Dapagliflozin reduces uric acid concentration, an independent predictor of adverse outcomes in DAPA-HF

Kirsty McDowell¹†, Paul Welsh¹†, Kieran F. Docherty¹, David A. Morrow², Pardeep S. Jhund¹, Rudolf A. de Boer³, Eileen O’Meara⁴, Silvio E. Inzucchi⁵, Lars Køber⁶, Mikhail N. Kosiborod⁷,⁸, Felipe A. Martinez⁹, Piotr Ponikowski¹⁰, Ann Hammarstedt¹¹, Anna Maria Langkilde¹¹, Mikaela Sjöstrand¹¹, Daniel Lindholm¹¹, Scott D. Solomon², Naveed Sattar¹, Marc S. Sabatine¹², and John J.V. McMurray¹*¹

¹BHF Cardiovascular Research Centre, University of Glasgow, Glasgow, UK; ²Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA; ³Department of Cardiology, University Medical Center and University of Groningen, Groningen, The Netherlands; ⁴Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; ⁵Section of Endocrinology, Yale University School of Medicine, New Haven, CT, USA; ⁶Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; ⁷Saint Luke’s Mid America Heart Institute, University of Missouri, Kansas City, MO, USA; ⁸The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia; ⁹Universidad Nacional de Córdoba, Córdoba, Argentina; ¹⁰Centre for Heart Diseases, University Hospital Wroclaw Medical University, Wroclaw, Poland; ¹¹Late Stage Development, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; and ¹²TIMI Study Group, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA

Aims

Blood uric acid (UA) levels are frequently elevated in patients with heart failure and reduced ejection fraction (HFrEF), may lead to gout and are associated with worse outcomes. Reduction in UA is desirable in HFrEF and sodium–glucose cotransporter 2 inhibitors may have this effect. We aimed to examine the association between UA and outcomes, the effect of dapagliflozin according to baseline UA level, and the effect of dapagliflozin on UA in patients with HFrEF in the DAPA-HF trial.

Methods and results

The association between UA and the primary composite outcome of cardiovascular death or worsening heart failure, its components, and all-cause mortality was examined using Cox regression analyses among 3119 patients using tertiles of UA, after adjustment for other prognostic variables. Change in UA from baseline over 12 months was also evaluated. Patients in tertile 3 (UA ≥6.8 mg/dl) versus tertile 1 (<5.4 mg/dl) were younger (66.3 ± 10.8 vs. 68 ± 10.2 years), more often male (83.1% vs. 71.5%), had lower estimated glomerular filtration rate (58.2 ± 17.4 vs. 70.6 ± 18.7 ml/min/1.73 m²), and more often treated with diuretics. Higher UA was associated with a greater risk of the primary outcome (adjusted hazard ratio tertile 3 vs. tertile 1: 1.32, 95% confidence interval [CI] 1.06–1.66; p = 0.01). The risk of heart failure hospitalization and cardiovascular death increased by 7% and 6%, respectively per 1 mg/dl unit increase of UA (p = 0.04 and p = 0.07). Spline analysis revealed a linear increase in risk above a cut-off UA value of 7.09 mg/dl. Compared with placebo, dapagliflozin reduced UA by 0.84 mg/dl (95% CI −0.93 to −0.74) over 12 months (p < 0.001). Dapagliflozin improved outcomes, irrespective of baseline UA concentration.

*Corresponding author. British Heart Foundation Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK. Tel: +44 141 3303479, Fax: +44 141 3306955, Email: john.mcmurray@glasgow.ac.uk
†Joint first authors.

© 2022 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Conclusion

Uric acid remains an independent predictor of worse outcomes in a well-treated contemporary HFrEF population. Compared with placebo, dapagliflozin reduced UA and improved outcomes irrespective of UA concentration.

Graphical Abstract

Importance of uric acid in patients with heart failure and reduced ejection fraction and effect of dapagliflozin.

Keywords

Heart failure • Uric acid • Mortality • Sodium–glucose cotransporter 2 • Diabetes

Introduction

Uric acid (UA) is the final product of purine metabolism and blood levels reflect dietary intake of purines, synthesis of UA by xanthine oxidase and excretion of UA, mainly by the kidneys. Consequently, UA may be elevated in heart failure because elimination is reduced due to impaired kidney function and because diuretics impair uric acid excretion.\(^1\)\(^-\)\(^5\) UA may also be increased because of increased production due to greater xanthine oxidase activity in patients with heart failure.\(^6\)\(^-\)\(^7\) As a result, hyperuricaemia is common in heart failure and higher UA is associated with worse clinical outcomes.\(^8\)\(^-\)\(^11\) The association between higher UA and worse outcomes persists after adjustment for renal function, diuretic use and dose, and natriuretic peptide levels.\(^9\)\(^-\)\(^11\) Whether this is due to unmeasured confounding, or a directly injurious effect of UA is unknown.\(^1\)\(^-\)\(^11\) However, UA increases cytokine and chemokine production, promotes inflammation, impairs endothelial function and activates the renin–angiotensin system.\(^1\)\(^-\)\(^11\) In addition, UA may be a marker of oxidative stress as xanthine oxidase generates superoxide along with UA.\(^1\)\(^-\)\(^11\) Hyperuricaemia can also lead to gout which is common in patients with heart failure, is difficult to manage and may lead to and prolong hospitalization.\(^12\)\(^-\)\(^13\) Therefore, drugs are frequently used, prophylactically, to reduce UA in patients with heart failure, with approximately 15%\(^-\)\(^20%\) of patients treated in this way.\(^9\)

For these reasons, the effect of therapies for heart failure on UA is of interest and agents that lower UA have even been investigated as a potential treatment for heart failure.\(^14\)\(^-\)\(^15\) The angiotensin receptor blocker losartan inhibition has been shown to reduce UA in patients without heart failure and neprilysin inhibition also reduces UA in patients with both heart failure with reduced (HFrEF) and preserved ejection fraction.\(^5\)\(^-\)\(^11\),\(^16\) Recently, sodium–glucose cotransporter 2 (SGLT2) inhibitors have been shown to reduce hospitalization and death in patients with HFrEF.\(^17\)\(^-\)\(^19\) These drugs also reduce UA in patients with diabetes, although the exact mechanism of this effect is not understood and whether SGLT2 inhibitors also reduce UA in patients without diabetes is unknown.\(^20\)\(^-\)\(^23\)

Therefore, we assessed the effect of dapagliflozin on UA in patients with HFrEF, with and without type 2 diabetes, enrolled in the Dapagliflozin and Prevention of Adverse-outcomes in Heart Failure trial (DAPA-HF).\(^17\) We also examined whether UA remains
an independent predictor of adverse outcomes in patients receiving optimum contemporary treatment for HFrEF.

**Methods**

DAPA-HF was a randomized double-blind, placebo-controlled, event-driven trial in patients with HFrEF, with or without type 2 diabetes. The design, baseline characteristics, and primary results are published. Ethics Committees for the 410 participating institutions in 20 countries approved the protocol and all patients gave written informed consent.

**Study patients and treatment**

Patients in New York Heart Association (NYHA) functional class II–IV, with a left ventricular ejection fraction (LVEF) \( \leq 40\%\), and an elevated N-terminal pro-B-type natriuretic peptide (NT-proBNP) concentration, were eligible if receiving standard pharmacological and device therapy. The key exclusion criteria were: type 1 diabetes mellitus, symptomatic hypotension/systolic blood pressure <95 mmHg, and an estimated glomerular filtration rate (eGFR) <30 ml/min/1.73 m\(^2\).

**Measurement of uric acid**

Blood samples were taken at randomization and 52 weeks. UA was measured using stored EDTA plasma in a central laboratory using an automated platform and the manufacturer’s calibration and quality control materials (c311, Roche Diagnostics, Burgess Hill, UK). The coefficient of variation was 2.0% for a low control and 2.8% for a high control.

**Outcomes**

The primary trial outcome was the composite of worsening heart failure event (heart failure hospitalization or urgent visit for heart failure requiring intravenous therapy) or cardiovascular death, whichever occurred first. In this study, we investigated the association between baseline UA and the risk of the primary outcome, its composites, and all-cause mortality. We also examined the effect of dapagliflozin according to baseline UA analysed as a categorical and continuous variable (see below).

In addition, we examined the effect of dapagliflozin on UA level after randomization (difference between baseline and 12-month measurement) and initiation of new UA-lowering therapy.

**Statistical analysis**

Serum UA levels at baseline were categorized into tertiles. Baseline characteristics according to serum UA tertile are presented as frequencies and percentages for categorical variables and means with standard deviation or medians with interquartile range (IQR) for continuous variables. A non-parametric test for trend across groups, an extension of the Wilcoxon rank sum test, was used to examine for variation in baseline characteristics across UA tertiles. Use of oral loop diuretics at baseline was grouped in categories of furosemide equivalents: 40 mg furosemide = 20 mg torsemide = 1 mg bumetanide. Non-loop diuretics were categorized as thiazides or as ‘other’. Incidence rates for each outcome of interest are presented per 100 person-years of follow-up. Event rates in each UA tertile were estimated by the Kaplan–Meier method and compared using the log-rank test. Cox proportional hazards regression models stratified by diabetes status and adjusted for heart failure hospitalization (except for all-cause mortality) and randomized treatment group were used to compare hazard ratios (HR) with 95% confidence intervals (CI) for outcomes according to UA tertiles. In multivariable models, the HR was further adjusted for the following baseline characteristics: age, sex, pulse, systolic blood pressure, body mass index, atrial fibrillation, diabetes status, aetiology of heart failure, LVEF, NYHA functional classification, NT-proBNP (log), eGFR, non-loop diuretic use, loop diuretic use dose and use of an angiotensin-converting enzyme inhibitor, angiotensin receptor blocker or angiotensin receptor–neprilysin inhibitor.

The association between UA and each outcome was also assessed using a restricted cubic spline with five knots, using UA of 7.0 mg/dl as a reference in the same multivariable-adjusted model. The proportional hazards assumption was evaluated using plots of Schoenfeld residuals versus log time and found valid, as was the assumption of linearity of continuous variables.

The effect of dapagliflozin compared to placebo on each outcome across UA tertile was examined using Cox regression stratified by diabetes status and adjusted for previous heart failure hospitalization (except for all-cause death). Likelihood ratio tests are reported to examine for any interaction between UA category and treatment effect. The treatment effect of dapagliflozin on UA was assessed using a linear regression model adjusted for baseline value and diabetes status. This was repeated for subgroups of interest. The efficacy of dapagliflozin compared to placebo on the primary endpoint over serum UA as a continuous variable was modelled as a fractional polynomial.

All analyses were conducted using Stata version 16.1 (College Station, TX, USA). A p-value <0.05 was considered statistically significant.

**Results**

Of the 4744 randomized patients, 3119 (65.7%) had UA measured at baseline (not all countries participated in the biomarker sub-study). The mean UA concentration was 6.1 ± 1.7 (median 5.9, IQR 4.9–7.1) mg/dl. Mean UA was 6.2 ± 1.7 mg/dl in men and 5.7 ± 1.6 mg/dl in women (p < 0.001). Overall, 686 participants (14.5%) were prescribed a UA-lowering agent at baseline and, of these, 531 had UA measured; the mean UA level in these patients was 5.8 ± 1.6 (median 5.7, IQR 4.7–6.7) versus 6.2 ± 1.7 (median 6.0, IQR 5.0–7.1) mg/dl in those not receiving UA-lowering therapy (p < 0.001). The prevalence of hyperuricaemia (UA >7.0 mg/dl for men and >6.0 mg/dl for women) was 31.6% (29.4% men and 39.2% women). The prevalence of hyperuricaemia was lower in those taking UA-lowering therapies: 23.9% (32.4% in women and 22.7% in men) vs 33.1% (40.0% in women and 31.0% in men), respectively. Overall, 188 patients (6.0%) had a UA ≥ 9 mg/dl and 488 participants (10.3%) had a history of gout.

**Baseline characteristics according to uric acid**

Patient characteristics according to tertile of UA are shown in Table 1. Patients with higher UA were younger (66.3 ± 10.8 years
Table 1 Baseline characteristics according to uric acid tertile and overall

<table>
<thead>
<tr>
<th>Uric acid tertile</th>
<th>Urinary acid, mg/dl</th>
<th>Age, years</th>
<th>Sex, n (%)</th>
<th>Female</th>
<th>Male</th>
<th>Race, n (%)</th>
<th>Region, n (%)</th>
<th>NYHA functional class, n (%)</th>
<th>Heart rate, bpm</th>
<th>Systolic blood pressure, mmHg</th>
<th>Left ventricular ejection fraction, %</th>
<th>NT-proBNP, pg/ml, median (IQR)</th>
<th>KCCQ-TSS, median (IQR)</th>
<th>p-value All patients (n = 3119)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tertile 1 (n = 1086)</td>
<td>4.4 ± 0.7</td>
<td>68.0 ± 10.2</td>
<td>310 (26.5)</td>
<td>776 (71.5)</td>
<td>187 (17.2)</td>
<td>Asian 180 (16.6)</td>
<td>180 (16.6)</td>
<td>775 (71.4)</td>
<td>69.9 ± 10.8</td>
<td>123.6 ± 15.4</td>
<td>31.9 ± 6.2</td>
<td>1283.9</td>
<td>79.2 (60.4–93.8)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Tertile 2 (n = 1052)</td>
<td>6.0 ± 0.4</td>
<td>67.5 ± 10.3</td>
<td>217 (20.6)</td>
<td>835 (79.4)</td>
<td>205 (19.5)</td>
<td>Europe 619 (57.0)</td>
<td>(389.6–2479.8)</td>
<td>731 (69.5)</td>
<td>71.1 ± 11.3</td>
<td>122.4 ± 16.0</td>
<td>31.2 ± 6.7</td>
<td>1369.6</td>
<td>79.2 (61.5–93.8)</td>
<td>0.033</td>
</tr>
<tr>
<td>Tertile 3 (n = 981)</td>
<td>8.1 ± 1.2</td>
<td>66.3 ± 10.8</td>
<td>166 (16.9)</td>
<td>815 (83.1)</td>
<td>184 (18.8)</td>
<td>North America 181 (16.7)</td>
<td>(987.0–3073.9)</td>
<td>652 (66.5)</td>
<td>71.6 ± 11.5</td>
<td>121.2 ± 15.9</td>
<td>30.4 ± 7.3</td>
<td>1747.5</td>
<td>76.0 (58.3–89.6)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>22.4 ± 0.7</td>
<td>4 (4.0)</td>
<td>4 (4.2)</td>
<td>Other 5 (0.5)</td>
<td>South America 106 (9.8)</td>
<td>10 (0.3)</td>
<td>4 (4.0)</td>
<td>4 (4.0)</td>
<td>4 (4.0)</td>
<td>4 (4.0)</td>
<td>10 (0.3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 (1.8)</td>
<td>3 (0.3)</td>
<td>3 (0.3)</td>
<td>Black 20 (1.8)</td>
<td></td>
<td>2 (1.8)</td>
<td>2 (1.8)</td>
<td>2 (1.8)</td>
<td>2 (1.8)</td>
<td>2 (1.8)</td>
<td>2 (1.8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>576 (18.5)</td>
<td>79.2 (77.8)</td>
<td>79.2 (77.8)</td>
<td></td>
<td></td>
<td>776 (71.5)</td>
<td>776 (71.5)</td>
<td>776 (71.5)</td>
<td>776 (71.5)</td>
<td>776 (71.5)</td>
<td>776 (71.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>693 (22.2)</td>
<td>2426 (77.8)</td>
<td>2426 (77.8)</td>
<td></td>
<td></td>
<td>874 (80.5)</td>
<td>874 (80.5)</td>
<td>874 (80.5)</td>
<td>874 (80.5)</td>
<td>874 (80.5)</td>
<td>874 (80.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 (0.4)</td>
<td>2444 (78.4)</td>
<td>2444 (78.4)</td>
<td></td>
<td></td>
<td>818 (77.8)</td>
<td>818 (77.8)</td>
<td>818 (77.8)</td>
<td>818 (77.8)</td>
<td>818 (77.8)</td>
<td>818 (77.8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1421.3</td>
<td>0.16</td>
<td>2518 (69.2)</td>
<td>0.008</td>
<td>1850 (59.3)</td>
<td>0.015</td>
<td>1421 (45.6)</td>
<td>0.001</td>
<td>65.0 ± 18.8</td>
<td>0.001</td>
<td>1421 (45.6)</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1421.3</td>
<td>0.16</td>
<td>2518 (69.2)</td>
<td>0.008</td>
<td>1850 (59.3)</td>
<td>0.015</td>
<td>1421 (45.6)</td>
<td>0.001</td>
<td>65.0 ± 18.8</td>
<td>0.001</td>
<td>1421 (45.6)</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2544 (81.6)</td>
<td>328 (10.5)</td>
<td>1283 (31.5)</td>
<td></td>
<td>301 (27.8)</td>
<td>301 (27.8)</td>
<td>301 (27.8)</td>
<td>301 (27.8)</td>
<td>301 (27.8)</td>
<td>301 (27.8)</td>
<td></td>
<td>301 (27.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2544 (81.6)</td>
<td>328 (10.5)</td>
<td>1283 (31.5)</td>
<td></td>
<td>783 (72.2)</td>
<td>783 (72.2)</td>
<td>783 (72.2)</td>
<td>783 (72.2)</td>
<td>783 (72.2)</td>
<td>783 (72.2)</td>
<td></td>
<td>783 (72.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2544 (81.6)</td>
<td>328 (10.5)</td>
<td>1283 (31.5)</td>
<td></td>
<td>342 (31.5)</td>
<td>342 (31.5)</td>
<td>342 (31.5)</td>
<td>342 (31.5)</td>
<td>342 (31.5)</td>
<td>342 (31.5)</td>
<td></td>
<td>342 (31.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2544 (81.6)</td>
<td>328 (10.5)</td>
<td>1283 (31.5)</td>
<td></td>
<td>103 (9.5)</td>
<td>103 (9.5)</td>
<td>103 (9.5)</td>
<td>103 (9.5)</td>
<td>103 (9.5)</td>
<td>103 (9.5)</td>
<td></td>
<td>103 (9.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2544 (81.6)</td>
<td>328 (10.5)</td>
<td>1283 (31.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data are means ± standard deviation, unless otherwise indicated. Percentages may not total 100 due to rounding. To convert NT-proBNP from pg/ml to ng/L multiply by 1. ACE, angiotensin-converting enzyme; ARB, angiotensin receptor blocker; eGFR, estimated glomerular filtration rate; HF, heart failure; IQR, interquartile range; KCCQ-TSS, Kansas City Cardiomyopathy Questionnaire total symptom score; MRA, mineralocorticoid receptor antagonist; NT-proBNP, N-terminal pro-B-type natriuretic peptide; NYHA, New York Heart Association.
The rates of the pre-specified clinical outcomes according to baseline UA tertile are shown in Figure S1 and according to UA displayed as a continuous variable in Figure 1. The primary composite outcome occurred more frequently in patients with higher UA although, after adjustment for other prognostic variables (including NT-proBNP, diuretic dose and eGFR), the greater risk was only apparent in those in the highest tertile (6.8–13.7 mg/dl), using tertile 1 as reference. Spline analysis suggested a linear increase in risk above a serum concentration of around 7.09 mg/dl. The unadjusted HR per unit increase in UA above 7 mg/dl was 1.35 to 1.39 for the endpoints of interest and the adjusted HRs ranged from 1.13 to 1.18 (Figure 1 and online supplementary Table S1). eGFR slopes according to baseline UA tertile are shown in online supplementary Figure S2; eGFR slope did not vary by UA tertile.

**Clinical outcomes according to uric acid**

The rates of the pre-specified clinical outcomes according to baseline UA tertile are shown in Table 2 and online supplementary Figure S1 and according to UA displayed as a continuous variable in Table 3. Patients with a higher UA were also treated with a mineralocorticoid receptor antagonist (MRA) and digoxin more often than those with a lower UA.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Risk of various endpoints according to uric acid levels at randomization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. events</td>
</tr>
<tr>
<td>Cardiovascular death or worsening HF event</td>
<td></td>
</tr>
<tr>
<td>Uric acid tertile</td>
<td></td>
</tr>
<tr>
<td>T1: &lt;5.4 mg/dl</td>
<td>150</td>
</tr>
<tr>
<td>T2: 5.4–6.7 mg/dl</td>
<td>172</td>
</tr>
<tr>
<td>T3: 6.8–13.7 mg/dl</td>
<td>250</td>
</tr>
<tr>
<td>UA per 1 mg/dl unit increase</td>
<td></td>
</tr>
<tr>
<td>Cardiovascular death</td>
<td></td>
</tr>
<tr>
<td>Uric acid tertile</td>
<td></td>
</tr>
<tr>
<td>T1: &lt;5.4 mg/dl</td>
<td>95</td>
</tr>
<tr>
<td>T2: 5.4–6.7 mg/dl</td>
<td>83</td>
</tr>
<tr>
<td>T3: 6.8–13.7 mg/dl</td>
<td>146</td>
</tr>
<tr>
<td>UA per 1 mg/dl unit increase</td>
<td></td>
</tr>
<tr>
<td>HF hospitalization</td>
<td></td>
</tr>
<tr>
<td>Uric acid tertile</td>
<td></td>
</tr>
<tr>
<td>T1: &lt;5.4 mg/dl</td>
<td>89</td>
</tr>
<tr>
<td>T2: 5.4–6.7 mg/dl</td>
<td>119</td>
</tr>
<tr>
<td>T3: 6.8–13.7 mg/dl</td>
<td>158</td>
</tr>
<tr>
<td>UA per 1 mg/dl unit increase</td>
<td></td>
</tr>
<tr>
<td>All-cause mortality</td>
<td></td>
</tr>
<tr>
<td>Uric acid tertile</td>
<td></td>
</tr>
<tr>
<td>T1: &lt;5.4 mg/dl</td>
<td>122</td>
</tr>
<tr>
<td>T2: 5.4–6.7 mg/dl</td>
<td>102</td>
</tr>
<tr>
<td>T3: 6.8–13.7 mg/dl</td>
<td>166</td>
</tr>
<tr>
<td>UA per 1 mg/dl unit increase</td>
<td></td>
</tr>
</tbody>
</table>

CI, confidence interval; HF, heart failure; HR, hazard ratio; py, person-years; T, tertile.
*aStratified by diabetes status and adjusted for the following baseline variables: history of HF hospitalization, treatment group assignment, age, sex, pulse, systolic blood pressure, body mass index, atrial fibrillation, diabetes, aetiology of HF, left ventricular ejection fraction, New York Heart Association functional classification, N-terminal pro-B-type natriuretic peptide (log), estimated glomerular filtration rate, non-loop diuretic use, loop diuretic use dose, and use of angiotensin-converting enzyme inhibitor, angiotensin receptor blocker or angiotensin receptor–neprilysin inhibitor.
*bWorsening HF event includes unplanned HF hospitalization or urgent visit for worsening HF requiring intravenous diuretic therapy.

Effect of dapagliflozin on outcomes according to uric acid

The benefit of dapagliflozin compared with placebo was consistent for all pre-specified outcomes across the range of UA, whether UA was examined as a categorical (tertile) or continuous variable (Table 3 and Figure 2).
**Effect of dapagliflozin on uric acid level**

At 52 weeks after randomization, the placebo-corrected reduction in UA from baseline was 0.84 mg/dl (95% CI –0.93 to –0.74; \( p < 0.001 \)) (Figure 3A). The reduction according to baseline UA tertile was: T1 (UA <5.4 mg/dl) –0.75 (–0.89 to –0.61) mg/dl; T2 (UA 5.4–6.7 mg/dl); –0.83 (–0.98 to –0.67) mg/dl; T3 (UA >5.8 mg/dl) –0.94 (–1.14 to –0.74) mg/dl (all changes \( p < 0.001 \); no interaction between effect of dapagliflozin and UA tertile). A ‘waterfall plot’ of change in UA is shown in online supplementary Figure S3.

The reduction in UA was consistent in most subgroups of interest, including patients treated with an angiotensin receptor blocker or sacubitril/valsartan at baseline and patients treated with other uricosuric drugs and drugs inhibiting UA production (Figure 3B). However, there was evidence of a greater reduction in UA in patients without diabetes and lower glycated haemoglobin (HbA1c).

A total of 2500 patients had UA levels checked at 12-month follow-up. The proportion of those achieving a level of <6.0 mg/dl at 12 months was 72.7% (\( n = 930/1278 \)) in the dapagliflozin group and 51.2% in the placebo group (\( n = 626/1222 \)) (\( p < 0.001 \)).

**Use of uric acid-lowering agents before and after randomization**

At baseline, 664 patients (14.0%) were taking a treatment inhibiting UA production (allopurinol, febuxostat, or topiramate) and 24 participants (0.5%) were treated with a drug increasing UA excretion (benzbromarone, probenecid, or sulfinpyrazone). A UA-lowering agent was initiated in 104 (4.4%) patients after randomization in the placebo group, as compared to 51 (2.1%) among those assigned to dapagliflozin (between-group \( p < 0.001 \)). The number of patients who had a serious adverse event related to gout during follow-up was 4/2368 (0.17%) in the placebo group versus 2/2368 (0.08%) among those receiving dapagliflozin (non-serious adverse events related to gout were not collected).
considerably higher than the 5%–20% prevalence reported in the USA. In the DAPA-HF cohort, 29.4% of men and 39.2% of women had hyperuricaemia. A linear risk increase for each 1 mg/dl increase in UA (cardiovascular death increased by 7.09 mg/dl and the risk of the primary endpoint increased by 9% for each 1 mg/dl increase in UA) is notable because hyperuricaemia is common in this population. Using recommended sex-specific cut-offs of 6.0 mg/dl (∼360 μmol/L) in females and 7.0 mg/dl (∼420 μmol/L) in males, we found that 29.4% of men and 39.2% of women had hyperuricaemia, considerably higher than the 5%–20% prevalence reported in the general population but consistent with other studies in heart failure.

The independent prognostic importance of UA continues to be debated. For example, while the GISSI-HF investigators reported an association between death from cardiovascular causes, death from any cause and hospitalization for heart failure, their multivariate analysis did not include natriuretic peptides. More recently, UA was found to remain predictive of outcomes in PARADIGM-HF, even after adjustment for NT-proBNP level and our data support this observation.

Although higher UA is related to worse outcomes, the explanation for this association is not clear and a cause-and-effect relationship has not been established. Specifically, several randomized controlled trials have failed to demonstrate a benefit of the non-selective xanthine oxidase inhibitor, allopurinol and its metabolite oxypurinol, in patients with heart failure, although none of these was a large mortality/morbidity trial. There are no completed trials with the novel xanthine oxidase inhibitors, febuxostat and topiroxostat, in patients with heart failure.

While not shown to improve heart failure outcomes, lowering UA is still needed in some patients, primarily to reduce the risk of gout or recurrence of gout. Overall, 10.3% of our patients had a history of gout, 14.5% were prescribed a UA-lowering treatment at baseline, and 6.0% had a UA ≥9 mg/dl, the suggested threshold for initiating prophylactic UA-lowering therapy. Intolerance of conventional UA-lowering treatments is common, particularly in some Asian ethnic groups, and serious adverse effects may occur, including hypersensitivity reactions (e.g., Stevens–Johnson syndrome with allopurinol). Drug interactions are also common (including with furosemide and angiotensin-converting enzyme inhibitors).

Consequently, avoidance of the use of these drugs is preferable.

**Use of other drugs after randomization**

No patient in either group was started on colchicine after randomization. During follow-up, patients in the dapagliflozin group were less likely to have an increase in diuretic dose (odds ratio 0.74, 95% CI 0.57–0.96) and more likely to have a reduction in diuretic dose (odds ratio 1.6, 95% CI 1.21–2.11).

**Discussion**

Many patients in DAPA-HF had an elevated UA and higher UA was associated with a greater risk of the primary outcome of worsening heart failure or cardiovascular death in this contemporary HFpEF cohort receiving excellent conventional therapy. Spline analysis indicated a linear risk above a UA concentration of approximately 6.0 mg/dl (conventional UA-lowering treatments is common, particularly in some Asian ethnic groups, and serious adverse effects may occur, including hypersensitivity reactions (e.g., Stevens–Johnson syndrome with allopurinol). Drug interactions are also common (including with furosemide and angiotensin-converting enzyme inhibitors). Consequently, avoidance of the use of these drugs is preferable.

**Table 3 Effect of randomized treatment on outcomes according to uric acid tertile**

<table>
<thead>
<tr>
<th>Tertile 1 (n = 1086)</th>
<th>Tertile 2 (n = 1052)</th>
<th>Tertile 3 (n = 981)</th>
<th>p for interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dapagliflozin (n = 546)</td>
<td>Placebo (n = 540)</td>
<td>Dapagliflozin (n = 545)</td>
</tr>
<tr>
<td>Cardiovascular death or worsening HF event</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n (%)</td>
<td>65 (11.9)</td>
<td>85 (15.7)</td>
<td>90 (16.5)</td>
</tr>
<tr>
<td>Rate (95% CI)</td>
<td>8.2 (6.4–10.5)</td>
<td>11.3 (9.1–13.9)</td>
<td>11.3 (9.2–13.9)</td>
</tr>
<tr>
<td>Hazard ratioa (95% CI)</td>
<td>0.71 (0.52–0.99)</td>
<td>1.00 (0.74–1.35)</td>
<td>0.70 (0.55–0.90)</td>
</tr>
<tr>
<td>Cardiovascular death</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No (%)</td>
<td>39 (7.14)</td>
<td>56 (10.37)</td>
<td>41 (7.52)</td>
</tr>
<tr>
<td>Rate (95% CI)</td>
<td>4.8 (3.5–6.5)</td>
<td>7.1 (5.5–9.2)</td>
<td>4.9 (3.6–6.7)</td>
</tr>
<tr>
<td>Hazard ratioa (95% CI)</td>
<td>0.65 (0.43–0.98)</td>
<td>0.90 (0.58–1.38)</td>
<td>0.96 (0.69–1.33)</td>
</tr>
<tr>
<td>HF hospitalization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No (%)</td>
<td>42 (7.7)</td>
<td>47 (8.7)</td>
<td>60 (11.0)</td>
</tr>
<tr>
<td>Rate (95% CI)</td>
<td>3.9 (3.9–7.2)</td>
<td>6.2 (4.7–8.3)</td>
<td>7.5 (5.8–9.7)</td>
</tr>
<tr>
<td>Hazard ratioa (95% CI)</td>
<td>0.84 (0.56–1.28)</td>
<td>0.92 (0.64–1.32)</td>
<td>0.59 (0.43–0.82)</td>
</tr>
<tr>
<td>All-cause mortality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No (%)</td>
<td>49 (9.0)</td>
<td>73 (13.5)</td>
<td>51 (9.4)</td>
</tr>
<tr>
<td>Rate (95% CI)</td>
<td>6.0 (4.5–7.9)</td>
<td>9.3 (7.4–11.6)</td>
<td>6.1 (4.6–8.0)</td>
</tr>
<tr>
<td>Hazard ratioa (95% CI)</td>
<td>0.63 (0.44–0.90)</td>
<td>0.91 (0.62–1.35)</td>
<td>1.00 (0.73–1.35)</td>
</tr>
</tbody>
</table>

CI, confidence interval; HF, heart failure.

*aHazard ratio for treatment adjusted for history of HF hospitalization (apart from all-cause death) and stratified by diabetes status.

© 2022 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
Therefore the finding that dapagliflozin reduced UA concentration is potentially clinically relevant. Of interest, the reduction in UA at 52 weeks in DAPA-HF was 0.84 mg/dl (95% CI −0.93 to −0.74), which was more than twice the mean placebo-corrected reduction in serum UA of 0.37 (95% CI 0.42–0.31) mg/dl with empagliflozin at 52 weeks in EMPA-REG OUTCOME. Although it is difficult to compare across trials and in different medical conditions, a recent systematic review and network meta-analysis has suggested there may be differences in the size of UA reduction with different SGLT2 inhibitors, at least in people with type 2 diabetes.22 Although the average reduction in UA was still modest in DAPA-HF, it did result in more patients achieving an ideal UA level at 12 months (<6.0 mg/dl) compared with placebo (72.7% vs. 51.2%) and the rate of initiation of a new UA-lowering agent was halved over the median follow-up of 18.2 months (2.1% vs. 4.4%; \( p < 0.001 \)).26 We did not have data on gouty flares, although a reduction in these was demonstrated in the CANVAS trials (from 2.6 patients per 1000 person-years in the placebo group to 2.0 per 1000 person-years in the canagliflozin group; HR 0.64, 95% CI 0.41–0.99; \( p = 0.046 \)).43

Although the UA-lowering action of dapagliflozin was both statistically and clinically significant, the size of the reduction was modest and around a half to a third of that observed with xanthine oxidase inhibitors, albeit in patients with higher baseline UA concentrations.44 Importantly, however, the UA-lowering action of dapagliflozin was similar in patients treated and not treated with a conventional UA-lowering agent that is, appears to be mechanistically distinct.

Sodium–glucose cotransporter inhibitors are thought to reduce UA by increasing the rate of urinary UA excretion. Non-reabsorbed glucose is thought to compete for the facilitated glucose transporter member 9 isoform 2 in the proximal renal tubule, a major regulator of urate homeostasis.22 This may explain why there was an interaction between baseline diabetes status (and HbA1c level) and the UA-lowering efficacy of dapagliflozin, whereby the reduction in UA was greater in...
Dapagliflozin and uric acid concentration

Figure 3  (A) Mean (and standard error of the mean, SE) uric acid (UA) by randomized treatment at 0 and 52 weeks. (B) Effect of treatment (dapagliflozin vs. placebo) on UA across subgroups of interest (figure panel shows change in UA from baseline). ARNI, angiotensin receptor–neprilysin inhibitor; CKD, chronic kidney disease; HbA1c, glycated haemoglobin; MRA, mineralocorticoid receptor antagonist. 

High/low HbA1c defined as levels above/below median value of 6.1%. Dispersion lines represent 95% confidence intervals.

Conclusions
Uric acid was an independent predictor of worse outcomes in DAPA-HF even after multivariable adjustment including natriuretic peptides. Compared with placebo, dapagliflozin reduced UA and improved outcomes irrespective of UA concentration in patients with HFrEF.

Acknowledgments
DAPA-HF was funded by AstraZeneca. JJVM is supported by a British Heart Foundation Centre of Research Excellence Grant RE/18/6/34217. Conflict of interest: P.W. reports grant income from Roche Diagnostics, AstraZeneca, Boehringer Ingelheim, and Novartis outside the submitted work. K.F.D.'s employer, the University of Glasgow, has been remunerated by AstraZeneca for working on the DAPA-HF trial; K.F.D reports personal fees from AstraZeneca and Eli Lilly outside the submitted work. D.A.M. reports grants to the TIMI Study Group from Abbott Laboratories, Amgen, Anthos Therapeutics, AstraZeneca, BRAHMS, Eisai, GlaxoSmithKline, Medicines Co., Merck, Novartis, Pfizer, Roche Diagnostics, Quark, Siemens, and Takeda, and consultant fees from InCardia, Merck & Co, Novartis, and Roche Diagnostics. P.S.J.'s employer, the University of Glasgow, has been remunerated by AstraZeneca.

Supplementary Information
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Conflict of interest: P.W. reports grant income from Roche Diagnostics, AstraZeneca, Boehringer Ingelheim, and Novartis outside the submitted work. K.F.D.’s employer, the University of Glasgow, has been remunerated by AstraZeneca for working on the DAPA-HF trial; K.F.D reports personal fees from AstraZeneca and Eli Lilly outside the submitted work. D.A.M. reports grants to the TIMI Study Group from Abbott Laboratories, Amgen, Anthos Therapeutics, AstraZeneca, BRAHMS, Eisai, GlaxoSmithKline, Medicines Co., Merck, Novartis, Pfizer, Roche Diagnostics, Quark, Siemens, and Takeda, and consultant fees from InCardia, Merck & Co, Novartis, and Roche Diagnostics. P.S.J.’s employer, the University of Glasgow, has been remunerated by AstraZeneca.

© 2022 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
for working on the DAPA-HF trial and the DELIVER trial; PSJ received personal fees for lectures at Vifor Pharma, and advisory board fees from AstraZeneca, Bayer, Bristol-Myers Squibb, and Novartis; and has participated in clinical trials from AstraZeneca, Boehringer Ingelheim, Celladon, Cytokinetics, Eidos, Gilead, GlaxoSmithKline, IonIS, Lilly, Mesoblast, MyoKardia, National Institutes of Health National Heart, Lung, and Blood Institute, Neurotronic, Novartis, Novo Nordisk, Resparicida, Sanofi Pasteur, Theracos, and US2 Al; E.O.M. served as consultant and speaker for AstraZeneca, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, Eli Lilly and Co, and Novo Nordisk; has received grants and research support from Boehringer Ingelheim, Eli Lilly, and Merck & Co; and has received research grant support from AstraZeneca and Boehringer Ingelheim. M.S.S. and N.S. have researched patients; A.H., A.M.L., D.L., and M. McDowell are employees of AstraZeneca. K.McD. has nothing to disclose.

FAM reports personal fees from AstraZeneca.

PP reports personal fees for consultancy and speakers bureau from AstraZeneca, Boehringer Ingelheim, Vifor Pharma, Servier, Bayer, Bristol Myers Squibb, Respcordia, Berlin-Chemie, Cibimet, Novartis and RenalGuard; other support for participation in clinical trials from Boehringer Ingelheim, Amgen, Vifor Pharma, Bayer, Bristol Myers Squibb, Cibimet, Novartis and RenalGuard; and research grants to his institution from Vifor Pharma.

SDS received payment to his institution for participation in DAPA-HF; received grants to his institution from Actelion, Alnylam, Amgen, AstraZeneca, Bellerophon, Bayer, Bristol Myers Squibb, Celladon, Cytokinetics, Eidos, Gilead, GlaxoSmithKline, IonIS, Lilly, Mesoblast, MyoKardia, National Institutes of Health National Heart, Lung, and Blood Institute, Neurotronic, Novartis, Novo Nordisk, Resparicida, Sanofi Pasteur, Theracos, and US2 Al; received fees for consulting and speakers for AstraZeneca, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, Cardion, Cardurion, Corvia, Cytokinetics, Daiichi-Sanyo, GlaxoSmithKline, Lilly, Merck, Myokardia, Novartis, Roche, Theracos, Quantum Genomics, Cardurion, Janssen, Cardiac Dimensions, Tenaya, Sanofi Pasteur, Dinaqor, Tremeta, CellProThera, Moderna, American Regent, and Sarepta; and received honoraria for lectures from Novartis and AstraZeneca.

References

Dapagliflozin and uric acid concentration


