On the kinetics and conformational dynamics of elevator transporters
Trinco, Gianluca

DOI:
10.33612/diss.177792564

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Chapter 2

Kinetic mechanism of Na\(^{+}\)-coupled aspartate transport catalyzed by Glt\(_{Tk}\)

Gianluca Trinco\(^1\), Valentina Arkhipova\(^1\), Alisa A. Garaeva\(^1\), Cedric A.J. Hutter\(^2\), Markus A. Seeger\(^2\), Albert Guskov\(^{1,3}\) and Dirk J. Slotboom\(^1\)

\(^1\)Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
\(^2\)Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
\(^3\)Moscow Institute of Physics and Technology, Dolgoprudny, Russia
Chapter 2. Kinetic mechanism of Glt

Abstract

It is well-established that the secondary active transporters Glt and Glk catalyse coupled uptake of aspartate and three sodium ions, but insight in the kinetic mechanism of transport is fragmentary. Here, we systematically measured aspartate uptake rates in proteoliposomes containing purified Glt, and derived the rate equation for a mechanism in which two sodium ions bind before and another one after aspartate. Re-analysis of existing data on Glk, using this equation allowed for determination of the turnover number (0.14 s⁻¹), without the need for error-prone protein quantification. To overcome the complication that purified transporters may adopt right-side-out or inside-out membrane orientations upon reconstitution, thereby confounding the kinetic analysis, we employed a rapid method using synthetic nanobodies to inactivate one population. Oppositely oriented Glt proteins had undiscernible kinetic properties, consistent with the use of an identical gating element on both sides of the membrane. Our work, combined with previous pre-equilibrium binding studies, provides the most complete kinetic analysis of the structurally characterized aspartate transporters of the SLC1A family, and underlines the value of transport experiments to reveal mechanistic features of Na⁺-aspartate symport that cannot be observed in detergent solution.

Introduction

Excitatory amino acid transporters (EAATs) of the solute carrier family 1A (SLC1A) take up the neurotransmitter L-glutamate from the synaptic environment, which is necessary to keep the extracellular concentration low and prevent neurotoxicity [1,2]. EAATs couple uptake of one amino acid substrate molecule to the co-transport of three sodium ions and one proton and counter-transport of one potassium ion [3–6]. Thus, glutamate gradients of a million-fold across the membrane under resting conditions can be sustained. The closely related archaeal transporters Glt from Pyrococcus horikoshii and Glk from Thermococcus kodakarensis of the SLC1A family (78% sequence identity to each other, ~36% sequence identity to EAATs) take up aspartate rather than glutamate in symport with three sodium ions, and are not coupled to potassium or proton transport [7–11]. These prokaryotic homologues of the neurotransmitter transporters have been instrumental in delineating shared structural features of this transporter family [7,8,19–22,9,12–18].

SLC1A family proteins are homotrimers, with independently operating protomers [19,21,23–29], each organized in two domains. A rigid scaffold domain mediates all the contacts with the neighbouring protomers, and a peripheral transport domain binds the amino acid substrate and cations [13,16,30,31]. The transport domains are mobile and move through the lipid bilayer (alike an elevator) when translocating the amino acid substrate and co-transported ions across the membrane [13]. During movement of the transport domain, the substrate binding site is occluded from the solvent and shielded by the tips of two pseudo-symmetrical helical hairpins (HP1 and HP2). The latter hairpin is a gating element that can hinge between a closed position (taken during elevator movements) and an open position (allowing loading or release of substrate and co-transported ions). The extent of the elevator-like movement of the transport domain is so large (~20 Å in Glk) that HP2 acts as gating element both on the extracellular and the intracellular side of the membrane.

Transport assays in proteoliposomes have revealed that both Glt and Glk catalyse electrogenic transport with a strict stoichiometry of three co-transported Na⁺ ions per aspartate [14,32]. Data from studies on equilibrium binding and pre-equilibrium kinetics of binding with the solubilized proteins in detergent solution have shown that co-transported ions and aspartate bind in a highly cooperative way, which is crucial to ensure thermodynamic coupling [10,15,33–37]. These experiments have indicated that most likely two sodium
Chapter 2. Kinetic mechanism of Glt₉₅

Results

To study the kinetic mechanism of Na⁺-coupled aspartate transport by Glt₉₅, we used a classical enzymology method, in which we measured the initial uptake rates of radiolabelled L-aspartate into proteoliposomes reconstituted with purified Glt₉₅, as a function of the external concentrations of L-aspartate and Na⁺. To ensure initial rate conditions, aspartate and Na⁺ were absent from the lumen of the liposomes at the onset of the experiment, and the rate was determined from the linear part of the uptake experiment (Figure S1). In the first set of experiments, we measured the combined transport activity of proteins with right-side-out and inside-out membrane orientation in the liposomes, as we did not inactivate either of the two populations. These experiments can be compared with binding experiments performed in detergent-solution where the sidedness is absent. In follow-up experiments, we silenced one of the two populations which allows for comparison with experiments in which the transporters had been fixed in a single orientation by crosslinking [35,36].

We managed to determine accurate transport rates using external Na⁺ concentrations in the range between 5 and 300 mM and of aspartate concentrations between 50 nM and 100 μM (Table 1). The upper and lower boundaries of the concentration ranges were set by practical considerations. Aspartate concentrations higher than 100 μM required large dilution of the radiolabelled amino acid with unlabelled aspartate, which caused poor signal-to-noise levels in the uptake experiments. Na⁺ concentrations higher than 300 mM could not be used, because preparation of proteoliposomes in buffer containing high salt concentrations prevented formation of a firm pellet when centrifuged, therefore making impossible to reach the necessary protein concentration for the experiments. In the low concentration regime, conditions in which 1 mM Na⁺ was used in combination with aspartate concentrations lower than 1 μM resulted in poor signal-to-noise ratios. Despite these limitations, the range of concentrations was sufficient to provide insight in the kinetic mechanism.

The results of the uptake experiments are summarized in Table 1, where each row contains the initial rates of transport (vₐ₀) at a fixed sodium concentration, but with increasing aspartate concentrations. When analysing v₀ as a function of the aspartate concentration row-by-row, we found that rectangular hyperbolic functions fitted the data well (Figure 1A), which allowed for determination of the apparent maximal rates of transport (vₐ₀, Asp (app)) and apparent Michaelis
Menten constants ($K_{\text{M}}^\text{Asp (app)}$) (Table 2). The superscript "Asp" indicates that the aspartate was varied, while the sodium concentration was kept constant (hence "apparent").

Each column in Table 1 contains the measured initial rates of aspartate transport at increasing Na$^+$ concentrations, while maintaining a fixed aspartate concentration. Analysis of these rates as a function of the Na$^+$ concentration, revealed sigmoidal dependencies (Figure 1B). The Hill equation was used to fit the data, yielding values for $v_{\text{max}}^\text{Na (app)}$ and $K_{\text{M}}^\text{Na (app)}$ and the apparent Hill coefficient n_{Hill} (app) (Table 3). In this case, the superscript "Na" indicates sodium-dependent measurements, and "apparent" indicates that the measurements were done at a fixed L-aspartate concentration.

For interpretation of the uptake data in the framework of a kinetic model of transport, the apparent affinities for L-aspartate ($K_{\text{M}}^\text{Asp (app)}$) and the apparent maximal rates ($v_{\text{max}}^\text{Asp (app)}$ and $v_{\text{max}}^\text{Na (app)}$) are the most informative parameters. $K_{\text{M}}^\text{Na (app)}$ and n_{Hill} (app) are less informative, and were not used further [38,40].

K$^\text{a}$ analysis reveals a complex mechanism

Information on the kinetic mechanism is contained both in the dependence of the apparent affinity for aspartate $K_{\text{M}}^\text{Asp (app)}$ on the Na$^+$ concentration, and in potential differences between $K_{\text{M}}^\text{Asp (app)}$ and the equilibrium constant for L-aspartate binding ($K_{\text{d}}^\text{Asp (app)}$). Table 2 shows that $K_{\text{M}}^\text{Asp (app)}$ was strongly dependent on the Na$^+$ concentration at concentrations below 50 mM Na$^+$. At Na$^+$ concentrations above 100 mM, $K_{\text{M}}^\text{Asp (app)}$ became independent of the Na$^+$ concentration and levelled off to 0.7 μM (Table 2), a value that is important for mechanistic interpretation (discussed in detail below).

Comparison of the $K_{\text{M}}^\text{Asp (app)}$ values with the equilibrium constants for L-aspartate binding ($K_{\text{d}}^\text{Asp (app)}$), determined previously by isothermal titration calorimetry (ITC) in detergent solution [15], revealed almost identical values at a Na$^+$ concentration of 100 mM, but large differences at higher and lower concentrations of Na$^+$ (Figure 2). While $K_{\text{M}}^\text{Asp (app)}$ was an order of magnitude higher than the equilibrium constant for binding at a sodium concentration of 300 mM (7.0×102 nM versus 75 nM), at concentrations below –75 mM $K_{\text{M}}^\text{Asp (app)}$ was up to an order of magnitude lower than the $K_{\text{d}}^\text{Asp (app)}$. Such discrepancies are indicative of a complex kinetic mechanism that cannot be interpreted in the conceptual framework of the rapid equilibrium approximation, which is based

Figure 1: L-Asp transport rates catalysed by purified and reconstituted GltTk as a function of the concentrations of Na$^+$ and L-aspartate. A. Aspartate-dependent measurements at different fixed Na$^+$ concentrations. The lines represent fits of the Michaelis Menten equation to the data for uptake at Na$^+$ concentrations of 5 mM (red), 10 mM (orange), 25 mM (yellow), 50 mM (green), 100 mM (cyan), 200 mM (blue), 300 mM (purple). B. Sodium-dependence of transport at fixed L-aspartate concentrations. The lines represent fits of the Hill equation to the data for uptake at 0.05 μM (red), 0.1 μM (orange), 0.5 μM (yellow), 1 μM (green), 5 μM (cyan), 10 μM (light blue), 50 μM (blue), 100 μM (purple). Each data point represents a triplicate measurement (n=3), and the standard error of the mean is shown.
Chapter 2. Kinetic mechanism of Glt₉s

on the assumption that the transport step (described by turnover number \(k_{\text{cat}} \)) is much slower than the establishment of the binding equilibrium of sodium ions and aspartate, described by the equilibrium constants \(K_p \). The rapid equilibrium assumption was previously also dismissed for aspartate transport by Glt₉s, based on more limited comparison of \(K_p \) and \(K_c \) [10], and on pre-equilibrium binding experiments in detergent solution [36], but the data presented here, based on the comparison of transport and binding experiments over a broad range of sodium concentrations, revealed a variable ratio between \(K_{\text{app}} \) (app) and \(K_{\text{app}} \) (app) depending on the Na⁺ concentration, which is indicative of kinetic complexity.

![Image of graph showing dependence of apparent affinities on sodium ion concentration](image)

Mechanistic interpretation of transport data using the Steady-state approximation

Because the rapid equilibrium approximation was found invalid, we turned to analysis based on the steady-state assumption. While the Michaelis-Menten or Hill equations can always describe the substrate dependencies of the uptake rates when the rapid equilibrium approximation is valid, it is possible to find more complex relations in the steady-state analysis, depending on the details of the kinetic mechanism [38]. For instance, for some kinetic mechanisms, \(v_{\text{max}} \) values may be (local) maxima, instead of being reached asymptotically, and \(K_m \) values may be undefined. Such complex relations often arise when steps occur in the mechanism where two different substrates (corresponding to aspartate and Na⁺ in the case of Glt₉s) bind randomly [38]. In our data, the concentration dependences of the initial rates are described well by rectangular hyperbola and sigmoidal curves (Figure 1 and 2), suggesting that such random steps do not play a significant role, at least not in the concentration regime that we used. This notion is consistent with the kinetic binding model derived for detergent-solubilized Glt₉s, where the binding of sodium ions and aspartate to Glt₉s was found to be ordered in the concentration range between 5 and 300 mM Na⁺, with two sodium ions binding before and one after aspartate [36]. This ordered binding mechanism is also consistent with a recent study that revealed a conformational selection step leading to binding of the first sodium ion [34]. Therefore, we chose to analyze the transport data presented here with the following kinetic model:

\[
\begin{align*}
E & \rightleftharpoons E[Na^+] \\
E & \rightleftharpoons E[Asp] \\
E[Na] & \rightleftharpoons E[Na][Asp] \\
E[Na][Asp] & \rightleftharpoons E[Na][Asp][Na] \\
E[Na][Asp][Na] & \rightleftharpoons E[Na][Asp][Na][Na] \\
& \cdots
\end{align*}
\]

in which \(E \) represents Glt₉s.

While we base our further analysis on the mechanism shown in equation (1), we will show in the discussion section that the main conclusions hold for any mechanism in which at least one sodium ion binds after aspartate.

To derive a rate equation for this kinetic model of equation (1), we used the King Altman method [38,41]:

\[
\frac{v}{v_{\text{max}}} = \frac{a_1 [Na]^2 [Asp]}{a_2 [Na]^2 [Asp] + a_3 [Na]^2 [Asp] + a_4 [Na][Asp] + a_5 [Na]^2 + a_6 [Na] + a_7}
\]

in which \(v_{\text{max}} \) is the maximal attainable rate of transport at high Na⁺ and L-aspartate concentrations, and \(a_1 \) - \(a_7 \) are expressions of rate constants:

\[
\begin{align*}
a_1 &= k_1 k_2 k_3 k_4 \\
a_2 &= k_2 k_3 k_4 c_{\text{cat}} + k_3 k_2 k_4 c_{\text{cat}} + k_4 k_2 k_3 c_{\text{cat}} + k_1 k_2 k_3 c_{\text{cat}} + k_1 k_2 k_3 c_{\text{cat}} - 4 \\
a_3 &= k_5 k_2 k_4 c_{\text{cat}} \\
a_4 &= k_1 k_2 k_4 c_{\text{cat}}
\end{align*}
\]
Equation (2) can be rearranged to derive expressions for $v_{\text{max} \text{Na}} \text{(app)}$ and $v_{\text{max} \text{Asp}} \text{(app)}$:

$$v_{\text{max} \text{Na}} \text{(app)} = v_{\text{max}} \cdot \frac{[\text{Na}]^2}{a_1 [\text{Na}]^2 + a_2 [\text{Na}] + a_3}$$

$$v_{\text{max} \text{Asp}} \text{(app)} = v_{\text{max}} \cdot \frac{[\text{Asp}]}{a_1 + [\text{Asp}]} = v_{\text{max}} \cdot \frac{[\text{Asp}]}{k_3 + [\text{Asp}]}$$

Thus, the model predicts that both $v_{\text{max} \text{Na}} \text{(app)}$ and $v_{\text{max} \text{Asp}} \text{(app)}$ are dependent on the concentration of the other substrate, which is fully consistent with the data presented in Figure 3A and B. Moreover, equation (11) describes a rectangular hyperbolic relation between $v_{\text{max} \text{Na}} \text{(app)}$ and [Asp]. By fitting the Michaelis Menten equation to the data (Figure 3A), we found a value of -1.3×10^6 M$^{-1}$s$^{-1}$ for k_3, which agrees well with the value of 1.2×10^6 M$^{-1}$s$^{-1}$ that was found for GltNa. When the apparent affinity constants are plotted in a double logarithmic plot against the concentration of Na$^+$, linear relations are approached in both the high and low Na$^+$ concentration extremes (Figure 2). The slope is zero at high Na$^+$ concentration (because $K_{\text{M Asp}}$ (app) levels off to k_3/k_7), and a slope of -1.4 is found in the low Na$^+$ concentration regime, which deviates from the slope of -1 predicted by the model. This discrepancy may indicate that lower concentrations of sodium should have been used to meet the conditions for equation (14) to be valid, something which was impossible for technical reasons, as discussed above. Alternatively, the deviation might be caused by the experimental error inherent to the transport measurements at low Na$^+$ concentrations. The slope of the log$K_{\text{M Asp}}$ plot in the low Na$^+$ concentration regime is ~ 2-fold shallower than that of the log$K_{\text{M Na}}$ plot, which is consistent with the binding model [36].

Equation (13) predicts that in the high concentration limit a constant value for $K_{\text{M Asp}} \text{(app)}$ is reached, which equals the ratio between two rate constants k_7/k_3. The data presented in Figure 2 and Table 2 show that the value of $K_{\text{M Asp}} \text{(app)}$ levels off to 0.7μM at high Na$^+$ concentration. Since the turnover number k_{cat} is $-0.9s^{-1}$ (Figure 3, Table 2), a value of -1.3×10^6 M$^{-1}$s$^{-1}$ for k_3 is found. Thus, two approaches (analysis of $v_{\text{max} \text{Na}} \text{(app)}$ and $K_{\text{M Asp}} \text{(app)}$), reveal a value for k_3 that is consistent with the physical data. Equation (12) can also be rearranged to derive an expression for $K_{\text{M Asp}} \text{(app)}$:

$$K_{\text{M Asp}} \text{(app)} = \frac{a_4 [\text{Na}]^2 + a_5 [\text{Na}] + a_6}{a_1 [\text{Na}]^2 + a_2 [\text{Na}] + a_3}$$

From equation (12) the values for $K_{\text{M Asp}} \text{(app)}$ that are reached in the low and high [Na$^+$] regimes can be found:

$$\lim_{[\text{Na}] \to 0} K_{\text{M Asp}} \text{(app)} = \frac{a_4}{a_1} k_{\text{cat}} = \frac{k_{\text{cat}}}{k_3}$$

$$\lim_{[\text{Na}] \to 0} K_{\text{M Asp}} \text{(app)} = \frac{a_4}{a_1 [\text{Na}]}$$

Figure 3: Dependence of the maximal rates L-Asp transport rate on the concentrations of Na$^+$ and L-aspartate. A. Dependence of the maximal rates of transport $v_{\text{max} \text{Na}} \text{(app)}$ from Figure 1A on the concentration of sodium ions. B. Dependence of the maximal rates of transport $v_{\text{max} \text{Asp}} \text{(app)}$ from Figure 1B on the concentration of L-Asp. Solid and dashed lines represent fits of rectangular hyperbolic functions to the data and the 95% confidence intervals, respectively. In panel A the fitted value of k_7/k_3 (equation (13)) is indicated. The standard error of the mean is shown (n=3).
Chapter 2. Kinetic mechanism of Glt₉₈

Side specific inhibition with Sybody

Although the analysis presented above is internally consistent, as well as consistent with existing kinetic data for binding on Glt₉₈, there is a potential complication caused by the proteoliposome system used, because the reconstitution procedure usually results in a mix of inside-out- and right-side-out-oriented proteins in the bilayer. For instance, it has been demonstrated that Glt₉₈ reconstitutes in the two orientations with equal probability [10]. If the oppositely oriented proteins take up aspartate via different kinetic mechanisms (the equivalence of different mechanisms for forward and reverse transport in vivo), the results of the kinetic analysis could be convoluted and potentially lead to misinterpretation.

To determine to which extent the kinetic mechanism depends on the orientation of Glt₉₈ in liposomes, we set out to inactivate either the right-side-out or the inside-out oriented transporters. Inhibition of the transporter from only one side of the membrane by modification of cysteine mutants did not work for Glt₉₈, possibly because of the one-gate nature of the elevator mechanism, in which identical binding site residues and gating elements are alternately exposed to either side of the membrane [13]. Therefore, we chose to explore an alternative method by using synthetic nanobodies (Sybodies) [39,42]. Since sybodies recognize water-exposed surface epitopes and are membrane impermeable, they are expected to be suitable for orientation-specific inhibition. We selected 42 unique sybodies against Glt₉₈ using an established platform, which included ribosome display, two rounds of phage display and ELISA [39].

One of these sybodies (Sybody 1) completely blocked aspartate transport by Glt₉₈ when added from both sides of the membrane (in the lumen and in the external solution), but inhibited partially when added only on the outside of the proteoliposomes (Figure 4A). This sybody thus showed the characteristics of the sought-after sidedness of inhibition, and the result suggests that Glt₉₈ was reconstituted in both orientations in the proteoliposomes, similar to what was shown for Glt₉₈ before. To explain the inhibitory properties of Sybody 1, we solved a single particle cryo-EM structure of the sybody-Glt₉₈ complex. The sybody binds on the extracellular surface of Glt₉₈ at the interface between the transport and scaffold domain. The bound sybody thereby makes the elevator movement impossible, which prevents transport (Figure 4B). The sybody thus inactivates the Glt₉₈ molecules with right-side-out orientation, and the residual uptake activity can be attributed to the inside-out oriented proteins.

Figure 4: Inhibition of aspartate transport by the Sybody. A. Uptake of aspartate in liposomes reconstituted with Glt₉₈ using aspartate and Na⁺ concentrations of 1 mM and 300 mM respectively. Uptake traces in the absence of sybody (green), in the presence of 750 nM sybody on the outside (orange) or with sybody present on both sides of the membrane (red). Each data point represents a triplicate measurement (n=3), and the standard error of the mean is shown. B. Cryo-EM structure of the Glt₉₈-sybody complex. Left: cartoon representation of a Glt₉₈ protomer (transport domain in blue and the scaffold in yellow) with sybody bound (red). The surface of the protein is shown in transparent representation, and the approximate location of the membrane boundaries are indicated with dashed lines. Right: sliced-through representation highlighting that the sybody likely blocks movement of the transport domain along the scaffold domain. The transport domain is in the intermediate-outward state, as described in ref.[13] C and D. Same as in Figure 1A and 1B for a selection of conditions (using the same color coding), but now in the presence of 750 nM sybody on the outside of the liposomes.
Chapter 2. Kinetic mechanism of Glt$_{ns}$

We chose to use this sybody, added only on the outside of the proteoliposomes, to repeat a subset of the experiments described above. First, we tested whether $v_{\text{max}}^{\text{Na}}$ (app) still depended on the aspartate concentration, and whether $v_{\text{max}}^{\text{Asp}}$ (app) still depended on the Na$^+$ concentration when the right-side-out oriented molecules were inactivated by the sybody. Indeed, both v_{max} (app) values still varied with the concentrations of the co-substrate (Figure 4CD), consistent with the kinetic mechanism (equations (10) and (11)). Second, we determined whether a constant value for K_{M}^{Asp} (app) was still reached in the high Na$^+$ concentration limit, as predicted by Equation (13). Indeed, a constant value of ~0.6 μM found was found above 100 mM Na$^+$, which intriguingly did not deviate significantly from the value in the dual-population proteoliposomes (Table 5). Assuming that the k_{cat} value of the active population of inside-out oriented proteins was still ~0.9 s$^{-1}$, the value of k_3 remained unaltered. In other words, the measurable parameters of the kinetic mechanism of the right-side-out and inside-out oriented proteins were very similar.

Discussion

Reconstitution of purified membrane proteins in liposomes often leads to mixed orientation in lipid bilayers. For secondary active transporters, which can readily operate in both directions, the co-existence of right-side-out and inside out oriented proteins is problematic for kinetic analysis. The work presented here shows that inactivation of a transporter from one side of the membrane using a synthetic nanobody (Sybody) is an effective way to deal with mixed orientation upon reconstitution in liposomes [39,42]. Synthetic nanobodies are membrane impermeable, and highly specific for the binding epitope. While also natural nanobodies could be used for this purpose, sybodies offer a major advantage, because the selection can be carried out under defined buffer conditions, which may be used to steer the selection towards binders of a specific state. Also, the method of immobilization used in the ribosome and phage display steps can be used to create bias for binders to the external or internal surface of the transporters. Finally, the generation of sybodies is quicker compared to nanobody generation, requires less protein, and does not require animal handling.

Here, the inactivation of the population of right-side-out oriented Glt$_{ns}$ by sybody binding made it possible to analyze uptake catalyzed by inside-out oriented proteins. The aspartate transport rates obtained in the presence of the sybody can be compared directly with a previous pre-equilibrium binding study on detergent-solubilized Glt$_{ns}$. In the latter study, the transporter was fixed in the inward-oriented state by Hg$^{2+}$-crosslinking of a double cysteine mutant, which allowed for determination of the kinetic mechanism of binding of sodium ions and aspartate, and estimation of rate constants for association and dissociation [36]. In our study, where we used a sybody to inactivate the population of right-side-out oriented Glt$_{ns}$ transporters in proteoliposomes, we measured the kinetics of the reversed transport step, which includes binding of Na$^+$ and aspartate to the inward-oriented state similar to the pre-equilibrium binding study. In the Na$^+$ concentration range between 5 and 300 mM, the two studies are fully congruent, and consistent with a mechanism in which two sodium ions bind first, followed by aspartate and finally the last sodium ion. The kinetic analysis presented here shows that the rate constant for association of aspartate (k_3 in equation (1)), can be obtained using equation (13), when K_{M}^{Asp} (App) is determined in the limit of high Na$^+$ concentrations (as shown in Figure 2) and the turnover number k_{cat} is taken directly from the maximally attainable rate at high Na$^+$ and aspartate concentrations (v_{max}). The value for k_3 derived in this way was 1.3×10^{6} M$^{-1}$ s$^{-1}$, which closely matches the value of 1.2×10^{6} M$^{-1}$ s$^{-1}$ for Glt$_{ph}$ derived from pre-equilibrium binding experiments [36].

More importantly, it is also possible to determine the turnover number k_{cat} using the same analysis, if k_j is known from binding experiments (which is the case for Glt$_{ph}$). This notion is relevant, because quantification of the amount of transport protein present in membranes is often difficult, making direct determination of k_{cat} from v_{max} values notoriously error-prone, which can be easily illustrated by the available data on Glt$_{ns}$: For aspartate transport by Glt$_{ns}$, the value for K_{M}^{Asp} (app) at 100 mM Na$^+$ has been determined accurately (120 nM) [43]. Assuming that this Na$^+$ concentration is sufficiently high to represent the limit where K_{M}^{Asp} (app) has become constant, and using the k_j value of 1.2×10^{6} M$^{-1}$ s$^{-1}$ determined by pre-equilibrium binding, from equation (13) a k_{cat} value of 0.145 s$^{-1}$ is calculated. It is important to emphasize that this value has been derived without using error-prone determination of the protein concentration in the transport assay. For comparison, if k_{cat} is derived directly from the v_{max} value of 3.4 nmol×mg$^{-1}$×min$^{-1}$, a value of 2.6×10^{-3} s$^{-1}$ is found [43]. The huge discrepancy between the two values is probably caused by inaccurate protein concentration determination in the proteoliposomes, or loss of activity during the reconstitution process.
Chapter 2. Kinetic mechanism of Glt_{tk}

It is noteworthy that in the experiments on Glt_{tk} presented here, the k_{cat} value of 1.3 × 10^{6} M^{-1}s^{-1} that we determined from the measurement of K_{M}^{app} (app) and k_{cat} was remarkably similar to the experimentally determined value of k_{cat} for Glt_{ph} of 1.2 × 10^{6} M^{-1}s^{-1} [36]. The virtually identical rates of aspartate association step in Glt_{tk} and Glt_{ph} are consistent with the structures of the binding sites in the two proteins, which are essentially the same [7–9,13,15,16,20,44]. Therefore, we believe that the Glt_{tk} protein concentration, used to derive k_{cat}, was reasonably accurate in this case.

The 6-fold difference in turnover number k_{cat} between Glt_{ph} and Glt_{tk} (0.14 s^{-1} and 0.98 s^{-1} respectively) could be caused by (small) structural differences away from the binding site. k_{cat} is not a single rate constant, but is composed of contributions from all steps that take place after binding of the last sodium ion in the catalytic cycle, until the binding of the first sodium ion in the next round of catalysis. These steps include movement of the fully loaded transport domain between outward- and inward-oriented states, opening of the binding site towards the lumen of the liposomes, release of the sodium ions and aspartate, occlusion of the empty binding site in the apo state, movement of the transport domain in the occluded apo state, opening of the binding site externally. The latter step also includes the rate constant for reshaping the binding sites for the first two sodium ions, leading to conformational selection that was shown to occur in Glt_{ph} [34]. Therefore, differences between Glt_{ph} and Glt_{tk} that affect any of these steps may affect k_{cat}, which is observable in the value for K_{M}^{app} (app) at high sodium concentrations.

The origin of the differences between Glt_{ph} and Glt_{tk} may be similar to that of differences between wild-type Glt_{ph} and a faster “unlocked” mutant [18,43]. This mutant has the same value for k_{j} as the wild-type[36], consistent with the observation that the structure of the binding site is identical to the wild-type. Therefore, determination of K_{M}^{app} (app) in the limit of high sodium ion concentration allows for derivation of accurate values for k_{cat}. The values for K_{M}^{app} (app) have been determined at 100 mM Na+ for both wild-type Glt_{ph} and the fast mutant (120 nM and 406 nM respectively)[43]. If we again assume that this Na+ concentration is high enough to represent the limit where K_{M}^{app} (app) becomes constant for both proteins, then k_{cat} is predicted to be ~3.5 times higher in the fast mutant, which is in a good agreement with bulk transport data that showed ~4.5 fold difference in v_{max} values (although the absolute numbers are both far off for the reasons discussed above) [43].

While it is also possible to determine turnover numbers using a recently established transport assay at the single molecule level [45], derivation of a full kinetic mechanism by combining turnover numbers from single molecule transport measurements with rate constants determined in pre-equilibrium binding experiments, is not straightforward, because the latter are ensemble measurements. In pre-equilibrium binding experiments [33,34,36,37] and bulk transport experiments (presented here), the entire ensemble contributes to the measured rate constants, but in single molecule transport experiments, the k_{cat} is determined for only a fraction of the ensemble. It is difficult to account for the contribution of the all populations of (slightly) differently behaving individual proteins that together make up the ensemble. This is especially problematic for Glt_{ph}, because this protein switches between active and quiescent modes, and may get stuck in kinetically distinct conformation by static disorder, all of which last for extended periods of time [45]. This may explain why the turnover numbers determined by single molecule transport experiments deviate from those determined by bulk experiment.

While the kinetic mechanism presented here is valid only for the reverse transport reaction (because we inactivated the forward-operating transporters by the sybody), it is well possible that the same mechanism is also used for the forward transport reaction. Similarity of the forward and reverse kinetic mechanisms is indeed supported by the essentially identical kinetic parameters in the presence and absence of the sybody. From a structural point of view this similarity can be explained because the transporter uses the same gating element on both sides of the membrane (“one-gate elevator”), and the binding site geometry and access path in the inward- and outward-oriented states are essentially the same [13,20,46,47]. In future experiments the kinetic mechanism for forward transport by Glt_{ph} may be tested if we manage to inactivate the inside-out oriented population of Glt_{ph} molecules by a suitable sybody.

In contrast to what we found for Glt_{ph}, differences in the kinetic mechanisms of the forward and reverse reactions have been proposed for the mammalian glutamate transporter EAAC1 [48]. Although it is possible that the differences in kinetic mechanism between Glt_{ph} and EAAC1 are real, it is also possible that they are caused by differences in the readout of transport. While for Glt_{ph} transport was measured directly (using radioactivity), for EAAC1 the substrate-induced chloride conductance was used as a readout. In addition, the analysis of the data for EAAC1 was based on the rapid-equilibrium assumption, which may
not be valid. Finally, the more limited range of co-ion concentrations tested for EAAC1 may have obscured mechanistic details.

In conclusion, analysis of the kinetic mechanism of sodium-coupled aspartate transport by Glt orc and Glt nh provides a way to determine accurate turnover numbers from \(K_m^{\text{Asp}} \) (app) values, without the need to use error-prone protein quantification. This is of great use for instance when analyzing the effects of mutations. Depending on the details of the kinetic mechanism, it may also be possible to determine turnover numbers in a similar way for other transport proteins. To test whether kinetic mechanisms different from the one analyzed here (equation (1)) would also allow for similar determination of the turnover number, we used the King-Altman method [38,41] to derive rate equations for all possible kinetic mechanisms leading to the coupled transport of three sodium ions and aspartate [40]. It turns out that if at least one sodium ion binds after aspartate, \(K_m^{\text{Asp}} \) (app) values in limit of high sodium concentration equal the ratio between \(k_m \) and the on-rate for aspartate binding (as in equation (13)). It is also noteworthy that this even holds if multiple sodium ions bind randomly (for instance if steps 1 and 2 in equations (1) would be random). Therefore, it is likely that more transporters can be analyzed in the same way as presented here, and we conclude that systematic analysis of transport rates, and derivation of the rate equation, are essential steps in the elucidation of transport mechanisms.

Methods

Glt orc purification and reconstitution in proteoliposomes

Glt orc was produced in E.coli strain MC1061 with the L-arabinose inducible vector pBAD24 as described in Arkhipova et al. (2019) [14]. The cells were grown in LB media supplemented with 100mg/L ampicillin. The expression was induced by addition of 0.05% L-arabinose when the culture reached 0.8 OD600. Three hours after induction the cells were harvested by centrifugation (7000 rpm, 15’, 4°C Beckman JLA 9.1000) and resuspended in ice cold 20 mM Tris-HCl. The cells were lysed by means of a cell disruptor cooled to 4°C and operated at 25 PSI. The lysate went through an intermediate centrifugation (7500 RPM, 20’, 4°C, Beckman JA25.50) step to remove cell debris, the supernatant was finally ultracentrifuged (40000 RPM 150’, 4°C, Beckman 50.1 Ti) and the pellet was resuspended in 20 mM Tris-HCl pH 8 before storing the membrane vesicles at -80 °C.

The membrane vesicles were then added to solubilisation buffer (50 mM Tris-HCl pH8, 300 mM KCl, 1% DDM), incubated for 45’ on a rocking platform at 4°C and finally centrifuged (55000 RPM, 30’, 4°C, Beckman MLA 55) to separate the membranes from the solubilized protein. The supernatant was supplemented with 15 mM imidazole pH 8 and with 0.5 mL of Ni-Sepharose slurry pre-equilibrated with 50 mM Tris-HCl, 300 mM KCl. After 1h of incubation the mixture was loaded onto a Poly-Prep column and unbound protein was allowed to flow through. The column was washed with 20 column volumes of washing buffer (50 mM Tris-HCl, 300 mM KCl, 60mM imidazole, 0.15% DM) and finally eluted in three fractions of 300, 800 and 400 μL respectively using elution buffer (50 mM Tris-HCl, 300 mM KCl, 500mM imidazole, 0.15% DM). The second fraction was loaded onto a Superdex-200I gel filtration column equilibrated with 10mM HEPES pH 8, 100 mM KCl and 0.15%DM. The final concentration of the purified protein was determined by measuring the absorbance at 280nm (Glt orc \(\varepsilon =37360 \)).

The lipids used to reconstitute Glt orc contained a 3:1 mixture of E.coli lipid polar extract and egg phosphatidylcholine (PC) (Avanti). Liposomes were homogenized by extruding 11 times through a 400 nm pore size polycarbonate filter and subsequently diluted to 5 mg/mL in 50 mM potassium phosphate buffer (pH 7.0). To allow the insertion of the protein into the bilayer, the lipids were destabilized by step-wise addition of 10% Triton X-100 while scattering was followed at a wavelength of 540 nm. The titration was stopped once the absorption signal decreased to about 60% the maximum value reached. Purified protein was added at a protein:lipid ratio (w/w) of 1:1600. The protein lipid mixture was incubated for 30’ at RT, and then the detergent was removed by addition of BioBeads in three steps: First 15 mg/mL BioBeads were added followed by incubation for 60’ at 4°C, then 19 mg/mL BioBeads were added followed by overnight incubation at 4°C. Finally, 29 mg/mL BioBeads were added followed by 120’incubation at 4°C. BioBeads were then removed and the proteoliposomes were pelleted (80,000 RPM, 25’, 4°C, Beckman MLA80) and resuspended in 50 mM potassium phosphate buffer (pH 7) to a final lipid concentration of 20 mg/ml. The proteoliposomes were subjected to three cycles of freeze-thawing using liquid nitrogen and stored until use.

Sybody selection

Sybodies were selected against two Glt orc cysteine mutants (298C and 367C), which while biotinylated and immobilized during the selection procedures would make both extracellular and intracellular epitopes accessible for binding.
Chapter 2. Kinetic mechanism of Glt$_{tn}$

Selection was done in the presence of 50 μM L-aspartate, 150 mM NaCl and 0.15% DM according to an established in vitro selection platform that included ribosome display, two rounds of phage display and ELISA (Zimmermann et al., 2018, 2020). During ELISA, every single clone was analyzed for binding against Glt$_{tn}$ in the presence and absence of L-aspartate. Sequencing of 48 ELISA positive hits resulted in 42 unique sybody sequences (20 for the 298C mutant and 22 for the C367 mutant).

Sybody expression and purification

Each of 42 sybodies was expressed in *E. coli*, purified from the periplasm using Ni$^{2+}$-affinity chromatography and analyzed by size exclusion chromatography (SEC). Based on the quality of the SEC profiles (absence of aggregates, no interactions with column material, high yield) we selected 33 purified sybodies (14 for the 298C mutant and 19 for the 367 C mutant), which were tested for their ability to inhibit Glt$_{tn}$ transport of aspartate in uptake assays. For large scale purification of inhibitory Sybody 1, a preculture of *E. coli* MC1061 transformed with pSB_initSB1 was used to inoculate 50 mL of TB medium supplemented with 25 μg/ml chloramphenicol. The culture was grown at 37°C while shaking at 200 rpm, the temperature was then lowered to 22°C and let grow until OD ~0.8. The expression was induced by adding L-arabinose to a final concentration of 0.02% and let express overnight at 22°C while shaking. Cells were pelleted and resuspended in 5 mL periplasmic extraction buffer (20% sucrose (w/v) 50 mM Tris·HCl (pH 8.0), 0.5 mM EDTA and 0.5 μg/ml Lysozyme) and incubated on ice for 30 minutes, after incubation 20 mL of TBS (20mM Tris·HCl (pH 7.4) 150 mM NaCl) supplemented with 1 mM MgCl$_2$ were added. The lysate was centrifuged at 4,000g for 30 minutes and the supernatant was transferred in a tube containing 500 μL of Ni-agarose pre-equilibrated in TBS and supplemented with imidazole to a final concentration of 15 mM. After 1h incubation on a shaking platform, the solution containing the SyBody was applied to a polyprep gravity column and the unbound fraction was let flow through. The resin was then washed with 10 CV of TBS supplemented with 30 mM imidazole and eluted in 500 μL of TBS supplemented with 300 mM imidazole. The Sybody solution was then passed through a NAP-10 column equilibrated with the internal uptake buffer (10 mM potassium phosphate buffer (pH 7), 300 mM KCl) and stored at -80°C. Sybody 1 was selected from the library created by the mutant 298C.

Transport assay

The luminal buffer in each proteoliposome preparation was changed to 10 mM potassium phosphate buffer (pH 7) and 300 mM KCl. For this, the proteoliposomes were first pelleted (80,000 RPM, 25’, 4°C, Beckman MLA80) and then resuspended in the luminal buffer. After three freeze-thaw cycles the suspension was extruded 11 times through a polycarbonate filter with 400-nm pore size in order to obtain homogeneously sized unilamellar vesicles which were pelleted (80000 RPM, 25’, 4°C, Beckman TLA100.3) and resuspended to a final lipid concentration of 100 mg/mL.

To completely inhibit aspartate transport of Glt$_{tn}$ by Sybody 1 (on both sides of the membrane) the luminal solution was supplemented with 150 μM of Sybody 1. After performing 6 freeze-thaw cycles, and extrusion (11 times) through a polycarbonate filter with 400-nm pore size, the homogeneous solution was pelleted (80000 RPM, 20’, 4°C, Beckman TLA100.1) and resuspended to a final lipid concentration of 100 mg/mL in a solution containing 75 μM of Sybody 1, 10 mM potassium phosphate buffer (pH 7) and 300 mM KCl.

To inhibit only the right side-out fraction of Glt$_{tn}$ a homogeneous solution of proteoliposomes was prepared as described above (with luminal buffer devoid of Sybody) and after pelleting by ultracentrifugation it was resuspended to a final lipid concentration of 100 mg/mL with a solution containing 75 μM of Sybody 1, 10 mM potassium phosphate buffer (pH 7) and 300 mM KCl.

To start the transport the proteoliposome suspension was diluted 100 fold into external buffer while stirring. The external buffer contained 10 mM potassium phosphate buffer (pH 7), 3 μM valinomycin, 1 – 300 mM NaCl, 0.05 – 100 μM L-aspartate; to balance the osmotic strength with that of the luminal solution, choline chloride was added (Table 1). In case the Sybody was present, the 100-fold dilution resulted in a final external concentration of 750 nM.
and subsequently flushing them in the reaction buffer with 2 mL of ice-cold quenching buffer (10 mM potassium phosphate (pH 7), 300 mM KCl).

The value for each uptake rate represents the average and standard error of three independent biological replicates, each constituted by two or three technical replicates. The substrate-dependent uptake rates obtained at fixed concentration of Na\(^+\) were plotted as a function of L-aspartate and fitted to the Michaelis-Menten equation to obtain apparent K\(_M\) (K\(_{MNa(app)}\)) \& v\(_{max}\) (v\(_{max\,Asp(app)}\)) values for different [Na\(^+\)]. The co-ion dependent uptake rates obtained at a fixed concentration of L-aspartate were plotted as a function of Na\(^+\) and fitted to the Hill equation of obtain K\(_M\) (K\(_{MNa(app)}\)), v\(_{max}\) (v\(_{max\,Na(app)}\)) \& n\(_{Hill}\). The statistical analysis of the data was executed in GraphPad Prism 9.

Single particle Cryo-EM

The structure of Glt\(_{hs}\) in complex with Sybody 1 (molar ratio 3:1) was determined using essentially the same protocol as described in Arkhipova et al 2020[13], in the presence of 300 mM Na\(^+\) and 50\,\mu M L-Asp. The purified complex at using essentially the same protocol as described in Arkhipova et al 2020[13], 54 55

The structure of Glt Tk in complex with Sybody 1 (molar ratio 3:1) was determined Single particle Cryo-EM

Chapter 2. Kinetic mechanism of Glt\(_{hs}\)

<table>
<thead>
<tr>
<th>[L-Asp] (mM)</th>
<th>0.05</th>
<th>0.1</th>
<th>0.5</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Na(^+)] (mM)</td>
<td>0</td>
<td>5</td>
<td>50</td>
<td>100</td>
<td>200</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t (s)</td>
<td>0.25</td>
<td>1.93</td>
<td>1.44</td>
<td>1.19</td>
<td>1.42</td>
<td>1.86</td>
<td>2.79</td>
<td>3.75</td>
<td>8.19</td>
<td>12.60</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Initial rates of L-Aspartate uptake by Glt Tk reconstituted in proteoliposomes. In the first column, the concentrations in parentheses indicate the amount of choline chloride used in the external reaction buffer to balance the osmotic and ionic strength. The standard error of the mean is indicated (n=3). In brief, 824 micrographs were selected for the processing after motion correction and CTF estimation. The template for particle picking was generated from 100 manually picked particles. Template-based picking identified 109217 particles. Subsequent 2D classification reduced the number of particles to 67498 and subsequently 53983 particles were left in the selected ab initio class. Final non-uniform 3D refinement resulted in a 3.5 Å map (with C\(_1\) symmetry applied), which was sharpened using Autosharp Map procedure in Phenix [50] and used for model building using Coot [51]. The refinement of the coordinates was performed in realspace refine module of Phenix [50] and used for model building using Coot [51]. The data collection and refinement statistics are shown in Table 5. Visualization and structure interpretation were carried out in UCSF Chimera [53] and PyMol (Schrödinger, LLC).
Table 2: \(v_{\text{max}} \) and \(K_{M} \) values for aspartate dependent uptakes obtained at constant [Na⁺] (From Figure 1A). The standard error of the mean is indicated (n=3)

<table>
<thead>
<tr>
<th>[Na⁺] (mM)</th>
<th>(v_{\text{max}}) (app) (min⁻¹)</th>
<th>(K_{M}) (app) (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>29.2 ± 0.58</td>
<td>36 ± 1.9</td>
</tr>
<tr>
<td>10</td>
<td>34.1 ± 1.5</td>
<td>16.8 ± 2.4</td>
</tr>
<tr>
<td>25</td>
<td>44.7 ± 2.9</td>
<td>5.5 ± 1.5</td>
</tr>
<tr>
<td>50</td>
<td>45.5 ± 2.3</td>
<td>1.2 ± 0.3</td>
</tr>
<tr>
<td>100</td>
<td>52.1 ± 2.6</td>
<td>0.70 ± 0.16</td>
</tr>
<tr>
<td>200</td>
<td>54.2 ± 4.1</td>
<td>0.58 ± 0.23</td>
</tr>
<tr>
<td>300</td>
<td>53.7 ± 3.1</td>
<td>0.70 ± 0.22</td>
</tr>
</tbody>
</table>

Table 3: \(v_{\text{max}} \), \(K_{M} \) and \(n_{Hill} \) values for Na⁺ dependent uptakes obtained at constant [L-Asp] (from Figure 1B). The standard error of the mean is indicated (n=3)

<table>
<thead>
<tr>
<th>[L-Asp] (µM)</th>
<th>(v_{\text{max}}) (app) (min⁻¹)</th>
<th>(K_{M}) (app) (mM)</th>
<th>(n_{Hill}) (app)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>3.7 ± 0.1</td>
<td>36.7 ± 1.8</td>
<td>2.1 ± 0.19</td>
</tr>
<tr>
<td>0.1</td>
<td>8.6 ± 0.1</td>
<td>37.0 ± 0.81</td>
<td>2.0 ± 0.08</td>
</tr>
<tr>
<td>0.5</td>
<td>28.5 ± 0.15</td>
<td>40.9 ± 0.42</td>
<td>1.70 ± 0.025</td>
</tr>
<tr>
<td>1</td>
<td>34.9 ± 1.0</td>
<td>37.3 ± 1.7</td>
<td>1.7 ± 0.13</td>
</tr>
<tr>
<td>5</td>
<td>40.6 ± 1.3</td>
<td>24.7 ± 1.6</td>
<td>1.6 ± 0.19</td>
</tr>
<tr>
<td>10</td>
<td>51.4 ± 1.3</td>
<td>21.8 ± 1.5</td>
<td>1.5 ± 0.19</td>
</tr>
<tr>
<td>50</td>
<td>54.6 ± 1.9</td>
<td>10.9 ± 1.1</td>
<td>1.1 ± 0.14</td>
</tr>
<tr>
<td>100</td>
<td>72.34 ± 2.7</td>
<td>14.8 ± 0.72</td>
<td>0.72 ± 0.21</td>
</tr>
</tbody>
</table>

Table 4: \(v_{\text{max}} \) and \(K_{M} \) values for aspartate dependent uptakes obtained at constant [Na⁺] in the presence of 750 nM sybody on the outside of the liposomes. The standard error of the mean is indicated (n=3)

<table>
<thead>
<tr>
<th>[Na⁺] (mM)</th>
<th>(v_{\text{max}}) (app) (min⁻¹)</th>
<th>(K_{M}) (app) (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>9.8 ± 1.0</td>
<td>4.9 ± 1.4</td>
</tr>
<tr>
<td>100</td>
<td>18.3 ± 0.36</td>
<td>0.97 ± 0.36</td>
</tr>
<tr>
<td>200</td>
<td>17.0 ± 0.65</td>
<td>0.65 ± 0.13</td>
</tr>
<tr>
<td>300</td>
<td>17.2 ± 0.63</td>
<td>0.63 ± 0.17</td>
</tr>
</tbody>
</table>
Table 5: Cryo-EM data collection, refinement and validation

<table>
<thead>
<tr>
<th>Data collection and processing</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (kV)</td>
<td>200</td>
</tr>
<tr>
<td>Electron exposure (e-/Å²)</td>
<td>53.3</td>
</tr>
<tr>
<td>Defocus range (μm)</td>
<td>-0.5 to -2.0</td>
</tr>
<tr>
<td>Pixel size (Å)</td>
<td>1.012</td>
</tr>
<tr>
<td>Symmetry imposed</td>
<td>C1</td>
</tr>
<tr>
<td>Initial dataset (# of particles)</td>
<td>109217</td>
</tr>
<tr>
<td>Final dataset (# of particles)</td>
<td>53983</td>
</tr>
<tr>
<td>Map resolution (Å) FSC₀.143</td>
<td>3.5</td>
</tr>
<tr>
<td>Refinement</td>
<td></td>
</tr>
<tr>
<td>Initial model used</td>
<td>PDB 6XWQ</td>
</tr>
<tr>
<td>Model composition</td>
<td></td>
</tr>
<tr>
<td>Nonhydrogen atoms</td>
<td>10357</td>
</tr>
<tr>
<td>Protein residues</td>
<td>1378</td>
</tr>
<tr>
<td>Ligands</td>
<td>3</td>
</tr>
<tr>
<td>Mean B factors (Å²)</td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td>160.2</td>
</tr>
<tr>
<td>Ligand</td>
<td>165.8</td>
</tr>
<tr>
<td>R.m.s. deviations</td>
<td></td>
</tr>
<tr>
<td>Bond lengths (Å)</td>
<td>0.005</td>
</tr>
<tr>
<td>Bond angles (°)</td>
<td>0.635</td>
</tr>
<tr>
<td>Validation</td>
<td></td>
</tr>
<tr>
<td>MolProbity score</td>
<td>2.09</td>
</tr>
<tr>
<td>Clash score</td>
<td>17.7</td>
</tr>
<tr>
<td>Poor rotamers (%)</td>
<td>0.00</td>
</tr>
<tr>
<td>Ramachandran plot (%)</td>
<td></td>
</tr>
<tr>
<td>Favoured</td>
<td>95.07</td>
</tr>
<tr>
<td>Allowed</td>
<td>4.93</td>
</tr>
<tr>
<td>Outliers</td>
<td>0.00</td>
</tr>
<tr>
<td>Model to map fit CC</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Figure S1: Time course of aspartate uptake in proteoliposomes with reconstituted Gltn. Conditions were used (300 mM Na⁺ and 100 μM L-Aspartate). The experiment was done in triplicate with the error representing the standard deviation. From this result we concluded that the transport rate is constant over the first 30 seconds of the experiment.
Chapter 2. Kinetic mechanism of Glt Tk

References

Chapter 2. Kinetic mechanism of Glt

