclose.

Please refer to the accompanying ICMJE disclosure forms for further details.

Authors’ contributions
Drafting of the manuscript (M.M.) and revision for important intellectual content as well as approval of the final manuscript (all authors).

Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.jhep.2022.05.029.

References
Author names in bold designate shared co-first authorship


To the Editor:
We read the article “Development and validation of a model to predict incident chronic liver disease in the general population: the CLivD score” with great interest. The study demonstrates the possibility of prognosticating the risk of liver-related outcomes using easily accessible information, and highlights potential room for further validation and optimization.

Although the CLivD model was developed using European cohorts, we observed similar overall risk-stratification capacity in the Third National Health and Nutrition Examination Survey (NHANES III). NHANES III was a study conducted by the US Center of Disease Control in 1988-1994 to obtain nationally representative information on the health and nutritional status of the US population. The study used a complex, multistage, probability sampling design to select participants representative of the civilian, non-institutionalized US population. The mortality data of NHANES III participants were last collected in 2015. We calculated CLivD Modellab and Modelnon-lab in 5,783 participants aged 40–70 years in NHANES III, representing an estimated population of 187 million. We used weighted Cox proportional hazard analysis to examine the effectiveness of CLivD models to predict liver-related mortality, which included chronic liver disease, cirrhosis, and liver cancer as the underlying cause of death (UCOD 024, 093, 094, and 095). The NHANES III data showed that both Modellab and Modelnon-lab effectively risk-stratified liver-related mortality (Fig. 1A,B). In both models, no liver-related death was seen in the minimal risk category (green), and the highest mortality was seen in the high-risk category (red). Between the 2 models, Modellab performed better than Modelnon-lab (C-statistics 0.733 vs. 0.637). The high-risk category by Modellab had a hazard ratio (HR) of 7.7 (1.4–43.5, p = 0.02) over

A good step toward low-cost prognostication of liver-related outcome awaits more validation

Mattias Mandorfer1,2
Bernhard Scheiner1,2
Ton Lisman3,*

1Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
2Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
3Surgical Research Laboratory and Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
*Corresponding author. Address: Surgical Research Laboratory and Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Baan 44, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands; Tel.: +31-50-3619028, fax: +31-50-3632796. E-mail address: j.a.lisman@umcg.nl (T. Lisman)