Treatment of subcutaneous nodules after infusion of apomorphine

Borgemeester, Robbert W. K.; Diercks, Gilles F. H.; van Laar, Teus

Published in:
Parkinsonism & Related Disorders

DOI:
10.1016/j.parkreldis.2021.06.024

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 16-09-2023
Correspondence

Treatment of subcutaneous nodules after infusion of apomorphine; a biopsy-controlled study comparing 4 frequently used therapies

ARTICLE INFO

Keywords
Apomorphine
Nodules
Hydrocortisone
Dilution

ABSTRACT

This study aimed to provide clinical evidence for existing treatments of subcutaneous nodules after subcutaneous infusion of apomorphine, using a biopsy-controlled prospective crossover design of four treatments. We demonstrated that dilution of apomorphine significantly improved patient satisfaction, while subcutaneous hydrocortisone reduced nodule size, however with no differences in the histopathology.

Subcutaneous nodules are the most common adverse events of continuous subcutaneous apomorphine infusion used in advanced Parkinson’s disease (PD) [1]. However, the histopathology of these apomorphine-induced nodules is poorly understood [2,3]. Thereafter, the current treatment modalities of subcutaneous nodules are limited and not evidence-based. Only the use of ultrasound has been studied in a small-sample randomized controlled trial, showing no significant differences on tenderness and hardness of the nodules, and is therefore not used in our daily practice. The objective of this study was to provide clinical evidence for treatment options used in daily practice, supported by biopsies, taken after every intervention.

We designed a five-way, open-label, crossover trial. Each patient received a fixed sequence of five treatment modalities, including no treatment (1), massage with a spikey ball (2), topical hydrocortisone 1% (3), dilution of apomorphine 0.5% to 0.25% (4), and subcutaneous hydrocortisone 10mg as pretreatment (5). Subcutaneous hydrocortisone was administered before the infusion of apomorphine, via the same catheter. Each treatment was applied for fourteen days, followed by a wash-out period of fourteen days to account for carryover effects. The primary outcome was patient satisfaction based on absolute change on the global perceived effect (GPE) scale which is a 7-point Likert scale, ranging from absolutely not satisfied (1) to absolutely satisfied (7). Secondary outcomes were nodule size, erythema size, change in serum eosinophilia and histological changes in subcutaneous tissue obtained by skin biopsies. Patients marked two subcutaneous nodules; after one day of treatment and after eleven days of treatment. After fourteen days of treatment a biopsy was taken of both nodules, representing a maturation of fourteen days and three days, in order to assess long-term and short-term treatment effects. The biopsy of a nodule with a maturation of 3 days was considered to be the most specific for subtyping the subcutaneous responses. A generalized linear model for repeated measures of 3 days was considered to be the most specific for subtyping the subcutaneous responses. A generalized linear model for repeated measures of 3 days was considered to be the most specific for subtyping the subcutaneous responses. A generalized linear model for repeated measures of 3 days was considered to be the most specific for subtyping the subcutaneous responses.

The study was approved by the local research Ethics Committee (University Medical Centre Groningen, the Netherlands) and registered in ClinicalTrials.gov registry (NCT02230930).

Thirteen patients were included of whom ten patients (age 68.4 ± 9.6 years, PD duration 13.4 ± 5.1 years; further details in Supplement) completed all treatment arms. One patient withdrew shortly after providing written informed consent, before administration of any active treatment. One patient passed away during the study. Her death was related to heart failure, and not to the treatment with apomorphine or topical hydrocortisone as active study drug. The last patient stopped apomorphine treatment due to a perceived lack of efficacy and decided to switch to levodopa/carbidopa intestinal gel infusion.

In conclusion, this small fixed-sequence crossover study with the control of multiple biopsies demonstrated that dilution of apomorphine subjectively improved patient satisfaction, while none of the other treatments significantly improved GPE scores. Because decreasing the
apomorphine concentration had a good effect, even further lowering is conceivable, but at the cost of reloading apomorphine cartridges more frequently, which might be bothersome to patients and caregivers.

The objective outcome measures showed that subcutaneous hydrocortisone administered before the treatment, dramatically reduced nodules size after three days of treatment, compared to no treatment, massage and dilution of apomorphine. The effect of subcutaneous hydrocortisone is presumably related to the mode of administration, targeting the site were apomorphine is infused. Topical hydrocortisone, instead, did not improve patient satisfaction or nodule size. This is explained by the poor penetrance of topical hydrocortisone into the deeper subcutaneous layers [4].

Although PD nurses are always very positive about the effects of massage, this was not supported by our data.

A possible explanation for the lack of change in the biopsies, in contrast with the clinical observations, could be the formation of edema (by ortho-quinones) which is not visible in the biopsies. The formation of severe edema upon skin contact with ortho-quinones is well known in botany, in which poison ivy is most notorious [5]. The molecular structure of poison ivy is very similar to apomorphine, containing a catechol moiety with two hydroxyl groups, which can rapidly auto-oxidate, producing ortho-quinones [5].

Based on this study, clinical practice guidelines for the treatment of subcutaneous nodules related to apomorphine infusion should be adapted, stressing the importance of dilution of apomorphine and pre-treatment of subcutaneous hydrocortisone.

Financial disclosures

Dr. Borgemeester is funded by the University Medical Centre Groningen, and University of Groningen. He received an unrestricted grant from Mosapharma (662616) and received research support from the Parkinson Society.

Dr. Diercks is funded by the University Medical Centre Groningen, and University of Groningen. He received honoraria from Britannia, AbbVie, Medtronic and Neuroderm and received research support from the Parkinson Society, AbbVie and ApotheekZorg in the Netherlands.

Author contributions

Conception and design of the study: all authors. Acquisition of data: RWKB and TvL. Analysis of biopsies: GFHD. Interpretation and analysis of data: all authors. Drafting the article: RWKB and TvL. All authors reviewed and approved the final manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.parkreldis.2021.06.024.

References


