Transcriptome analysis reveals the contribution of oligodendrocyte and radial glia-derived cues for maintenance of microglia identity

Timmerman, Raissa; Zuiderwijk-Sick, Ella A.; Oosterhof, Nynke; 't Jong, Anke E.J.; Veth, Jennifer; Burm, Saskia M.; van Ham, Tjakko J.; Bajramovic, Jeffrey J.

Published in:
Glia

DOI:
10.1002/glia.24136

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Transcriptome analysis reveals the contribution of oligodendrocyte and radial glia-derived cues for maintenance of microglia identity

Raissa Timmerman¹ | Ella A. Zuiderwijk-Sick¹ | Nynke Oosterhof²,³ | Anke E. J. ‘t Jong¹ | Jennifer Veth¹ | Saskia M. Burm¹ | Tjakko J. van Ham² | Jeffrey J. Bajramovic¹

¹Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
²Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
³European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands

Correspondence
Jeffrey J. Bajramovic, Alternatives Unit, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands.
Email: bajramovic@bprc.nl

Abstract
Microglia are increasingly being recognized as druggable targets in neurodegenerative disorders, and good in vitro models are crucial to address cell biological questions. Major challenges are to recapitulate the complex microglial morphology and their in vivo transcriptome. We have therefore exposed primary microglia from adult rhesus macaques to a variety of different culture conditions including exposure to soluble factors as M-CSF, IL-34, and TGF-β as well as serum replacement approaches, and compared their morphologies and transcriptomes to those of mature, homeostatic in vivo microglia. This enabled us to develop a new, partially serum-free, monoculture protocol, that yields high numbers of ramified cells. We also demonstrate that exposure of adult microglia to M-CSF or IL-34 induces similar transcriptomes, and that exposure to TGF-β has much less pronounced effects than it does on rodent microglia. However, regardless of culture conditions, the transcriptomes of in vitro and in vivo microglia remained substantially different. Analysis of differentially expressed genes inspired us to perform 3D-spherical coculture experiments of microglia with oligodendrocytes and radial glia. In such spheres, microglia signature genes were strongly induced, even in the absence of neurons and astrocytes. These data reveal a novel role for oligodendrocyte and radial glia-derived cues in the maintenance of microglial identity, providing new anchor points to study microglia in health and disease.

Keywords
IL-34, M-CSF, microglia, oligodendrocytes, serum, TGF-β, transcriptome

1 | INTRODUCTION

Microglia, the resident tissue macrophages of the central nervous system (CNS), are key players during brain development, homeostasis and disease (Aloisi, 2001; Bajramovic, 2011; Li & Barres, 2018; Paolicelli et al., 2011). Activation or dysfunction of microglia is linked to classical neuroinflammatory diseases such as viral encephalitis and multiple sclerosis (MS), but also to neurodegenerative diseases like Alzheimer’s disease (AD), Parkinson’s disease, Huntington’s disease and amyotrophic lateral sclerosis (Hall et al., 1998; Haukedal & Freude, 2019; Heneka et al., 2014; Kim & Joh, 2006; McGeer et al., 1988; Perry et al., 2010). In addition, many of the genes recently identified as risk factors for the development of AD in genome-wide association studies, such as APOE, TREM2, and CD33, are expressed...
by microglia (Crotti & Ransohoff, 2016; Karch & Goate, 2015; Zhang et al., 2016). Microglia, therefore, represent promising cellular targets for therapeutic intervention in neuroinflammatory and neurodegenerative diseases.

To obtain detailed cellular biological knowledge of microglia, good in vitro models are instrumental. Different in vitro systems have been developed over time, ranging from cell lines to primary microglia to stem cell-derived microglia-like cells, all with their own characteristic features (Timmerman et al., 2018). Primary microglia cultures, although laborious and relatively short-lived, have among others been used to provide insight into tissue-specific features of innate immune responses (Burm et al., 2015, 2016; Timmerman et al., 2021). Recent studies have however demonstrated that there are important differences in the morphology and the transcriptome of primary in vitro microglia as compared to those of mature homeostatic ex vivo microglia, both in humans and in rodents (Bohlen et al., 2017; Butovsky et al., 2014; Gosselin et al., 2017; Mizee et al., 2017). The expression levels of a variety of gene products were found to differ and most importantly, expression of many of the microglia signature genes (Bennett et al., 2016; Butovsky et al., 2014; Galatro, Vainchtein, et al., 2017; Gosselin et al., 2017; Olah et al., 2018; Patir et al., 2019; Zhang et al., 2014; Zhang et al., 2016), such as P2RY12, TMEM119, and GPR34 was lost in vitro.

Multiple studies have been devoted to the optimization of primary microglia cultures. Gene knockout studies have demonstrated the importance of colony stimulating factor-1 (CSF-1) receptor-induced signaling for microglial proliferation and survival (Erblitch et al., 2011). There are two reported ligands for the CSF-1 receptor, macrophage colony-stimulating factor (M-CSF) and interleukin (IL)-34, and at present it is not known whether primary microglia exposed to either growth factor develop differently. In addition, transcriptome comparisons of ex vivo and primary rodent microglia have pinpointed the importance of exposure to transforming growth factor beta (TGF-β) to induce the expression of the adult microglial gene expression profile (Butovsky et al., 2014), but its importance for primary microglia of primate origin remains to be established. Finally, it was recently reported that exposure of primary microglia to serum profoundly alters their gene expression profile, and a new serum-free culture medium has been developed (Bohlen et al., 2017). Despite these advances, important challenges remain to culture microglia that resemble the complex ramified morphology of in vivo microglia and express the signature genes that determine microglial identity.

We here analyzed the cellular morphologies and the transcriptomes of primary microglia that were cultured under different conditions, and compared these to ex vivo microglia. To bridge the gap between rodents and humans, we isolated primary microglia from rhesus macaques, outbred animals that are evolutionary close to humans (Burm et al., 2015, 2016; Van Der Putten et al., 2012; Zuiderwijk-Sick et al., 2007). We exposed adult rhesus microglia to M-CSF and IL-34, both in the presence and absence of TGF-β. We also explored different serum exposure and washout culture regimes, and finally, we have experimented with a co-culture system containing microglia, oligodendrocytes, and radial glia. We report the development of a new, partially serum-free, monoculture protocol that yields high numbers of ramified cells. In addition, our co-culture system revealed an unexpected role for oligodendrocyte and radial glia-derived cues in the maintenance of microglial identity.

2 MATERIALS AND METHODS

2.1 Animals

Brain tissue was obtained from adult rhesus macaques (*Macaca mulatta*) without neurological disease that became available from the out-bred breeding colony. No animals were sacrificed for the exclusive purpose of microglia isolation. Better use of experimental animals contributes to the priority 3Rs program of the Biomedical Primate Research Centre. Individual identification data of the animals are listed in Table 1.

2.2 Primary cell isolation

Ex vivo microglia isolation was carried out as described previously (Galatro, Vainchtein, et al., 2017). Frontal subcortical white matter samples were collected in ex vivo microglia medium (EMM) comprised of HBSS (Gibco Life Technologies, Bleiswijk, The Netherlands) supplemented with 15 mM HEPES (Lonza, Cologne, Germany) and 0.6% (wt/vol) glucose (Sigma-Aldrich, Saint Louis, MO). Meninges and blood vessels were removed manually. The brain tissue was dissociated in a glass tissue homogenizer and filtered using a 300 μm sieve followed by a 106 μm sieve to obtain a single-cell suspension. Cells were pelleted by centrifugation at 220g for 10 min at 4°C. The pellet was resuspended in 22% (vol/vol) Percoll (Cytiva, Uppsala, Sweden), 37 mM NaCl and 75% (vol/vol) myelin gradient buffer (5.6 mM NaH₂PO₄, 20 mM Na₂HPO₄, 140 mM NaCl, 5.4 mM KCl, 11 mM glucose, pH 7.4). A layer of PBS (Gibco) was added on top, and this gradient was centrifuged at 950g for 20 min at 4°C (minimal acceleration, no brake). The myelin layer and the remaining supernatant were carefully removed and the pellet was resuspended in a solution of 60% Percoll, which was overlaid with 30% Percoll and layered with PBS, respectively, and centrifuged at 800g for 25 min at 4°C (minimal acceleration, no brake). The cell layer at the 60%-30% Percoll interface was collected with a Pasteur pipette, washed with EMM and centrifuged at 600g for 10 min at 4°C. The final pellet was resuspended in HBSS without phenol red (Gibco) supplemented with 15 mM HEPES, 0.6% glucose and 1 mM EDTA (Invitrogen; Life technologies). Fc receptors were blocked with human Fc receptor binding inhibitor (eBioscience, Thermo Fisher Scientific, Cat#14-9161-73, RRID:AB_468582, Waltham, MA) for 15 min on ice. For fluorescence-activated cell sorting, cells were incubated for 25 min on ice, in the dark, with anti-human CD11b-PE (1:25, Clone: ICRF44, BioLegend, Cat#301306, RRID:AB_314158, Uithoorn, The Netherlands) and anti-rhesus CD45-FITC (1:25, Clone: MB4-6D6, Miltenyi Biotec, Cat# 130-091-898, RRID:AB_244324 Bergisch Gladbach, Germany).
Subsequently, cells were washed with HBSS without phenol red and centrifuged at 300 g for 3 min at 4 °C. The cells were passed through a 35 μm nylon mesh, collected in round-bottom tubes (Corning Costar, Europe, Badhoevedorp, the Netherlands) and sorted using a Beckman Coulter MoFloAstrio cell sorter. Cells were sorted based on CD11b^{high}/CD45^{int} expression and negative staining for DAPI or the LIVE/DEAD Fixable Red Dead Cell stain (Thermo Fisher Scientific) and collected in RNAlater (Qiagen GmbH, Hilden, Germany). Sorted cells were centrifuged at 5000 g for 10 min and pellets were lysed in RLT-Plus buffer (Qiagen) for RNA extraction.

Microglia for primary cell cultures were isolated as described previously with a few modifications (Burm et al., 2015; van der Putten et al., 2009; Zuiderwijk-Sick et al., 2007). In short, Frontal subcortical white matter samples were collected in primary microglia medium (PMM) comprised of 1:1 v/v DMEM (high glucose)/HAM F10 Nutrient mixture (Gibco) supplemented with 10% v/v heat-inactivated FBS (TICO Europe, Amstelveen, The Netherlands), 2 mM glutamax, 50 units/ml penicillin and 50 μg/ml streptomycin (all from Gibco). microglia isolations were initiated from cubes of 4.5 g tissue that were depleted of meninges and blood vessels manually. Tissue was chopped into cubes of less than 2 mm² by using gentleMACS™ tubes (Miltenyi Biotec) and incubated at 37 °C for 20 min in PBS containing 0.25% (w/v) trypsin (Gibco) and 1 mg/ml bovine pancreatic DNAse I (Sigma-Aldrich) and mixed every 5 min. The supernatant was discarded (no centrifugation), the pellet was washed in PMM and passed over a 100 μm nylon cell strainer (Falcon; Becton Dickinson Labware Europe) and centrifuged for 7 min at 524 g. The pellet was resuspended in 22% (vol/vol) Percoll, 37 mM NaCl and 75% (vol/vol) myelin gradient buffer (5.6 mM NaH₂P₂O₄, 20 mM Na₂HPO₄, 137 mM NaCl, 5.3 mM KCl, 11 mM glucose, 3 mM BSA fraction V, pH 7.4). A layer of myelin gradient buffer was added on top, and this gradient was centrifuged at 1561 g for 25 min (minimal brake). The pellet was washed in PMM and centrifuged for 7 min at 524 g. Cells were plated at a density of 6.5 × 10⁴ cells/cm² in tissue-culture treated well plates (Corning Costar Europe) in PMM. For sphere cultures, cells were plated at a density of 10.5 × 10⁴ cells/cm² in ultra-low attachment plates (Corning Costar Europe) and placed on a Hi/Lo shaker (IBI Scientific, Dubuque, IA) at 15 rpm.

2.3 Cell culture

2.3.1 Microglia monoculture

After overnight incubation at 37 °C in a humidified atmosphere containing 5% CO₂, unattached cells and myelin debris were removed by washing with PBS and replaced by fresh standard medium (SM; Table S1) comprised of 1:1 v/v DMEM (high glucose)/HAM F10 Nutrient mixture supplemented with 10% v/v heat-inactivated FBS, 2 mM glutamax, 50 units/ml penicillin and 50 μg/ml streptomycin supplemented with 20 ng/ml (≥ 4 units/ml) M-CSF (PeproTech, London, UK) or 100 ng/ml IL-34 (Peprotech), with or without 12.5 ng/ml TGF-β1 (Miltenyi Biotec) or replaced by fresh serum-free microglial (SFM; Table S1) culture medium comprised of DMEM/F12 (Gibco) supplemented with 0.5 mM glutamax, 50 units/ml penicillin, 50 μg/ml streptomycin, 5 μg/ml N-acetyl-L-cysteine (Sigma-Aldrich), 5 μg/ml insulin (Sigma-Aldrich), 100 μg/ml apo-transferrin (Sigma-Aldrich), 100 ng/ml sodium selenite (Sigma-Aldrich), 20 ng/ml

<table>
<thead>
<tr>
<th>Donor nr.</th>
<th>Monkey ID nr.</th>
<th>Age (years)</th>
<th>Sex</th>
<th>Weight (kg)</th>
<th>Origin</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R11065</td>
<td>5</td>
<td>Male</td>
<td>11.0</td>
<td>India</td>
<td>In vitro</td>
</tr>
<tr>
<td>2</td>
<td>R14033</td>
<td>2</td>
<td>Male</td>
<td>2.7</td>
<td>India</td>
<td>In vitro</td>
</tr>
<tr>
<td>3</td>
<td>R09080</td>
<td>7</td>
<td>Female</td>
<td>6.0</td>
<td>India</td>
<td>In vitro</td>
</tr>
<tr>
<td>4</td>
<td>R12102</td>
<td>4</td>
<td>Female</td>
<td>4.0</td>
<td>India</td>
<td>In vitro</td>
</tr>
<tr>
<td>5</td>
<td>R09105</td>
<td>7</td>
<td>Female</td>
<td>5.6</td>
<td>India</td>
<td>Ex vivo</td>
</tr>
<tr>
<td>6</td>
<td>R08072</td>
<td>8</td>
<td>Male</td>
<td>10.6</td>
<td>India</td>
<td>Ex vivo</td>
</tr>
<tr>
<td>7</td>
<td>R08094</td>
<td>8</td>
<td>Male</td>
<td>11.6</td>
<td>India</td>
<td>Ex vivo</td>
</tr>
<tr>
<td>8</td>
<td>R07015</td>
<td>9</td>
<td>Male</td>
<td>12.2</td>
<td>India</td>
<td>Ex vivo</td>
</tr>
<tr>
<td>9</td>
<td>R11110</td>
<td>7</td>
<td>Female</td>
<td>7.8</td>
<td>India</td>
<td>In vitro</td>
</tr>
<tr>
<td>10</td>
<td>R15031</td>
<td>3</td>
<td>Female</td>
<td>4.3</td>
<td>India</td>
<td>In vitro</td>
</tr>
<tr>
<td>11</td>
<td>R15028</td>
<td>3</td>
<td>Male</td>
<td>6.3</td>
<td>India</td>
<td>In vitro</td>
</tr>
<tr>
<td>12</td>
<td>R14052</td>
<td>4</td>
<td>Male</td>
<td>6.4</td>
<td>India</td>
<td>In vitro</td>
</tr>
<tr>
<td>13</td>
<td>R04030</td>
<td>15</td>
<td>Female</td>
<td>6.4</td>
<td>India</td>
<td>In vitro</td>
</tr>
<tr>
<td>14</td>
<td>R08124</td>
<td>11</td>
<td>Female</td>
<td>5.1</td>
<td>India</td>
<td>In vitro</td>
</tr>
<tr>
<td>15</td>
<td>R08130</td>
<td>11</td>
<td>Female</td>
<td>5.5</td>
<td>India</td>
<td>In vitro</td>
</tr>
<tr>
<td>16</td>
<td>R08007</td>
<td>12</td>
<td>Female</td>
<td>6.3</td>
<td>Mix</td>
<td>In vitro</td>
</tr>
<tr>
<td>17</td>
<td>R05080</td>
<td>14</td>
<td>Female</td>
<td>5</td>
<td>India</td>
<td>In vitro</td>
</tr>
<tr>
<td>18</td>
<td>R06005</td>
<td>13</td>
<td>Female</td>
<td>8.2</td>
<td>India</td>
<td>In vitro</td>
</tr>
<tr>
<td>19</td>
<td>R97062</td>
<td>22</td>
<td>Female</td>
<td>7.5</td>
<td>India</td>
<td>In vitro</td>
</tr>
</tbody>
</table>
(≥4 units/ml) M-CSF, 12.5 ng/ml TGF-β1, 1.5 μg/ml ovine wool cholesterol (Avanti Polar Lipids, Alabaster, AL), 1 μg/ml heparan sulfate (Cayman Chemical, Ann Arbor, MI), 1 ng/ml gonoic acid (Cayman Chemical).

2.3.2 | SM culture

All cells were kept in culture for 8 days without passaging. Half of the medium was replaced by fresh SM containing new growth factors every 3 days.

2.3.3 | SFM culture

All cells were kept in culture for 8 or 22 days without passaging. Half of the medium was replaced by fresh SFM medium containing new growth factors every 2–3 days.

2.3.4 | SM culture followed by SFM culture

All cells were kept in culture for 8, 15, or 22 days without passaging. Cells were exposed to SM for the first 4 days. At day 4, cells were washed twice with PBS and replaced by SFM medium. From day 4, half of the medium was replaced by fresh SFM medium containing new growth factors every 2–3 days.

2.3.5 | Microglia sphere culture

Cells were incubated overnight at 37°C in a humidified atmosphere containing 5% CO₂, whereafter 20 ng/ml M-CSF was added. At day 4, spheres were carefully transferred to a new well containing SFM and were kept in culture for 11 additional days without passaging. Half of the culture medium was carefully replaced by fresh SFM containing new growth factors every 2–3 days.

2.4 | RNA extraction and library synthesis

Total cellular RNA was isolated using the RNeasy minikit (Qiagen) according to manufacturer’s protocol. For donor nr. 1–12 (Table 1) the NEBNext Ultra Directional RNA Library Prep Kit for Illumina (New England Biolabs, Ipswich, MA) was used to prepare and process the samples. Briefly, mRNA was isolated from total RNA using oligo(dT) magnetic beads. After fragmentation of the mRNA, cDNA synthesis was performed followed by ligation of sequencing adapters and PCR amplification. The quality and yield after sample preparation were measured with a fragment analyzer (Agilent Technologies, Amstelveen, The Netherlands). Clustering and sequencing using the Illumina NextSeq 500 was performed according to manufacturer’s protocols.

For donor nr. 13–16 (Table 1) The NEBNext Low Input RNA Library Prep Kit for Illumina (New England Biolabs) was used to process the samples. The sample preparation was performed according to manufacturer’s protocol. Briefly, cDNA was synthesized and amplified from poly A tailed mRNA followed by ligation with the sequencing adapters and PCR amplification. The quality and yield after sample preparation was measured with the Fragment Analyzer (Agilent Technologies). Clustering and sequencing using the Illumina NovaSeq 6000 was performed according to manufacturer’s protocols.

Prior to alignment, the reads were trimmed for adapter sequences using Trimomatic v0.30. Presumed adapter sequences were removed from the read when the bases matched a sequence in the adapter sequence set (TruSeq adapters) with 2 or less mismatches and an alignment score of at least 12.

The Macaca mulatta genomic reference (Macaca_mulatta.Mmul.8.01.dna.toplevel.fa) was used for alignment of the reads for each sample. The reads were mapped to the reference sequence using a short read aligner based on Burrows-Wheeler Transform (Tophat v2.0.14) with default settings. SAMtools v1.3 package (http://htslib.org/, RRID:SCR_002105) was used to sort and index the BAM files. Based on the mapped locations in the alignment file the frequency of how often a read was mapped on a transcript was determined with HTSeq v0.6.1p1 (http://htseq.readthedocs.io/en/release_0.9.1/, RRID:SCR_005514). The counts were saved to count files, which served as input for downstream RNA sequencing analysis.

2.5 | Bioinformatics

BiomaRt Bioconductor Package (https://bioconductor.org/packages/release/bioc/html/biomaRt.html, RRID:SCR_019214) was used to annotate the genes and to generate a gene symbol list (Durinck et al., 2005, 2009). The accession number for the gene level RNA-sequencing data from freshly isolated microglia and cultured primary microglia from rhesus macaques reported in this paper is GEO: GSE171476.

Data were inspected using principal component analysis (PCA) and heatmaps generated with heatmap.2 of Bioconductor package gplots. Differential gene expression analysis was performed with Bioconductor package EdgeR (https://bioconductor.org/packages/release/bioc/html/edgeR.html, RRID:SCR_012802) (Robinson et al., 2010). An overview of all performed differential gene expression analyses can be found in Table S2. Qiagen’s Ingenuity Pathway Analysis (Qiagen, https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis, RRID:SCR_008653) was used to perform pathway analysis. The Molecular Signatures Database (MsigDB, http://software.broadinstitute.org/gsea/msigdb/index.jsp, RRID:SCR_016955) (Newman et al., 2015), a bioinformatic algorithm that allows calculation of cell types composition from gene expression lyses can be found in Table S2. Qiagen’s Ingenuity Pathway Analysis (Qiagen, https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis, RRID:SCR_008653) was used to perform pathway analysis. The Molecular Signatures Database (MsigDB, http://software.broadinstitute.org/gsea/msigdb/index.jsp, RRID:SCR_016863) was used to perform gene ontology analysis and canonical pathway analysis (Liberzon et al., 2011; Subramanian et al., 2005).

To infer the relative abundance of different CNS cell types in spheres, we used CIBERSORT (https://cibersort.stanford.edu/, RRID:SCR_016955) (Newman et al., 2015), a bioinformatic algorithm that allows calculation of cell types composition from gene expression...
profiles. For the signature gene expression file, expression levels of neurons, astrocytes, microglia and oligodendrocytes of GEO: GSE73721 was used (Zhang et al., 2016). For the expression of radial glia signature genes, the transcriptome dataset of Pollen and colleagues was used (Pollen et al., 2015). All CIBERSORT analyses had p values of less than .05. The proportion of the CNS cell types in spheres are displayed in bar plots.

2.6 Immunofluorescence and morphological analysis of monocultured microglia

Cells grown on glass coverslips were fixed for 30 min at RT in 2% PFA in PBS (Affymetrix, Santa Clara, CA), rinsed with PBS and PBS + 0.02% Tween20 (Sigma), respectively, and aspecific binding was blocked by incubation for 30 min in PBS containing 2% normal donkey serum (Abcam, Cambridge, UK). Samples were incubated overnight at 4°C with CX3CR1 antibody (1:400, Abcam, Cat#ab8021, RRID: AB_306203) in PBS containing 0.1% BSA (Sigma), rinsed with PBS + 0.02% Tween20, and incubated for 1 h at RT with donkey anti rabbit-FITC (1:400, Jackson ImmunoResearch Laboratories, West Grove, PA, Cat#711-095-152, RRID:AB_2315776) in PBS containing 0.1% BSA. After extensive washes with PBS, coverslips were mounted using ProLong™ Diamond Antifade + DAPI (Thermo Fisher Scientific) and images were acquired using a Leica DMi6000 fluorescence microscope and LASX software.

Microglial complexity was analyzed using Sholl and fractal analysis. In brief, CX3CR1-positive cell branches were traced using the Simple Neurite Tracer plugin (Longair et al., 2011) in ImageJ (https://imagej.nih.gov/ij/, RRID:SCR_002285) and skeletonized. Of these skeletonized traces, branch intersections with concentric circles per 5 μm steps from the nucleus were counted using a Sholl analysis plugin (Ferreira et al., 2014). Numbers of intersections were averaged per donor and plotted. Subsequently, the area under the curve (AUC) was extracted in which higher AUC values reflect a higher complexity. For fractal analysis, the FracLac plugin (https://imagej.nih.gov/ij/plugins/fraclac/FLHelp/Introduction.htm) for ImageJ was used. Skeletonized images were converted to outlines and fractal dimensions (D_f) of each cell were analyzed as described earlier (Morrison et al., 2017; Young & Morrison, 2018). FracLac calculated the D_f using a box counting protocol, summarized in the reference guide provided for FracLac for ImageJ: https://imagej.nih.gov/ij/plugins/fraclac/FLHelp/BoxCounting.htm. In brief summary, a cell is more complex as D_f approaches 2.

2.7 Immunofluorescence of brain tissue and spheres

For formalin-fixed, paraffin-embedded brain tissue of adult rhesus macaques, 5 μm sections were collected on Superfrost Plus glass slides (VWR international, Leuven, Belgium), dried at 37°C, deparaffinized in xylene and rehydrated through a graded series of ethanol concentrations. Endogenous peroxidase activity was quenched by incubating the slides for 20 min in 0.3% hydrogen peroxide, followed by rinsing in PBS and antigen retrieval by steaming in antigen retrieval buffer at pH 7.5 (IHC world, Woodstock, MD). Slides were cooled to room temperature and rinsed in PBS again. To block aspecific binding, slides were incubated with 10% normal donkey serum (Abcam) in PBS for 20 min at room temperature.

For Tissue-Tek embedded spheres, 2% PFA-fixed 8 μm sections were collected on Superfrost Plus glass slides (VWR), fixed in acetone for 10 min at room temperature, and washed in PBS. Aspecific binding was blocked by incubation with 2% normal donkey serum (Abcam) in PBS for 20 min at room temperature.

Brain tissue and sphere sections were incubated overnight at 4°C with primary antibodies in PBS containing 0.1% BSA (Sigma). Primary antibodies used were anti-Tenascin C (1:50, R and D Systems, Minneapolis, MN, Cat#MAB2138, RRID:AB_2203818), anti-GFAP (1:50, Sigma-Aldrich, Cat#SA5201104, RRID:AB_2827276), anti-IBA1 (1:50, Wako Pure Chemical Industries, Osaka, Japan, Cat#019-19741, RRID:AB_839504) and anti-MBP (1:100, Novus Biologicals, Centennial, CO, Cat#MAB4269, RRID:AB_10552058). Next, sections were rinsed with PBS and incubated with either Alexa-488 or -594-labeled secondary antibodies (1:400; Jackson ImmunoResearch Laboratories, Cat#712-546-153, RRID:AB_2340686; Cat#711-545-152, RRID: AB_2313584; Cat#715-585-150, RRID:AB_2340854) for 90 min at room temperature. After extensive washes with PBS, slides were mounted using Prolonged Gold Antifade Mountant with DAPI (Thermo Fisher Scientific). Images were acquired using a Leica DMi6000 fluorescence microscope and LASX software.

2.8 Statistics

GraphPad Prism 8.0 (http://www.graphpad.com/, RRID:SCR_002798) (GraphPad Software, San Diego, CA) was used for statistical analysis. Sholl analysis curves from which area under the curve data were deduced were created and analyzed using Graphpad Prism 8.0. Statistical details of experiments can be found in the figure legends.

3 RESULTS

3.1 Exposure of primary primate microglia to IL-34 and TGF-β has only moderate effects on their signature gene expression profile

Recent findings have demonstrated that exposure of primary rodent microglia to IL-34 and TGF-β supports cell cultures that better resemble in vivo microglia than exposure to M-CSF only does, which is the standard protocol. To assess whether this also applies to primary microglia from adult outbred primates, we analyzed cell morphologies and profiled the transcriptomes of primary microglia from four adult rhesus macaques that were exposed for 8 days to either M-CSF or IL-34, with or without TGF-β.
Microglial morphologies were highly similar for all different culture conditions (data not shown). Transcriptome analysis suggested that sex, and not culture condition, was the most important component to explain variance (15%) in the dataset (Figure 1a). Unsupervised hierarchical clustering using Spearman’s correlation, further showed that samples from individual donors clustered together rather than samples from similar sex or similar culture conditions (Figure 1b). This demonstrates that the origin of the donor had more impact on the gene expression profiles of individual samples than the culture conditions did. Although variance is normal when working with outbred animals, we had anticipated that in vitro exposure for 8 days to a similar culture regime would have had more profound skewing effects.

We next performed in-depth analyses of the effects of the different culture variables on microglial gene expression. When comparing M-CSF and IL-34-exposed microglia, not a single significant differentially expressed gene (DEG; FC ≥ 2, FDR < 0.05) was found (Table 2). This implicates that M-CSF and IL-34 induce or sustain an almost identical gene expression profile in adult macaque primary microglia.

![FIGURE 1](image)

FIGURE 1 Effects of donor-donor variation and of M-CSF, IL-34, and TGF-β exposure on the transcriptomes of primary microglia. (a) Principal component analysis of the transcriptomes of primary microglia from four adult donors cultured under four different conditions (M-CSF, M-CSF + TGF-β, IL-34, and IL-34 + TGF-β). The first principal component is responsible for 15% of the variance in the dataset, whereas the second principal component is responsible for 13% of the variance. The symbols in the gray area are derived from male donors, whereas the symbols in the white area are derived from female donors. (b) Spearman’s correlation heatmap of the transcriptome of cultured primary microglia. (c) Log-transformed expression (CPM) values of microglial signature genes. M = M-CSF, MT = M-CSF + TGF-β, I = IL-34, IT = IL-34 + TGF-β. EdgeR false discovery rates (FDR) are used to display statistical differences. N = 4 for each culture condition. *FDR < 0.05, ***FDR < 0.005, ****FDR < 0.001

TABLE 2 Numbers of differentially expressed genes (DEG; FC ≥ 2, FDR < 0.05) between primary microglia exposed for 8 days to either M-CSF or IL-34, with or without TGF-β

<table>
<thead>
<tr>
<th>Comparisons</th>
<th>Total DEG</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CSF vs. IL-34</td>
<td>0</td>
</tr>
<tr>
<td>M-CSF vs. M-CSF + TGF-β</td>
<td>297</td>
</tr>
<tr>
<td>IL-34 vs. IL-34 + TGF-β</td>
<td>168</td>
</tr>
<tr>
<td>IL-34 + TGF-β vs. M-CSF + TGF-β</td>
<td>0</td>
</tr>
</tbody>
</table>
FIGURE 2 Transcriptome analysis of primary adult microglia and ex vivo microglia. (a) Principal component analysis of the transcriptome of ex vivo and in vitro microglia cultured under four different culture conditions. Ex vivo and in vitro microglia were derived from different donors. The first principal component is responsible for 59% of the variance in the dataset, whereas the second principal component is responsible for 7% of the variance. The symbols in the gray area are derived from male donors, whereas the symbols in the white area are derived from female donors. (b) Spearman's correlation heatmap of the transcriptomes of in vitro and ex vivo microglia. (c) Gene ontology analysis of differentially expressed genes upregulated in in vitro microglia as compared to ex vivo microglia. Biological processes associated with upregulated DEG were analyzed using the molecular signatures database (Liberzon et al., 2011; Subramanian et al., 2005) FDR = false discovery rate. (d) Expression values in counts per million (CPM) of well-known cell cycle genes of in vitro and ex vivo microglia. EdgeR false discovery rates (FDR) are used to display statistical differences. In vitro n = 16, ex vivo n = 4. Center lines indicate the mean, error bars represent SD, ****FDR < 0.001
which is consistent with data from adult human primary microglia (Walker et al., 2017). When we focused on the effects of TGF-β, we found that exposure to TGF-β was the second important component to explain variance (13%) in our data set (Figure 1a). DEG analyses reveal that the expression levels of 297 genes differed significantly between M-CSF and M-CSF + TGF-β-exposed microglia, and that the expression levels of 168 genes differed significantly between IL-34 and IL-34 + TGF-β-exposed microglia (Table 2, Figure S1 and Table S2). Since TGF-β has been described as pivotal for the expression of microglia signature genes in rodents (Butovsky et al., 2014; Gosselin et al., 2017), we analyzed the log-transformed RNA expression data of six described human and rodent microglia signature genes GPR34, P2RY12, P2RY13, TMEM119, CX3CR1, and OLFM3. Surprisingly, only CX3CR1 was significantly upregulated after TGF-β exposure, both in combination with M-CSF and IL-34 (Figure 1c). OLFM3, a gene described to be positively regulated by TGF-β in mice (Butovsky et al., 2014; Neidert et al., 2018), was even significantly downregulated after TGF-β exposure, and also P2RY12 was downregulated when microglia were exposed to TGF-β in combination with IL-34. We used two pathway analysis applications (IPa and MsigDB) to verify that the TGF-β pathway had indeed been activated (Table S3).

3.2 | Regardless of culture conditions, in vitro microglia are characterized by a proliferative phenotype as compared to in vivo microglia

We next compared the transcriptomes of our in vitro samples with those of ex vivo microglia that were freshly isolated using FACS sorting. In line with published data, major differences in the gene expression profiles of in vitro and ex vivo microglia were observed, regardless of cell culture conditions (Figure 2a and Table 3). The most important component explaining 59% of the variance between the samples, was the in vitro–ex vivo parameter. The second important component explaining 7% of the variance, was as expected sex (Figure 2a). Hierarchical clustering of the in vitro and ex vivo samples demonstrates the profoundness of the in vitro–ex vivo difference (Figure 2b), whereas DEG analyses of ex vivo microglia and the different in vitro microglia cultures (Figure S2 and Table S2) demonstrate that none of the culture regimes resulted in a transcriptome that better reflected the ex vivo transcriptome (Table 3), or resulted in a better mimic of their signature gene expression profile (Figure S3).

In order to gain more insight in the biological processes that were affected in vitro, we performed a gene set enrichment analysis for genes that were upregulated in vitro (Liberzon et al., 2011; Subramanian et al., 2005). Genes upregulated in vitro were linked to gene ontology terms associated with the cell cycle, such as “mitotic cell cycle”, “cell cycle”, and “cell cycle process”. In addition, evidence was found for biological processes associated with cell movement, adhesion and structure (Figure 2c). RNA expression data confirmed that six well-described genes associated with the cell cycle were indeed upregulated in in vitro microglia compared to ex vivo microglia (Figure 2d). These results are in line with recent data of primary adult rat microglia, that were reported to upregulate among others the cell cycle pathway when they were exposed to serum (Bohlen et al., 2017).

3.3 | Short-term serum exposure, followed by a serum-free washout period supports the outgrowth of high numbers of microglia with a complex, ramified morphology

Bohlen and colleagues recently described a novel serum-free culture medium (SFM) containing M-CSF, TGF-β and cholesterol as the minimal supplements to allow survival of microglia in the absence of serum (Bohlen et al., 2017). We tested this SFM for culture of primary adult rhesus macaque microglia. Of note, microglia cultured with SFM were still exposed to serum during the isolation procedure and during the first 16 h after plating of the cells to facilitate cell adhesion. Complete elimination of serum during isolation and plating did not yield viable microglia cultures. Despite the presence of TGF-β and cholesterol, total cell yields after 8 days of culture were around 4-fold lower than with our 10% FCS-containing, standard microglia (SM) medium (Figure 3a). This decrease in cell number hampers downstream experimental analysis, and longer cell culture times did not improve cell yields (data not shown).

Consequently, we tested whether a short period of serum exposure, to facilitate initial survival and proliferation, followed by a period of serum-free washout could positively affect cell yields. We exposed microglia for 4 days to SM followed by exposure to SFM for 4, 11, or 18 days (Figure S4) and compared cell numbers to those of microglia exposed to SM for 8 days. We found that 4 days of serum exposure was sufficient to induce the outgrowth of cell numbers comparable to those obtained with SM, regardless of the duration of the serum-free washout period (Figure 3b). We also studied how different serum-free washout periods affected cellular morphology, using Sholl analysis. Serum-free washout periods of 11 and 18 days resulted in more complex cellular morphologies as compared to microglia cultured with SM.

Table 3 Numbers of differentially expressed genes (DEG; FC ≥ 4, FDR < 0.01) between different in vitro microglia cultures and ex vivo microglia

<table>
<thead>
<tr>
<th>Condition</th>
<th># Genes up in vitro</th>
<th># Genes down in vitro</th>
<th>Total DEG</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CSF</td>
<td>1487</td>
<td>1771</td>
<td>3258</td>
</tr>
<tr>
<td>M-CSF + TGF-β</td>
<td>1410</td>
<td>1434</td>
<td>2844</td>
</tr>
<tr>
<td>IL-34</td>
<td>1499</td>
<td>1579</td>
<td>3077</td>
</tr>
<tr>
<td>IL-34 + TGF-β</td>
<td>1422</td>
<td>1685</td>
<td>3107</td>
</tr>
</tbody>
</table>
FIGURE 3 Legend on next page.
and SM4-SFM4 (Figure 3c) or microglia cultured on SM for 22 days (data not shown). In addition, serum-free washout periods for 11 and 18 days supported outgrowth of microglia with a comparably complex morphology as microglia exposed to SFM for 22 days (SFM22). The increased morphological complexity of microglia exposed to serum-free washout periods of 11 and 18 days, as compared to microglia exposed to SM, was confirmed by fractal dimension analysis (Figure 3d) where a higher fractal dimension is associated with a more complex cellular morphology (Morrison et al., 2017). We also quantified the number of microglia process length and endpoints per cell. Serum-free washout periods of 11 and 18 days resulted in a higher total process length per cell (Figure 3e) and in higher numbers of process endpoints (Figure 3f) as compared to microglia exposed to SM conditions or to a serum-free washout period of 4 days. In fact, total process length per cell and the number of process endpoints were comparable to microglia that were exposed to SFM for 22 days.

3.4 Despite strongly reduced expression of cell cycling-associated gene products, the transcriptomes of serum-free microglia do not better mimic those of ex vivo microglia

Analysis of the transcriptomes by Spearman’s correlation heatmap and DEG analyses demonstrated that the transcriptomes of SM4-SFM11 and SM4-SFM18 cultured microglia did not differ significantly from the transcriptomes of SFM22 microglia (Figure 4a, Table 4 and Figure S5). Furthermore, the expression levels of cell cycle genes were similar to those of SFM22 microglia (Figure 4b, in high resolution Figure S6). In addition, the cell cycle gene expression profiles of SM4-SFM11 and SM4-SFM18 microglia better mimicked those of ex vivo microglia than those of SM or SM4-SFM4 microglia.

We next compared the whole transcriptomes of SM, SM4-SFM4, SM4-SFM11, SM4-SFM18, and SFM22 cultured microglia (Figure 5A) to the reference transcriptomes of ex vivo microglia that we used previously. The most important component to explain variance (58%) in our dataset was the ex vivo–in vitro parameter, whereas exposure to serum was the second principal component explaining 9% of the variance (Figure 4c). Overall, the number of DEG (FC ≥ 4, FDR < 0.01) between ex vivo samples and the different culture conditions was comparable (Table 5), regardless of whether cells had been exposed to serum or not. Heatmaps of the DEG between ex vivo microglia and the different culture conditions show that SM and SM4-SFM4 conditions cluster together, while SM4-SFM11, SM4-SFM18, and SFM22 rather cluster by donor (Figure S7). Eighty percent of the DEG between the SM condition and ex vivo microglia overlapped with the DEG between the SFM4-SFM11 condition and ex vivo microglia (data not shown). The expression of microglia signatures genes was comparably different between all different culture conditions and ex vivo microglia (Figure S8). Although the use of SFM thus improved microglial cell morphology and the expression of cell cycling-associated gene products, their RNA expression profiles did not better mimic those of ex vivo microglia.

3.5 A multicellular environment is important for maintenance of the in vivo microglia transcriptome

As the SM4-SFM11 protocol yielded high cell numbers with a ramified morphology and with a transcriptome indicative of reduced proliferative activity, we continued with this protocol as our reference. We performed new gene set enrichment analyses to gain further insights in the biological processes involved in the differences between in vitro and ex vivo microglia. We first analyzed the genes that were upregulated in vitro (Figure 4d) and observed that biological processes linked to cell movement, adhesion, morphology, and structure organization were most affected. For example, annexins, integrins, and matrix metalloproteinases (MMPs) related genes were all upregulated (Figure 4e). The upregulation of genes linked to these biological processes was not specific for microglia cultured under serum-free conditions, as it was also observed for microglia that had been exposed to serum (Figure 2c). Genes that were downregulated in vitro as compared to ex vivo were among others associated with the positive regulation of multicellular organismal processes, cell–cell signaling, regulation of cell differentiation and neurogenesis (Figure 4f). The lack of signals from other CNS cells might have contributed to this effect.

FIGURE 3 Effects of short-serum exposure and serum-free washout regimes on microglia morphology. (a) Numbers of DAPI + primary microglia cultured in SM or SFM medium for 8 days. Cell counting was performed in 20 random fields of view from three donors for each condition. Statistical differences were examined by paired Student’s t-test. Error bars represent SD. **p < 0.001.** (b) Numbers of DAPI + primary microglia after 4 days SM exposure followed by a serum-free washout of 4 (SM4-SFM4), 11 (SM4-SFM11), and 18 (SM4-SFM18) days. Dashed line represents the average DAPI + cells of SM cultured microglia. Statistical differences were examined by paired Student’s t-test, n = 5 per culture condition. Error bars represent SD. (c) Representative pictures of microglia cultured under five different culture conditions (specified in Figure S4) and immunostained for the microglial marker CX3CR1. Scale bars are 50 μm. CX3CR1 + cells were skeletonized and the number of intersections per 5 μm steps from the nucleus were analyzed using Sholl analysis. Number of intersections were analyzed for 10 random cells and averaged per donor and plotted. Error bars represent SD, n = 3 for each condition. Sholl analysis-derived area under the curve was quantified (arbitrary units: (a).U.) in which higher area under the curve (AUC) values reflect a higher morphological complexity. Statistical AUC differences were examined by one-way ANOVA with Tukey’s multiple comparisons test. Error bars represent standard error of the mean. ***p < .001. (d) Fractal dimension, (e) process length/cell, and (f) process endpoints/cell of microglia cultured under different conditions. Analyses were performed on 10 random cells for each condition and averaged per donor. Statistical differences were examined by one-way ANOVA with Tukey’s multiple comparisons test. N = 3, error bars represent SD, *p < .05, **p < .01, ***p < .005, ****p < .001
FIGURE 4 Legend on next page.
as microglial genes involved in crosstalk with other brain cells, such as
CX3CR1 (Sheridan & Murphy, 2013), EGR1 (Veremeyko et al., 2019),
FOS (Eun et al., 2004), P2RY12 (Cserpe et al., 2020), AGER (Matejuk &
Ransohoff, 2020), and TREM2 (Kober & Brett, 2017) are prominently
present on this list of downregulated genes in vitro (Figure 4g). These
findings were again not related to exposure to serum, as genes associ-
ated with these biological processes were also downregulated in
microglia that had been exposed to serum (Table S4).

3.6 Oligodendrocyte- and radial glia-derived cues induce the expression of microglia signature genes

Our initial cell suspension contains microglia as well as varying num-
bers of oligodendrocytes and CNS precursor cells, and we selectively
favor the outgrowth of a > 98% pure primary microglia population by
washing away non-adherent cells at day 1 (Zuiderwijk-Sick et al., 2007). We hypothesized that by plating our initial cell suspen-
sion in ultra-low attachment plates under continuous shaking, we
might allow for survival and outgrowth of other cells. Indeed, this
resulted in the formation of spheres (Figure S9). To determine their
cellular composition, we isolated RNA and analyzed the expression
levels of CNS cell type-specific genes. We observed that microglial genes
such as TYROBP, GPR84, and PTPRC were highly and comparably
expressed in both conditions. On the other hand, oligodendrocytic,
astrocytic and radial glial genes were expressed in spheres but virtu-
ally absent in monocultures of microglia (Figure 5a), demonstrating
that sphere formation indeed allowed for the survival of multiple brain
cell types. To estimate the abundance of CNS cell types in the
spheres, we used CIBERSORT, a computational tool to quantify rela-
tive levels of distinct cell types within a complex gene expression admixture (Newman et al., 2015). The RNA expression profiles of
microglia, neurons, oligodendrocytes, astrocytes, and radial glia were
used to create a signature gene expression matrix (Pollen et al., 2015;
Zhang et al., 2016). Use of this matrix in a CIBERSORT analysis leads
to the estimation that the spheres consist for ±50% of microglia,
±30% of oligodendrocytes, and ±10% of radial glia (Figure 5b), and
that astrocytes and neurons are not present. To validate the

FIGURE 4 Transcriptome analysis of serum-free cultured microglia and ex vivo microglia. (a) Spearman’s correlation heatmap of the
transcriptomes of SM, SM4-SFM4, SM4-SFM11, SM4-SFM18, and SFM22 cultured microglia. (b) Heatmap of mean-centered Log2(CPM)-
expression values of cell cycle genes of SM, SM4-SFM4, SM4-SFM11, SM4-SFM18, and SFM22 cultured microglia and ex vivo microglia.
(c) Principal component analysis of the transcriptomes of SM, SM4-SFM4, SM4-SFM11, SM4-SFM18, and SFM22 cultured microglia and ex vivo

cell types. (d) Biological processes associated with differentially expressed genes (DEG) upregulated in SM4-SFM11 microglia compared to
ex vivo microglia. Processes were analyzed using the molecular signatures database (MsigDB) (Liberzon et al., 2011; Subramanian et al., 2005). FDR = false discovery rate. (e) Expression values (CPM) of extracellular matrix-related genes (annexins, matrix metallopeptidases, and integrins) of ex vivo and SM4-SFM11 microglia. EdgeR false discovery rates (FDR)
are used to display statistical differences, n = 4, center line indicates the mean, error bars represent SD, ****FDR < 0.001. (f) Biological processes
associated with DEG downregulated in SM4-SFM11 microglia compared to ex vivo microglia. Processes were analyzed using the molecular
signatures database. FDR = false discovery rate. (g) Expression values (CPM) of genes associated with microglia crosstalk of ex vivo and
SM4-SFM11 microglia. EdgeR false discovery rates (FDR) are used to display statistical differences, n = 4, center line indicates the mean, error

TABLE 4 Numbers of differentially expressed genes (DEG; FC ≥ 2, FDR < 0.05) between the in vitro conditions SM, SM4-SFM4, SM4-SFM11,
SM4-SFM18, and SFM22

<table>
<thead>
<tr>
<th>Condition</th>
<th>SM4-SFM4</th>
<th>SM4-SFM11</th>
<th>SM4-SFM18</th>
<th>SFM22</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>1500</td>
<td>1715</td>
<td>2028</td>
<td>2334</td>
</tr>
<tr>
<td>SM4-SFM4</td>
<td>-</td>
<td>1500</td>
<td>354</td>
<td>903</td>
</tr>
<tr>
<td>SM4-SFM11</td>
<td>1715</td>
<td>-</td>
<td>3</td>
<td>26</td>
</tr>
<tr>
<td>SM4-SFM18</td>
<td>2028</td>
<td>903</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>SFM22</td>
<td>2334</td>
<td>871</td>
<td>26</td>
<td>-</td>
</tr>
</tbody>
</table>

TABLE 5 Numbers of differentially expressed genes (DEG; FC ≥ 4, FDR < 0.01) between different in vitro microglia cultures and ex vivo microglia

<table>
<thead>
<tr>
<th>Condition</th>
<th># Genes up in vitro</th>
<th># Genes down in vitro</th>
<th>Total DEG</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>1589</td>
<td>1610</td>
<td>3199</td>
</tr>
<tr>
<td>SM4-SFM4</td>
<td>1710</td>
<td>1522</td>
<td>3232</td>
</tr>
<tr>
<td>SM4-SFM11</td>
<td>1619</td>
<td>1438</td>
<td>3057</td>
</tr>
<tr>
<td>SM4-SFM18</td>
<td>1601</td>
<td>1477</td>
<td>3078</td>
</tr>
<tr>
<td>SFM22</td>
<td>1721</td>
<td>1492</td>
<td>3213</td>
</tr>
</tbody>
</table>

Note: See Figure S4 for an overview of the culture conditions.
FIGURE 5 Legend on next page.
Characterization of primary cell-derived spheres. (a) Expression values (CPM) of microglia, neuron, oligodendrocyte, astrocyte and radial glia genes of SM4-SFM11 monocultured microglia and spheres (n = 4). A/R genes are genes both expressed by astrocytes and radial glia. (b) CIBERSORT (Newman et al., 2015) quantification analysis of the estimated numbers of neurons, astrocytes, radial glia, oligodendrocytes and microglia in spheres, n = 4. (c) One representative example of a sphere (R06005) immunostained with anti-IBA1 (as a microglia marker), with anti-MBP (as an oligodendrocyte marker), and with anti-GFAP (as a radial glia marker). Cell nuclei (blue) were visualized using 4',6-diamidino-2-phenylindole (DAPI). Scale bars represent 50 μm. (d) Estimated percentages of the different cell types in spheres plotted in a graph. Each symbol represents a donor. N = 3, error bars represent SD. (e) Log-transformed expression (CPM) values of microglia signature genes of microglia monocultures and spheres. EdgeR false discovery rates (FDR) are used to display statistical differences, n = 4, *FDR < 0.05, **FDR < 0.01, ****FDR < 0.001. M = monoculture, S = spheres. (f) Log-transformed expression (CPM) values of extracellular matrix-related genes of microglia monocultures and spheres. EdgeR false discovery rates (FDR) are used to display statistical differences, n = 4, *FDR < 0.05, ****FDR < 0.01. M = monoculture, S = spheres.
CIBERSORT analysis, we visualized the expression of IBA1 (as a marker for microglia), MBP (as a marker for oligodendrocytes), and GFAP (as a marker for radial glia) (Figure 5c). Stainings were validated in the rhesus macaque source tissue (Figure S10a). Quantification confirmed that with ±70% microglia were the most abundant cell type in spheres followed by approximately 30% oligodendrocytes, and ±10% radial glia (Figure 5d). As GFAP is expressed both by astrocytes and by radial glia, we also analyzed the expression of Tenascin C (TNC), which is more selectively expressed by radial glia and by astrocytes precursor cells (Pollen et al., 2015; Wiese et al., 2012). Co-localization of GFAP and TNC in spheres (Figure S10b) are consistent with the idea that the GFAP-positive cells are radial glia.

Importantly, we observed that microglial signature genes C1QC, CX3CR1, GPR34, HEB, P2RY12, P2RY13, and TREM2 were significantly upregulated in spheres as compared to microglia monocultures (Figure 5e). It is noteworthy that bulk RNA-sequencing was used, meaning that the microglia in the spheres are likely to express even higher levels of these microglial-specific genes. Intriguingly, the expression levels of microglial genes P2RY12, P2RY13, and CX3CR1 are thought to be regulated by neuron-microglia crosstalk, whereas we have no indications that neurons were present in our spheres. In addition, we analyzed the expression of neuronal progenitor genes. Although we found a significant upregulation of SOX2 and NES in spheres (Figure S11), these two genes are also expressed by radial glia. As other neuronal progenitor genes, including PAX6, OCT4, DCX, ASCL1, and MS1 were not significantly upregulated in spheres, we found no evidence for the presence of neuronal progenitors in our spheres. Finally, we observed that the expression levels of ITGA2, ITGB3, MMP1, MMP9, MMP12, and MMP19 were significantly down-regulated in spheres as compared to microglia monocultures (Figure 5f).

3.7 The gene expression profile of microglia in spheres better resembles that of ex vivo microglia

To gain a broader insight in the gene expression profile of microglia in spheres, we performed further transcriptome analyses (Figure 6a). As a first approach, we analyzed the expression of the top 500 most abundantly expressed genes in ex vivo microglia (listed in Table S5) and compared their expression levels to those in monocultured microglia and to those in spheres (Figure S12). Interestingly, Spearman’s correlation analysis of these 500 genes show a higher correlation between spheres and ex vivo microglia than between monocultured microglia and ex vivo microglia (Figure 6b,c). As a second approach, we analyzed the expression of the 3057 genes that were differentially expressed (DEG: FC ≥ 4, FDR < 0.01) between monocultured microglia (SM4-SFM11) and ex vivo microglia (Table S5). Again, Spearman’s correlation analysis revealed an improved expression of these 3057 genes in spheres for all four in vitro donors (Figure 6d,e). DEG analysis shows that of these 3057 genes, 159 genes were no longer differentially expressed (FC ≤ 4, FDR > 0.01) between spheres and ex vivo microglia. Gene set enrichment analysis show that the majority of biological processes associated with these 159 genes are linked to neuronal processes, such as neuron differentiation, neuron development and neurogenesis (Table S6). Together these data strongly suggest that microglia in spheres better mimic the gene expression profile of ex vivo microglia than monocultured microglia do.

4 DISCUSSION

The increasing recognition of microglia as druggable cellular targets for a variety of neurodegenerative disorders, has spurred research into the determinants of microglial identity and into the development of in vitro methodology (Bohlen et al., 2017; Butovsky et al., 2014; Gosselin et al., 2017). In this study, we have exposed primary microglia from adult rhesus macaques to a variety of different cell culture regimes to shed light on the relative contribution of different cell culture methods and conditions in shaping microglial identity, and to further cell culture innovations.

The importance of the CSF-1 receptor for microglial proliferation, survival and homeostasis has been firmly established by different studies (Elmore et al., 2014; Erblich et al., 2011; Ginhoux et al., 2010; Oosterhof et al., 2018). The CSF-1 receptor has two reported ligands, M-CSF and IL-34, that lack similarity in terms of protein sequence and that are expressed in a largely non-overlapping manner in the brain (Greter et al., 2012; Wang et al., 2012; Wei et al., 2010). The idea that unique requirements exist for either M-CSF or IL-34 in the development, colonization and homeostasis of microglia, stems from observations made in depletion studies in rodents (Chitu et al., 2016; Easley-Neal et al., 2019; Wang et al., 2012) and zebrafish (Kuil et al., 2019; Wu et al., 2018). However, our results show that cell numbers and cellular morphologies (data not shown), as well as the transcriptomes, of primary microglia from adult primates exposed to either M-CSF or IL-34 were indistinguishable. These results are in line with those of a recent study in which the transcriptomes of primary microglia from adult humans exposed to either M-CSF or IL-34, were also reported to be almost identical (Walker et al., 2017). Taken together, these studies suggest similar roles for M-CSF and IL-34 in postnatal microglia homeostasis. It remains to be established though whether exposure of microglia to M-CSF or IL-34 can have an impact on the polarization towards a pro- or anti-inflammatory phenotype (Boulakibra et al., 2018), or on the susceptibility for infection with HIV (Paquin-Proulx et al., 2018), as has been described for human primary monocytes. If such effects were to be found in microglia as well, the heterogeneous expression of M-CSF and IL-34 in the brain (Chitu et al., 2016; Easley-Neal et al., 2019; Greter et al., 2012; Nakamichi et al., 2013) could lead to regional differences in microglia biology.

We also studied the effects of exposure to TGF-β, which is, both in vitro and in vivo, an important factor for microglia homeostasis and survival (Bohlen et al., 2017; Butovsky et al., 2014; Buttger et al., 2016; Spitta et al., 2013; Zoller et al., 2018). Whereas in vitro exposure of microglia to TGF-β induces the expression of a transcriptome that better resembles that of mouse ex vivo microglia and, in addition, the expression of microglia signature genes (Butovsky et al., 2014), these effects were not reproduced in our system. This
was not attributable to a lack of engagement of TGF-β-induced signaling. Analysis of the expression of microglia signature genes demonstrates that only the expression of CX3CR1 was upregulated upon exposure to TGF-β, confirming the positive regulation of CX3CR1 by TGF-β (Chen et al., 2002; Wynne et al., 2010). The expression levels of GPR34, P2RY13, and TEMEM119 were unaffected, and expression levels of P2RY12 and OLFML3 were even downregulated after exposure to TGF-β. These data are in line with a study reporting on the modest effects of TGF-β exposure on primary cultured microglia from adolescent humans as compared to the effects on primary cultured microglia of 7–10 weeks old mice (Gosselin et al., 2017). Similar to our results, exposure to TGF-β did not result in a better match to the ex vivo transcriptome of human microglia. These important differences might be attributable to species-specific effects of TGF-β, as is also supported by the reported differences in TGF-β-mediated inhibition of IFN-γ-induced MHC class I expression in human and murine microglia (Smith et al., 2013). It is at present unclear where these differences originate, as the TGF-β superfamily is well conserved between rodents and humans (Hinck et al., 2016; Huminiecki et al., 2009).

We further observed that sex as a variable better explained variance in gene expression profiles than different culture conditions did. This is relevant given the sex-specific differences in the incidence, prevalence and pathogenesis of neurological diseases such as AD and MS (Barnes et al., 2005; Beam et al., 2018; Hanamsagar & Bilbo, 2016; Harbo et al., 2013; Nebel et al., 2018; Ploughman et al., 2017). Interestingly, sex-specific features in microglial function in health and disease have been identified in rodents (Acaz-Fonseca et al., 2015; Mapplebeck et al., 2018; Villa et al., 2018; Villapol et al., 2017). In line with earlier reported sex-specific DEGs in ex vivo human transcriptome data (Gosselin et al., 2017), analysis of the sex-specific DEGs in our in vitro transcriptome datasets shows that these were all localized to either the X- or the Y-chromosome (data not shown). In addition to sex, we observed considerable donor-donor variation in microglia transcriptomes. Although this is normal when working with material from an outbred population, and in line with reported variation in the transcriptomes of ex vivo human microglia (Alsema et al., 2020; Galatro, Holtman, et al., 2017; Gosselin et al., 2017; van der Poel et al., 2019), we had not expected to find such effects after prolonged in vitro culture periods under different regimes. This would suggest that donor-specific gene expression profiles in microglia remain relatively stable, which might hinder analyses of e.g. culture specific effects. It is at present not clear whether these sex and donor-specific differences can be related to differences in microglia biology or function.

Gene set enrichment analysis of our data uncovered that differences between the in vitro and ex vivo transcriptomes of microglia were for a considerable part attributable to gene transcripts associated with cell cycling, which could have been caused by in vitro exposure to serum. We therefore tested a recently described serum-free medium for rat microglia (Bohlen et al., 2017) on our primary rhesus macaque microglia in which it induced a complex, ramified, cell morphology accompanied by the reduced expression of genes associated with proliferation. As the lack of proliferation negatively impacted the number of cells available for further in vitro experiments, we optimized a cell culture regime that combines a short-term, 4 day serum exposure with a serum-free washout period of at least 11 days. Although microglia are not exposed to serum in the healthy CNS, our results demonstrate that microglial responses to serum exposure are relative short-lived and appear to be for most part reversible. A minimum serum-free washout period of 11 days is sufficient to yield microglia with a highly complex, ramified morphology and with reduced expression levels of cell cycle-associated genes. In spite of these advances, the transcriptomes of microglia subjected to this new in vitro protocol still differed significantly from those of ex vivo microglia. Gene ontology analyses of the DEGs suggested that further improvements were among others to be found in exposure to the CNS microenvironment, in line with other studies (Bohlen et al., 2017; Svoboda et al., 2019).

We therefore facilitated the outgrowth of other brain-derived cells by plating our initial cell suspension in ultra-low attachment plates, which resulted in the formation of spheres. In such spheres, neuronal gene products could not be detected, whereas microglia, oligodendrocyte, astrocyte, and radial glia-specific gene products were easily detectable. Given the Percoll gradient-based isolation procedure we used, we think it is unlikely that astrocytes are present in our initial cell suspension. We favor the idea that the detection of astrocyte-specific gene products as AQP4, GJA1, and GFAP stems from neuronal or glial precursor cells, such as radial glia, which was also in line with the CIBERSORT analysis we performed and was further supported by immunofluorescence microscopical analysis.

In-depth transcriptome analyses demonstrate that the gene expression profile of microglia in spheres better resembles that of ex vivo microglia than those of monocultured microglia do. However, further studies, such as single cell RNA-sequencing, are required to confirm this. Most interestingly, the expression levels of many microglia signature genes were significantly enhanced in spheres, even of those genes thought to be regulated by neuron–microglia and astrocyte–microglia crosstalk. Whether this is the result of cell–cell contact, or of cell-derived soluble factors, warrants further investigation. At present, very little is known on the role of oligodendrocyte-derived and radial glia-derived soluble factors on microglia (Liu & Aguzzi, 2020), and this co-culture system can help to disentangle the intercellular communication that establishes and maintains microglial identity. As it has already been convincingly demonstrated that neuron–microglia and astrocyte–microglia communication positively affect microglia signature gene expression levels (Baxter et al., 2021; Matejuk & Ransohoff, 2020; Szepesi et al., 2018; Veremeyko et al., 2019), the addition of neurons and/or astrocytes to our spheres might even further increase the expression of microglial signature genes. Such a complex CNS culture model bears resemblance to the recently described cerebral organoids that were generated from induced pluripotent stem cells and that surprisingly also contained microglia (Ormel et al., 2018).

Taken together, our results provide new biological insights in cues that are important for adult primate microglial identity and for the development and optimization of novel in vitro methodology.
ACKNOWLEDGMENTS

We thank N. Brouwer and B. Eggen for ex vivo microglia isolation and RNA generation, H. Oostermeijer and S. Hofman for excellent technical flow-cytometrical support, E. Remarque for help with the statistical analyses, F. van Hassel for help with the graphical presentations of the research, T. Haaksma and I. Konoda for help with the obductions and preparation of CNS material, and M. Hoonakker and I. Canals for critical feedback on the manuscript.

AUTHOR CONTRIBUTIONS

Conceptualization: Raissa Timmerman and Jeffrey J. Bajramovic; Methodology: Raissa Timmerman and Jeffrey J. Bajramovic; Investigation: Raissa Timmerman, Ella A. Zuiderwijk-Sick, Nynke Oosterhof, Anke E.J. ’t Jong, Saskia M. Burm, Tjakko J. van Ham, and Jeffrey J. Bajramovic; Funding acquisition: Jeffrey J. Bajramovic; Supervision: Jeffrey J. Bajramovic.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request. The data that support the findings of the RNA sequencing in this study are openly available in GEO, reference number GSE171476.

ORCID

Raissa Timmerman https://orcid.org/0000-0002-1254-0931
Tjakko J. van Ham https://orcid.org/0000-0002-2175-8713
Jeffrey J. Bajramovic https://orcid.org/0000-0002-6504-3437

REFERENCES

features of microglia from adult mice. Cell Reports, 23(12), 3501–3511. https://doi.org/10.1016/j.celrep.2018.05.048

Wang, Y., Szretter, K. J., Vermi, W., Gilfillan, S., Cella, M., Barrow, A. D., Diamond, M. S., & Colonna, M. (2012). IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nature Immunology, 13(8), 753–760. https://doi.org/10.1038/ni.2360

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher’s website.