Pre- and Postoperative Accuracy and Safety of a Real-Time Continuous Glucose Monitoring System in Cardiac Surgical Patients: A Randomized Pilot Study

Susan J. Logtenberg, M.D.,¹ Nanne Kleefstra, M.D.,¹,² Ferdinand T. Snellen, M.D.,³ Klaas H. Groenier, Ph.D.,⁴,⁵ Robbert J. Slingerland, Ph.D.,⁶ Arno P. Nierich, Ph.D.,³ and Henk J. Bilo, Ph.D.¹,⁵,⁷

Abstract

Background: Our objective was to evaluate the accuracy and safety of a real-time (RT) continuous glucose monitoring system (CGMS) in patients before and after cardiothoracic surgery and to investigate whether activation of the alarm function of the RT-CGMS had an effect on glucose control.

Methods: Patients scheduled for elective cardiothoracic procedures, without a history of insulin-requiring diabetes, were perioperatively monitored with RT-CGMS for 72 h and were randomized into two groups: with or without the alarm function (set at 4 and 10 mmol/L) of the device activated. Sensor values were compared with capillary, arterial, and venous blood glucose values. Percentages of time spent in various glucose ranges were compared between groups.

Results: There were no adverse effects of the RT-CGMS. Of the 1,001 sensor value comparisons with capillary or arterial measurements, 96.6% fell within Clarke Error Grid zones A and B, with relative absolute differences ranging from 15% (preoperative period) to 12% (intensive care unit period) to 14% (postoperative period on the ward). Seventeen (7.9%) arterial and 16 (2.0%) capillary comparisons fell within zone D or E. Whether or not the alarm function, as used in this pilot study, was activated did not affect time spent in different glucose ranges.

Conclusions: Although the RT-CGMS is safe and accurate according to accepted standards, there are still small aberrations, which in our opinion preclude unlimited use in its present form in a clinical setting. The effect of the alarm function at different glucose levels remains to be investigated.

Introduction

Van den Berghe et al.¹ reported that strict glycemic control in patients admitted to an intensive care unit (ICU) resulted in reduction of morbidity and mortality by 42.5%. Based on the results of this landmark trial, protocols in ICUs have become stricter regarding blood glucose values, and in order to strive for target values between 4.4 and 6.1 mmol/L, frequent glucose monitoring and insulin dose adjustments are required, which is time intensive.²

Implementing strict glucose control may be facilitated by a real-time (RT) continuous glucose monitoring system (CGMS), when continuous glucose readings can help identify and prevent periods of hypoglycemia or hyperglycemia, without increasing workload or burden for patients.³,⁴ CGMS was shown to be accurate and reliable in critically ill patients admitted to the ICU.⁴ That study, however, was performed using retrospective instead of RT glucose data.⁴

Recently, a new RT-CGMS received U.S. Food and Drug Administration approval (Paradigm® REAL-Time, Medtronic MiniMed, Northridge, CA). The RT-CGMS has proven to be effective in reducing hyperglycemic and hypoglycemic episodes in ambulatory patients with type 1 diabetes.⁵,⁶ However, there is conflicting evidence from randomized controlled trials about the effect on hemoglobin A₁c.⁷-⁸ Piper et al.⁹ reported about the performance of RT-CGMS during and after
cardiac surgery in pediatric patients and found RT-CGMS to perform well in hypothermia, inotrope use, and edema when compared to 6-h arterial laboratory glucose values.

To our knowledge, this is the first study evaluating the accuracy and safety of RT-CGMS before and after cardiothoracic surgical procedures in adult patients. A second objective was to investigate the effect of the alarm function of a RT-CGMS on glucose control.

Research Design and Methods

Thirty-one patients over 18 years of age, undergoing elective cardiothoracic surgery without use of insulin before surgery, were included in this study conducted in the Isala Clinics, Zwolle, The Netherlands. Approximately 1 week before the scheduled surgical procedure, eligible patients received a letter with information about the study and were informed that on the day before that procedure, they would be contacted by a researcher for further explanation of the trial, after which informed consent was asked. After admission to the hospital, a clinical history was taken, patients underwent physical examination including measurement of blood pressure, weight, and height and waist circumference, and the Euroscore was calculated. The Euroscore provides an estimate of cardiac surgery mortality risk and is based on a range of patient- and procedure-related characteristics.10 Higher scores indicate increased risk.

In general, after surgery, patients would be admitted to the ICU for 1 or 2 days, after which they would be transferred to the (medium care) ward for further recovery. To test whether the additional alarm function of the RT-CGMS would have an effect on glucose control, patients were randomized to RT-CGMS with the alarm setting activated or deactivated (Alarm group and Blind group, respectively). Randomization was done using sealed nontransparent envelopes. Randomization took place after informed consent was obtained. This study was conducted with approval of the local ethics committee.

RT-CGMS

The RT-CGMS consists of a needle-type sensor that is inserted in the subcutaneous tissue. The sensor is composed of a microelectrode with glucose oxidase. The sensor continuously converts small amounts of glucose from the interstitial fluid into an electronic signal, the strength of which is proportional to the amount of glucose present. The sensor is connected directly with a small oval (proportional to the amount of glucose present. The sensor is inserted in the subcutaneous tissue. The sensor is composed of a needle-type sensor that is inserted in the subcutaneous tissue. The sensor is composed of a needle-type sensor that is inserted in the subcutaneous tissue. The sensor is composed of a needle-type sensor that is inserted in the subcutaneous tissue.

Research Design and Methods

To test accuracy, all matched points (within 5 min) from both groups were plotted on Clarke Error Grids.13,14 Clarke Error Grid analysis was originally developed to evaluate the accuracy of capillary blood glucose testing systems taking the relevance of differences between reference and measured values into account. The reference blood glucose value is plotted on the x-axis against the sensor value on the y-axis. The graph is divided into five zones. Comparison points within zone A represent sensor values that differ from the reference value by no more than 20%. Zone B includes comparison points that differ by >20% but do not result in an alteration in treatment. Comparison points in zone C would result in an overcorrection of acceptable glucose values. Points in zone D would result in failure to detect and treat errors. Comparisons in zone E would result in opposite treatment decisions. When over 95% of points are in zones A and B, generally a system is considered accurate.14,15

Furthermore, the relative absolute difference (RAD) (absolute difference between sensor and reference glucose value divided by reference value expressed as a percentage) was
calculated for capillary values in all periods. This statistic is valued as an easy to interpret measure of accuracy.16

To test glucose control, glucose values were divided into five ranges (all in mmol/L): ≤3.9; 4.0–4.3; 4.4–6.1; 6.2–10.0; and ≥10.1. Percentages of time in each range were compared between groups in all periods.

Results

A total of 31 patients were enrolled from June until October 2007, of which 30 completed the study (Fig. 1). One patient withdrew during the initiation phase of the sensor (first 2 h after sensor insertion) because of increased nervousness due to anticipated sensor alarms. Patient characteristics are presented in Table 1. There were more males and patients with type 2 diabetes in the Blind group.

Median duration of sensor placement was 70.9 (69.9–71.5) h. Sensors were well tolerated in all patients, without occurrence of serious adverse skin reactions, infections, or bleeding.

Duration of preoperative sensor placement was 17.5 (15.3–19.2) h; duration of postoperative sensor reading was 46.3 (43.8–48.8) h. Median time of sensor reading on the ICU was 20.3 (17.6–22.5) h ($n = 29$; one sensor provided too few sensor readings during the ICU stay). Duration of postoperative sensor reading on the ward was 28.6 (26.3–29.8) h ($n = 26$; four patients stayed on the ICU for the complete postoperative study period).

RT-CGMS: accuracy

Throughout the study 818 capillary blood glucose values, 216 arterial blood glucose values, and 136 venous blood glucose values were compared with sensor values, resulting in 39 comparisons per patient on average (range, 24–52).

Median RAD (absolute difference between sensor and capillary glucose value divided by capillary value, expressed as a percentage) during the preoperative period was 14.6% (range, 7.1–25.9%), during the ICU period was 12.3% (4.7–24.8%), and during the postoperative period on the ward was 14.1% (7.0–25.4%).

Clarke Error Grids of the comparison of sensor and reference values in the difference periods are shown in Figure 2. For the comparisons with capillary glucose measurements, 96.0–99.5% fell into grid zones A and B, the acceptable zones. However, 12 capillary points (1.6%) were in zone D, indicating that the sensor value would not trigger treatment when the reference value would. Four points (0.5%) were in zone E.

Table 1. Patient Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All (n = 30)</th>
<th>Alarm group (n = 15)</th>
<th>Blind group (n = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>67.8 (9.4)</td>
<td>66.2 (10.3)</td>
<td>69.3 (8.4)</td>
</tr>
<tr>
<td>Male (n)</td>
<td>24</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>BMI (kg/m2)</td>
<td>26.6 (3.4)</td>
<td>26.6 (3.3)</td>
<td>26.6 (3.6)</td>
</tr>
<tr>
<td>Waist (cm)</td>
<td>99.9 (10.7)</td>
<td>98.4 (9.7)</td>
<td>101.4 (11.8)</td>
</tr>
<tr>
<td>BP (mm Hg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic</td>
<td>121.3 (15.8)</td>
<td>118.2 (17.4)</td>
<td>124.3 (14.1)</td>
</tr>
<tr>
<td>Diastolic</td>
<td>68.1 (10.9)</td>
<td>64.4 (9.4)</td>
<td>71.9 (11.3)</td>
</tr>
<tr>
<td>Heart rate (bpm)</td>
<td>69.3 (14.6)</td>
<td>71.8 (12.4)</td>
<td>66.9 (16.6)</td>
</tr>
<tr>
<td>Type 2 diabetes (n)</td>
<td>6</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Plasma glucose at admission (non-fasting; mmol/L)a</td>
<td>5.8 (5.0–6.9)</td>
<td>5.5 (5.0–6.6)</td>
<td>5.9 (4.8–7.8)</td>
</tr>
<tr>
<td>Smoking (n)</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Euroscore</td>
<td>5.7 (3.0)</td>
<td>5.7 (2.8)</td>
<td>5.8 (3.3)</td>
</tr>
<tr>
<td>Planned procedure (n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CABGa</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>VP</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>VS</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RM</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Combined CABG-VP/VS/VM</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Combined VP/VS/RM</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Data are mean (SD) values unless otherwise indicated. BMI, body mass index; BP, blood pressure; bpm, beats per minute; CABG, coronary artery bypass graft; RM, rhythm management; VP, valve procedure; VS, vascular surgery.

aMedian (interquartile range).
Zone E represents sensor values that would trigger opposite treatment change than the reference value would. Comparison of sensor with arterial glucose measurements was less accurate, with 92.1% (n = 199) of comparison points in zones A and B. Comparison of sensor with venous glucose measurements was the least accurate, with 21 (15.4%) of comparison points outside zones A and B. Points in zones C–E were present in 24 subjects, ranging from one to six points per subject.

RT-CGMS: glucose control

Preoperative period. Mean glucose as measured with the sensor in the preoperative period was 6.5 ± 2.0 mmol/L in the Alarm group and 6.2 ± 0.9 mmol/L in the Blind group (P = 0.51). Mean capillary glucose was 6.8 ± 1.0 mmol/L in the Alarm group and 7.2 ± 1.6 mmol/L in the Blind group (P = 0.47). Figure 3a shows time in glucose ranges for both groups in the preoperative period. Time spent in euglycemia (4.0–10.0 mmol/L) was 97.2% (88.7–100.0%) in the Alarm group and 97.2% (82.8–100.0%) in the Blind group (P = 0.71). Exclusion of patients known with diabetes before admission did not change outcome (data not shown). During this period, only six alarms (two “High”) occurred, in three subjects. On average, the same number of capillary measurements was performed in the preoperative period (Alarm group, 8.5 ± 1.2; Blind group, 9.3 ± 2.4; P = 0.31).

Postoperative period. Mean sensor glucose on the ICU was 6.5 ± 0.8 mmol/L in the Alarm group and 7.7 ± 1.5 mmol/L in the Blind group (P = 0.015). When patients with pre-admission diabetes were excluded, this difference was not statistically significant (Alarm group, 6.5 ± 0.9 mmol/L; Blind group, 7.4 ± 1.5 mmol/L; P = 0.08). Mean capillary glucose was 6.7 ± 0.8 mmol/L in the Alarm group and 7.5 ± 1.7 mmol/L in the Blind group (P = 0.11; all subjects included). Neither arterial nor venous measurements differed between groups (either with or without pre-admission diabetes patients included). Median time in target glucose range (4.4–6.1 mmol/L) was 34.8% (17.1–63.2%) and 20.2% (3.2–38.0%) in the Alarm group and in the Blind group, respectively (P = 0.27). Overall, percentage of time spent in the different glucose ranges did not differ significantly (Fig. 3b).

Mean sensor glucose on the ward was 8.6 ± 1.7 mmol/L in the Alarm group and 9.5 ± 1.7 mmol/L in the Blind group (P = 0.21). Time in euglycemia was 81.6% (55.4–96.9%) and 61.2% (30.7–86.3%) in the Alarm group and Blind group, respectively (P = 0.15). Overall, the percentage of time spent in the different glucose ranges did not differ significantly (Fig. 3c). Exclusion of pre-admission diabetes patients did not change outcome (data not shown).

In the postoperative phase, 104 alarms occurred (90 “High”). Interestingly, the number of reference measurements performed per hour was not statistically different be-

FIG. 2. Clarke Error Grids of glucose measurements. Each grid shows the comparison of sensor values on the y-axis with glucose values obtained with reference method on the x-axis: (A) capillary measurements in the preoperative period; (B) capillary measurements in the ICU period; (C) capillary measurements in the postoperative period on the ward; (D) arterial measurements in the ICU period; and (E) venous measurements in the ICU period.
zones A and B, and Guerci et al. reported even 98.8% in there is no uniform upper limit of acceptable deviation for tion, and others also found comparable RADs. To date, patients after surgery using arterial glucose values for calibra-
tion of the RT-CGMS, as used in this pilot study, had no ad-

Conclusions

RT-CGMS proved to be safe regarding local complications or adverse events and is accurate when compared with capillary reference values, based on accepted measures of accuracy. However, when arterial or venous glucose measurements are used as reference, accuracy is only borderline acceptable or not acceptable, respectively. The alarm function of the RT-CGMS, as used in this pilot study, had no additional effect on glycemic control.

Our results are in line with previous reported accuracy rate of CGMS; Garg et al. reported 96% in Clarke Error Grid zones A and B, and Guerci et al. reported even 98.8% in the acceptable zones. Our median RAD ranged from 12.3% to 14.6%. Piper et al. reported a mean RAD of 17.6% in their report about the use of RT-CGMS in pediatric critical ill patients after surgery using arterial glucose values for calibration, and others also found comparable RADs. To date, there is no uniform upper limit of acceptable deviation for these devices, and interpretation of reported accuracy differs. Some apply the American Diabetes Association requirements for home blood glucose meters (all measurements within 5% of the reference value) and conclude that accuracy is too low. Others regard 15% as acceptable accuracy.

In our opinion, sensor readings in the ICU setting need to be more accurate than the Clarke Error Grid currently requires, because the intended glucose target range is narrower than in ambulatory patients. Moreover, from a safety point of view, the occurrence of sensor readings in zones C, D, and E is not acceptable, and one can even argue (as De Block et al. did) that points in zone B, indicating more than 20% deviation from the reference value, are also not acceptable for ICU standards.

Overall, median time in target glucose range on the ICU was 22.8%, which is in accordance with previous published data regarding glucose control on the ICU.

The lack of difference in the number of capillary measurements between groups could be due to the relatively high number of scheduled measurements by protocol, but could also be one of the reasons for not finding an effect of the alarm function on glucose control, i.e., alarms did not elicet the required actions and reactions.

There are some limitations to our study. We used capillary measurements to calibrate the RT-CGMS throughout the study. This could have influenced the reported accuracy of the sensor compared to arterial and venous references measurements on the ICU. As can be deduced from Figure 2D, points in zone D of the Clarke Error Grid are close to the border with zone B, and one can speculate that when calibration would have been done using arterial glucose values, at least some of these points would fall in zone A or B, adding to the accuracy.

Regarding the effect on outcome, we would like to emphasize that our study was not powered to detect a prespecified difference, but was only explorative. Furthermore, it is possible that the applied alarm setting was too wide. However, setting alarms at a narrower target might have resulted in too many unnecessary alarms whereby nurses’ workload and the burden for patients would become unacceptable high. Furthermore, it was possible, because of the alarms not being very loud, that alarms were missed when patients moved around freely on the ward or were masked by other alarms and sounds on the ICU. This could have led to a delay in action. Second, although a strict glucose protocol was used at our ICU, we noticed that blood glucose levels slightly above the target range were accepted by the ICU staff and that nurses and physicians were not eager to initiate insulin therapy on the ward in the postoperative period in patients without pre-admission diabetes. On the ward, higher blood glucose values were accepted, which meant that, even when a “High” sensor value was confirmed by the reference glucose, no action was taken (or at least not immediately). Our pilot study was not intended to interfere with the current glucose protocols and insulin treatment regimens on the ICU and the ward, and therefore therapy adjustments on the ward were taken after the nurse consulted with the attending physician. This may also have affected the outcome of the study, since no proper action was taken to initiate or alter insulin dosage after every sensor alarm all the time.

FIG. 3. Comparison of percentage of time spent in different glucose ranges during the three different study periods for both groups (white columns = alarm group; black columns = blind group): (A) preoperative period; (B) postoperative period on the ICU; and (C) postoperative period on the ward.
We did not measure any severely hypoglycemic glucose values. This might suggest that the fear of hazardous hypoglycemia during efforts directed towards strict metabolic values. This might suggest that the fear of hazardous hypoglycemia during efforts directed towards strict metabolic values is not supported by clinical reality. In a similar patient population, Schmelz et al. reported 1.2% of glucose values <3.3 mmol/L without any episode being considered severe. Because of the limited number of blood glucose values in that range, we cannot provide a definite conclusion about the performance of the sensor in the hypoglycemic range.

We conclude that RT-CGMS can be used safely in the perioperative setting. However, with the attitude within our clinic towards perioperative glucose control, use of the RT-CGMS with alarm function, as used in this study, does not have a different effect than standard glucose monitoring on the ICU or on the medium care ward in the postoperative period. Therefore, introducing RT-CGMS does not add towards a further improvement of proper glucose control, at least not when only used as a registry device, without promptly and aggressively adapting the insulin regimen. Combining RT-CGMS with automated adjustments of insulin and/or glucose administration might change this conclusion. Nevertheless, in our opinion even the small amount of discrepant measurements outside the ranges set will impede, if not prevent, the introduction of such a computed-guided combination. Furthermore, the method of calibrating such devices is of utmost importance, and we would want to highlight its effect on accuracy and propose a head-to-head comparison of a capillary-calibrated RT-CGMS with an arterial-calibrated RT-CGMS.

Acknowledgments

The authors thank the research staff of the Department of Thoracic Anesthesia of the Isala Clinics for their help with designing and conducting the study. This study was investigator initiated and funded by the Medical Research Foundation, The Netherlands. Medtronic Minimed (Northridge, CA) provided the equipment for continuous glucose monitoring.

Address requests for reprint to:
Susan J. Logtenberg, M.D.
Diabetes Centre
Isala Clinics
P.O. Box 10400
8000 G.K. Zwolle, The Netherlands

E-mail: s.j.j.logtenberg@isala.nl
This article has been cited by:

8. Federico Bilotta, Elisabetta Stazi. Blood Glucose Concentration Management in Neuro-Patients 239-247. [Crossref]

15. Mikhail Kosiborod, Rebecca K Gottlieb, Julie A Sekella, Diane Peterman, Anna Grodzinsky, Paul Kennedy, Michael A Borkon. 2014. Performance of the Medtronic Sentrino continuous glucose management (CGM) system in the cardiac intensive care unit. *BMJ Open Diabetes Research & Care* 2:1, e000037. [Crossref]

16. Iveta Poljakova, Eva Elskova, Rudolf Chlup, Stanislav Kalabus, Petr Hasala, Jana Zapletalova. 2013. Glucose sensing module - is it time to integrate it into real-time perioperative monitoring? An observational pilot study with subcutaneous sensors. *Biomedical Papers* 157:4, 346-357. [Crossref]

17. Yenny Leal, Magda Ruiz, Carol Lorenco, Jorge Bondia, Luis Mujica, Josep Vehi. 2013. Principal component analysis in combination with case-based reasoning for detecting therapeutically correct and incorrect measurements in continuous glucose monitoring systems. *Biomedical Signal Processing and Control* 8:6, 603-614. [Crossref]

19. Kathleen Dungan, Kari Graessle, Colleen Sagrilla. 2013. The Effect of Congestive Heart Failure on Sensor Accuracy Among Hospitalized Patients with Type 2 Diabetes. *Diabetes Technology & Therapeutics* 15:10, 817-824. [Abstract] [Full Text] [PDF] [PDF Plus]

26. Kathleen M. Dungan, Wen Han, Anthony Miele, Trisha Zeidan, Karen Weiland. 2012. Determinants of the Accuracy of Continuous Glucose Monitoring in Non-Critically Ill Patients with Heart Failure or Severe Hyperglycemia. *Journal of Diabetes Science and Technology* 6:4, 884-891. [Crossref]

30. Sarah E. Siegelaar, Joost B.L. Hoekstra, J. Hans DeVries. 2011. Special considerations for the diabetic patient in the ICU; targets for treatment and risks of hypoglycemia. *Best Practice & Research Clinical Endocrinology & Metabolism* 25:5, 825-834. [Crossref]

37. Jeroen Hermanides, Annemarie E. Engström, Iris M.E. Wentholt, Krischan D. Sjauw, Joost B.L. Hoekstra, Jose P.S. Henriques, J. Hans Devries. 2010. Sensor-Augmented Insulin Pump Therapy to Treat Hyperglycemia at the Coronary Care Unit: A Randomized Clinical Pilot Trial. *Diabetes Technology & Therapeutics* 12:7, 537-542. [Abstract] [Full Text] [PDF] [PDF Plus] [Supplementary Material]
38. Thomas R. Campion, Lemuel R. Waitman, Addison K. May, Asli Ozdas, Nancy M. Lorenzi, Cynthia S. Gadd. 2010. Social, organizational, and contextual characteristics of clinical decision support systems for intensive insulin therapy: A literature review and case study. *International Journal of Medical Informatics* 79:1, 31–43. [Crossref]

40. 2009. Current literature in diabetes. *Diabetes/Metabolism Research and Reviews* 25:5, i-x. [Crossref]