A revised AMS and tephra chronology for the Late Middle to Early Upper Paleolithic occupations of Ortvale Klde, Republic of Georgia

Victoria L. Cullen a, b, Victoria C. Smith b, Nicholaz Tushabramishvili c, Carolina Mallol d, e, Michael Dee f, Keith N. Wilkinson g, Daniel S. Adler h, *

a Department of Chemistry, University of Oxford, Oxford, United Kingdom
b Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, United Kingdom
c School of Engineering, Institute of Earth Sciences, Ilia State University, Tbilisi, Georgia
d Departamento de Geografia e Historia, Universidad de La Laguna Campus de Guajara, Tenerife, Spain
e Centre for Isotope Research, ESRIG, University of Groningen, Groningen, the Netherlands
f Department of Anthropology and Archaeology, University of Winchester, United Kingdom
h Department of Anthropology, University of Connecticut, CT, USA

Article info
Article history:
Received 13 January 2020
Accepted 26 October 2020

Keywords:
Late Middle Paleolithic
Early Upper Paleolithic
Southern Caucasus
Radiocarbon
Nemrut formation
Tephra

Abstract
The nature and timing of the shift from the Late Middle Paleolithic (LMP) to the Early Upper Paleolithic (EUP) varied geographically, temporally, and substantively across the Near East and Eurasia; however, the result of this process was the archaeological disappearance of Middle Paleolithic technologies across the length and breadth of their geographic distribution. Ortvale Klde rockshelter (Republic of Georgia) contains the most detailed LMP-EUP archaeological sequence in the Caucasus, an environmentally and topographically diverse region situated between southwest Asia and Europe. Tephrochronological investigations at the site reveal volcanic ash (tephra) from various volcanic sources and provide a tephrostratigraphy for the site that will facilitate future correlations in the region. We correlate one of the cryptotephra layers to the large, caldera-forming Nemrut Formation eruption (30,000 years ago) from Nemrut volcano in Turkey. We integrate this tephrochronological constraint with new radiocarbon dates and published ages in an OxCal Bayesian age model to produce a revised chronology for the site. This model increases the ages for the end of the LMP (~47.5 ± 44.2 ka cal BP) and appearance of the EUP (~46.7 ± 43.6 ka cal BP) at Ortvale Klde, which are earlier than those currently reported for other sites in the Caucasus but similar to estimates for specific sites in southwest Asia and eastern Europe. These data, coupled with archaeological, stratigraphic, and taphonomic observations, suggest that at Ortvale Klde, (1) the appearance of EUP technologies of bone and stone has no technological roots in the preceding LMP, (2) a LMP population vacuum likely preceded the appearance of these EUP technologies, and (3) the systematic combination of tephra correlations and absolute dating chronologies promises to substantially improve our inter-regional understanding of this critical time interval of human evolution and the potential interconnectedness of hominins at different sites.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. The shift from the Late Middle Paleolithic to Early Upper Paleolithic

The changes in lithic and organic technologies that define the shift from the Late Middle Paleolithic (LMP) to the Early Upper Paleolithic (EUP) are observed across Eurasia, albeit in varied forms and at different times. At some sites, compelling cases can be made for local technological continuity between the LMP and EUP (Mussi, 2001; Flas, 2011; Nigst, 2012; Ruebens, 2013; Hublin, 2015; Peresani et al., 2016), whereas at others, there are no clear precursors for the EUP assemblages that appear to replace previous LMP assemblages (Tostevin, 2000, 2012; Skrdla, 2003, 2017; Conard et al., 2006; Adler et al., 2006, 2008; Richter et al., 2008; Hofrecker, 2009; Rhodes et al., 2019; Fewlass et al., 2020). Recently, revised chronologies of sites in Western Europe suggest that LMP and EUP populations could have coexisted in some regions for millennia
and chronological data show that the disappearance of the Neandertals and other LMP populations was not temporally or geographically uniform, indicating a complex mosaic of interaction and change across Eurasia. Therefore, the regional and temporal variation in technology exhibited across the LMP-EUP boundary should be considered the norm rather than the exception, likely reflecting different trajectories in local cultural evolution and interactions, interpopulation connectivity, and population expansions, contractions, and extinctions rather than a single sweeping demographic change (Hovers, 2009; Barton and Riel-Salvatore, 2012; Kühn, 2013; Higham et al., 2014; Stutz et al., 2015; Greenbaum et al., 2019a,b). While the social and demographic mechanisms underpinning the development and spread of EUP industries are rightly debated (Hovers and Belfer-Cohen, 2006; Teyssandier, 2008; d’Errico and Stringer, 2011; Villa and Roebroeks, 2014; Wynn et al., 2016; Greenbaum et al., 2019a,b), the appearance of the EUP in any given region appears to mark the end of the preceding LMP and represent a technological, behavioral, and perhaps biological tipping point from which there looks to have been no return for LMP populations, at least insofar as archaeologists currently define and recognize them in the absence of diagnostic fossil material or DNA.

Based on available luminescence data produced via different methods, the LMP-to-EUP shift occurred from ~50 to 40 ka across much of Eurasia (Higham et al., 2014; Ngst et al., 2014; Frewlass et al., 2020). While a small number of sites contain LMP assemblages associated with Neanderthal fossils (Hadjinjak et al., 2018) and an even smaller number of sites contain EUP assemblages associated with Homo sapiens (Hüblin et al., 2020), the critical strata in the vast majority of sites contain no hominin fossil material whatsoever. This reality of the archaeological record, coupled with recent genetic data revealing multiple periods of Homo sapiens and Neanderthal admixture (Racimo et al., 2015; Kuhlwilm et al., 2016; Sankararaman et al., 2016; Vernot et al., 2016; Yang et al., 2017; Slon et al., 2018) and the interstratification and coexistence of different archaic hominins (e.g., Denisova Cave, Slon et al., 2017), requires a careful reassessment of longstanding assumptions about the use of lithic assemblages as proxies for hominin populations and/or species (see Clark and Riel-Salvatore, 2006; Shea, 2006; Hovers, 2009; Adler et al., 2014). In light of these ongoing developments in paleoanthropology, we remain agnostic as to the biological identity of the hominins occupying Ortvale Klde during any time interval and refer throughout the following pages to LMP and EUP hominins, populations, or technologies.

Much of the research on the timing of the LMP and EUP has focused on sites in Central and Western Europe, and substantially less is known about when this change and related changes occurred in Eastern Europe and in Central Asia (but see Fu et al., 2014; Douka et al., 2019; Jacobs et al., 2019; Frewlass et al., 2020). Revising the chronology of LMP and EUP sites in the Caucasus, an environmentally and topographically diverse region intermediate between Europe and Asia (Fig. 1), is crucial to our understanding of the development and expansion of EUP populations, their interactions with the LMP populations they encountered, and the archaeological demise of LMP technologies and perhaps their makers.

A series of recent excavations and dating programs at sites in the southern Caucasus have begun to refine our understanding of the LMP-EUP in terms of material culture, subsistence, mobility, and timing, the result being a consistent lack of transitional industries or evidence for in situ technological evolution (Adler et al., 2008; Golovanova et al., 2010b; Pinhasi et al., 2011, 2012; Tushabramishvili et al., 2012; Moncel et al., 2015; Pleurdeau et al., 2016; Douka and Higham, 2017). Furthermore, the ongoing sourcing of obsidian artifacts from several of these LMP and EUP sites is beginning to document the shifting scale of mobility during this and earlier time intervals (Adler et al., 2014; Frahm et al., 2016, 2019, 2020) and in the case of Ortvale Klde uncover nuanced evidence for increasing population interconnectivity and an expansion of the LMP social landscape (sensu Gamble, 1999) before and after the appearance of the EUP. Collectively, these data call into question the simplistic yet pervasive population replacement model.

Age estimates for the timing of the LMP-EUP across Eurasia, based primarily on radiocarbon dates, are highly variable from site to site, due in large part to the inconsistent application of ultrafiltration pretreatment methods, the difficulty of extracting adequate amounts of bone collagen for dating, which leads to inadequate sample sizes from layers and sites, and a widespread lack of detailed studies of site formation and taphonomy (e.g., micromorphology) with which to assess the stratigraphic and contextual integrity of dated samples and chronologies. Only by overcoming these limitations can an accurate and precise understanding of the LMP-EUP be achieved for this or any other region.

The most detailed LMP-EUP stratigraphic and archaeological sequence excavated in the southern Caucasus is found at Ortvale Klde in the Republic of Georgia (Fig. 1). The published chronology suggests that EUP technologies appear at Ortvale Klde between ~42 and 39 ka cal BP (Adler et al., 2008), perhaps several millennia after they appeared elsewhere in Eurasia, leading to the hypothesis that the area served as a refugium for LMP hominins (Adler and Tushabramishvili, 2004). Since the full publication of the Ortvale Klde chronology, there have been a number of methodological advances in chronological approaches that include: (1) an improved ‘ultrafiltration’ method (UF) for bone pretreatment before radiocarbon dating, which can now more reliably remove degraded and contaminated fractions of organic material (e.g., Brock et al., 2016; Higham et al., 2011), (2) an updated radiocarbon calibration curve (IntCal20; Reimer et al., 2020) that extends the limit of the technique (ca. 55,000 yr cal BP) and takes into consideration the radiocarbon time dilution between 48 and 40 ka (Bard et al., 2020), and (3) the development of software packages such as OxCal (Bronk Ramsey, 1994, 2009a) that can generate Bayesian age models that integrate different types of chronological data, including relevant site stratigraphy, and calibrate radiocarbon ages to provide accurate and more precise age models (Buck et al., 1992). Tephrochronology, which uses volcanic ash layers (tephra) to obtain relative and absolute chronologies (e.g., using the Campanian Ignimbrite, see below), is now also being used to constrain chronologies and date archaeological sequences (e.g., Lowe et al., 2012). Here, we present the results of the first detailed cryptotephra research in the southern archaeological sequences, which provides a basis for further studies.

In the remaining sections of this article, we report how we have used recent methodological advances in radiocarbon dating and tephrochronology to further constrain the age of the Ortvale Klde sequence. We identify tephra layers in the sequence, present new radiocarbon dates on UF pretreated material, calibrate all radiocarbon data using IntCal20, and integrate these data with published age data (e.g., Adler et al., 2008, Table 1) in OxCal. The model provides more accurate and precise ages for the LMP and EUP at Ortvale Klde, extends the LMP-EUP back several thousand years, and allows us to test several hypotheses with regard to technological trends in the southern Caucasus.

1.2. A new approach to constraining the chronology of Ortvale Klde

Tephrochronology has only been used in the Caucasus at Mezmaiskaya Cave in southern Russia (Golovanova et al., 2010a) and Aghitu-3 in Armenia (Kandel et al., 2017). These two studies highlight the limited application but significant potential of detailed tephrostratigraphy in the Caucasus and, therefore, the
potential for using tephra to correlate various stratigraphic records across the region, allowing such records to be synchronized and enabling paleoenvironmental and archaeological changes to be compared (e.g., Lane et al., 2012). Furthermore, many widespread tephra associated with large eruptions have been dated using radiometric methods (e.g., indirectly using radiocarbon or directly by 40Ar/39Ar), providing absolute chronologies. These tephra layers are correlated between sites on the basis of glass chemistry, given that volcanic eruptions produce geochemically distinct ejecta (e.g., Shane 2000).

Visible tephra layers were not present in the Ortvale Klde sequence, but rather cryptotephra was extracted from sediment samples (see the following paragraphs), and the glass shards were analyzed to chemically fingerprint the units for correlation. Cryptotephra typically represents the distal fallout from eruption plumes and is often found hundreds to thousands of kilometers from the source volcano. There are potential sources within the Caucasus region, for example, Elbrus, Kasbek and the Keli Highlands (Lebedev et al., 2011a, b), and the Gegham range of the Lesser Caucasus in Armenia (Karakhanian et al., 2003; Lebedev et al., 2013; Sherriff et al., 2019). Assuming Late Pleistocene global circulation patterns were the same as today, predominant winds crossing the southern Caucasus will have been westerlies, meaning that tephra from volcanic centers in Anatolia, for example, Nemrut (Sumita and Schmincke 2013a, b) and Acigöl (Mouralis et al., 2002; Tyron et al., 2009; Schmitt et al., 2011), are preserved in the region (see Fig. 1). Tephra from large eruptions in Italy and Greece might also be expected in the southern Caucasus sequences as many are widespread and found in the eastern Mediterranean Sea (Keller et al., 1978). For example, the ~39 ka Campanian Ignimbrite eruption from Campi Flegrei volcano, Italy, is the largest eruption within Europe in the last 200 ka. It dispersed ash more than 2500 km from the volcano and covered more than 3.5 million km² of Eastern Europe in ash (Costa et al., 2012; Smith et al., 2016). Golovanova et al. (2010a) identified a ~39 ka tephra at the LMP-EUP site of Mezmaiskaya Cave, and although the source remains unknown, they claim it caused a volcanicogenic catastrophe that resulted in the extinction of local Neanderthal populations before modern human expansion into the region.

1.3. Ortvale Klde

Ortvale Klde is a karstic rock shelter comprising two east-facing chambers and is positioned ~35 m above the Cherula River near the
town of Chiatura (Fig. 1). Excavations in the southern chamber by Adler and Tushabramishvili from 1997 to 2001 identified a LMP sequence (layer 7 to layer 5) stratigraphically below an EUP sequence, layers 4d–4a to layer 2 (Adler and Tushabramishvili, 2004) (Fig. 2). In this portion of the site, there is a stratigraphic hiatus between the end of the LMP (layer 5) and the start of the EUP (layer 4d), the duration of which is difficult to estimate. Details of the site's stratigraphy have been published (e.g., Adler 2002; Adler and Tushabramishvili, 2004; Adler et al., 2006) and are summarized in the following paragraphs, with the addition of new taphonomic data derived from the detailed micromorphological study.

Here, the term ‘LMP’ is used to refer to the latest MP assemblages at Ortvale Klde, whereas the term ‘EUP’ is used for the earliest UP assemblages. We do not use the term ‘IUP’ because, even in its broadest sense, it does not accurately characterize the EUP assemblage of OK (see Kuhn and Zwyns, 2014; Kuhn, 2018). The LMP lithic assemblages were produced using the unidirectional Levallois method, and there is a predominance of elongated blanks and a variety of scraper forms. Of this LMP assemblage, 99.6% was produced from local high-quality flint, with 0.4% produced on obsidian (Adler et al., 2006). The EUP lithic and bone assemblages (layer 4d–4a to layer 2) are distinct from those of the LMP and contain unidirectional blade and bladelet cores, end scrapers on blades, rounded flake scrapers, burins, and numerous retouched bladelets and backed bladelets (Adler et al., 2006; Bar-Yosef et al., 2006). Artifacts made from local flint constitute 95% of the total EUP assemblage, whereas ~5% is made on obsidian. The nearest obsidian source is more than 100 km away (>180 km by foot), and the rise in its use during the EUP represents a statistically significant increase in the use of exotic raw materials over the LMP (Adler et al., 2006). In addition, three bevel-based bone/antler points, two polished bone/antler abraders, bone retouchers, and a single polished bone implement with a series of parallel incised lines were also found (see Adler et al., 2006; Bar-Yosef et al., 2006). Similar bone/antler tools are documented in EUP layers at the nearby cave site of Dzudzuana and at Mezmaiskaya Cave (Adler et al., 2006; Bar-Yosef et al., 2006, 2011; Golovanova et al., 2010a, b).

The chronology of Ortvale Klde is based on radiocarbon dates of human-modified bone, and charcoal, thermoluminescence (TL) dates of burnt flint artifacts, and electron spin resonance (ESR) dates of vertebrate teeth (see Adler et al., 2008 for full details). The conservative estimate for the first appearance of the EUP at the site, based on a single radiocarbon-dated bone (Adler et al., 2008), is
Layer 4d did yield two additional bone dates (RTT4726 and RTT4727), which after strict discard protocols were eliminated from the final analysis based on their lack of accord with overlying and underlying layers (see Adler et al., 2008). If these three dates from layer 4d are considered together, the first appearance of the EUP would be >41 ka cal BP (recalibrated dates of RTT4725, RTT4726, and RTT4727 using IntCal20 and quoted at 95.4% confidence).

1.4. Stratigraphy

Cave and rock shelter sites are complex depositional and taphonomic settings, the varied hominin occupations of which are difficult to generalize across a site for any given time interval or layer based on the limited exposures archaeologists generally have to work with. This difficulty applies as much to the dating of any particular layer as it does to the reconstruction of hominin behaviors documented in that layer. In addition, because such behaviors can vary across space, we should expect excavations in different parts of caves and rock shelters to yield different behavioral and temporal signals. With these caveats in mind, the results reported here all stem from one particular portion of Ortvale Klde (see Fig. 4, Adler et al., 2006), the nature of which is described in detail in the following paragraphs (Fig. 2).

From 1997 to 2001, excavations at Ortvale Klde were focused on the southern chamber, with all archaeological material excavated and recorded in 5-cm spits by quarter meter as per the natural stratigraphy of the site. Where necessary, these spits followed the contours of the layers and sublayers, beginning or terminating at the contact with an overlying or underlying layer. In this manner, tight stratigraphic control over the archaeological material was maintained within and between layers, and mixing of the material was minimized. Numerous sublayers, identified based on distinct changes in sediment matrix, texture, and/or color, were observed, but these rarely extend laterally for more than 50–100 cm and never exceed 10 cm in thickness. Because these sublayers were discontinuous, they were not typically excavated independent of the surrounding matrix or the larger lithological layers, except for the extensive sublayers identified in layer 4 (Fig. 2).

The LMP stratigraphy begins in the southern chamber of the site atop layer 11, a deposit of in situ weathered limestone that underlies all other stratigraphic layers and that sits on the limestone floor of the rock shelter (Fig. 2). Layer 7 is the oldest layer excavated between 1997 and 2001 and is rich in lithic and faunal remains; layers 10–8 are located a few meters to the north of Figure 2. The contact between layers 7 and 6 is gradational and becomes increasingly difficult to discern toward the southern part of the section. Layer 6 is composed of a black, granular matrix containing very few clasts (Fig. 2) and is very rich in lithics, fauna, ash, sediment, and charcoal. The layer is approximately 25-cm thick and bioturbated.

Layer 5 represents the latest LMP occupation and is composed of a dense accumulation of small (1–6 cm) pieces of eboils, roughly 10–15 cm in thickness; the layer thickens to the north beyond the 1997–2001 excavations as do layers 7–6. The eboils and finer sediments are very compact and contain high proportions of clay and abundant patinated and weathered lithic and faunal remains. These observations point to a hiatus in sedimentation, with long-term surface exposure of archaeological material. This suggests the site was not occupied continuously and may have been abandoned by LMP hominins before the appearance of the EUP. A similar situation, described in further detail in the following paragraphs, has been identified at the neighboring site of Bondi Cave where the EUP (layer V, ~40–37 ka cal BP) is separated from the underlying LMP (layer VIII and layer VII, >50 ka BP) by a rockfall deposit (layer VI, 47,500 ± 2600 BP; Tushabramishvili et al., 2012; Pleurdeau et al., 2016; Douka and Higham, 2017).

Clear stratigraphic boundaries are observed between layer 4 and layer 3 as well as between layer 3 and layer 2. The contacts between

Figure 2. Profile XI with layers 11–1, sublayers 4d–4a, tephra samples 1–76, and cryptotephra horizons OK_7, OK_5/6, OK_4c, and OK_3. See Adler et al. (2008) for profile X and the location of all micromorphology samples.
these layers are defined by dense concentrations of large (~50 cm) limestone slabs and small blocks of eboulis 5–10 cm in thickness. These limestone slabs and the smaller blocks of eboulis infilling the gaps formed a barrier to sediment and artifact movement and likely represent stratigraphic unconformities of unknown duration.

Layer 4 is approximately 65 cm thick, within which there are four distinct and extensive sublayers (d–a; Fig. 2). Layer 4d (EUP) is composed of a light brown, grey wood ash that fills the gaps between the dense accumulations of small limestone eboulis that cap layer 5 (LMP). Layer 4c comprises stratified grey ash and black silty lenses with charcoal, atop of which lie two finely laminated sublayers (layer 4b) and loose yellow sediment (layer 4a). The lithic and faunal assemblages found within layer 4 are ascribed to the EUP. Layer 4d also contains a hearth, ringed by large limestone blocks, which contains numerous burned microliths of flint and obsidian and dense accumulations of fine-grained dark gray ash (Adler, 2002). This feature represents the start of EUP occupation of the site and sits directly atop the weathered terminal LMP deposits of layer 5.

Lithic and faunal material is scarce in layer 3 and layer 2 relative to layer 4, with the first 10 cm of sediment in layer 3 almost completely sterile. The lithic and faunal material is concentrated near the top of the respective layers, with an extensive deposit of light grey ash found under the limestone ‘Platform’ that divides layer 3 from layer 2 (Fig. 2) and rodent and insect burrows observed at the top of layer 3. These data likely result from ephemeral UP occupations in Marine Isotope Stage 2, when cold climatic conditions leading up to the Last Glacial Maximum prevailed across Eurasia (see Belmaker et al., 2016).

2. Materials and methods

2.1. Micromorphology

To document the taphonomic history and thus archaeological context of the dated samples reported here, we collected and analyzed five micromorphological samples at Ortvale Klde during the 2000 and 2001 field seasons. These samples were removed as oriented blocks from layer 7 to layer 1 (see Fig. 4, Adler et al., 2006) and were processed into 30-μm-thick thin sections at the Universitat de Lleida, Spain (10 × 6 cm), as well as at Spectrum Petrographics Inc., Oregon (7 × 5 cm). The thin sections were observed using a Nikon Eclipse E-POL 600 petrographic microscope under plane and cross-polarized light at 2 ×, 4 ×, 10 × and 20 × magnifications. Micromorphological descriptions follow standard guidelines (Stoops 2003; Courty and Goldberg, 1989).

2.2. Tephra sampling

Sampling of the Ortvale Klde sequence for tephra analysis took place in July 2010 using the same methodology outlined in Lane et al. (2014). Profile XI (Fig. 2) was cut back to expose a clean surface before sampling, after which small amounts of sediment (~10–20 g) were sampled contiguously at 2-cm resolution from the base to the top of the sequence. Samples were subsequently processed in the laboratory following the nondestructive, physical separation technique outlined in Blockley et al. (2005) and using the amendments to the procedure that are outlined by Lane et al. (2014). Thus, subsamples taken from samples across a vertical interval of 10 cm were amalgamated, and these 10-cm-resolution composites were prepared as described below. If glass shards were found in the 10-cm-resolution samples, then the remaining portion of the original 2-cm samples from the relevant interval were processed to better constrain the depth of the peak in shard concentration (i.e., the position of the isochron). The cryptotephra layers identified were labeled based on the archaeological layer in which they were preserved, for example, the cryptotephra with high glass shard concentrations in layer 4c is labeled OK_4c.

Shards from the cryptotephra layers then were manually picked and mounted on stubs for geochemical analysis (as in Lane et al., 2014). A JEOL-8600 wavelength dispersive, electron probe microanalyzer (WDS-EPMA) with four wavelength-dispersive spectrometers in the Research Laboratory for Archaeology and the History of Art, University of Oxford, was used to determine the major element composition of the individual glass shards. These shards were analyzed using a 15-keV, 6-nA, and 10-μm beam. The instrument was calibrated for 11 elements using a suite of mineral standards, and reference glasses (MPI-DING: Jochum et al., 2006) were measured alongside the samples to verify the calibration and assess precision and accuracy (see Supplementary Online Material[SOM]). These glass compositions of the cryptotephra layers in Ortvale Klde were compared with those of known eruption deposits from volcanoes in Italy, Greece, and Turkey. The glass compositions are effectively a fingerprint of a particular eruption, and correlations can be made if the major element compositions are identical (Lowe 2011). All glass chemistry data are provided in SOM. The data presented in the figures and tables have been normalized to 100% (anhydrous) for comparative purposes.

2.3. Additional faunal samples for radiocarbon dating

Twenty-six new bone samples from layer 5, layer 4d, layer 4c, layer 4b, layer 3, and layer 2 were taken for radiocarbon dating from collections (1997–2001) stored at the Georgian National Museum in Tbilisi, treated using the UF methods following the protocol outlined in Brock et al. (2010), and then analyzed by accelerator mass spectrometry at the Oxford Radiocarbon Accelerator Unit.

2.4. Age model construction

An age model for the Ortvale Klde sequence was constructed using OxCal version 4.2 (Bronk Ramsey 1995; 2009a), which used IntCal20 (Reimer et al., 2020) to calibrate the radiocarbon measurements (see SOM). Data from each layer were grouped in an OxCal ‘Phase’ (see SOM), with no stratigraphic order assigned to the dates within the ‘Phase.’ ‘Boundaries’ were placed within the model to mark the transitions between ‘Phases,’ and a double ‘Boundary’ was used to mark the depositional hiatus that is observed between the top of layer 5 (the end of the LMP) and layer 4d (the start of the EUP). A general outlier model (Bronk Ramsey 2009b) was used to detect and minimize the weighting of any measurements that were inconsistent with others in the sequence (Bronk Ramsey, 2009b).

3. Results

3.1. Micromorphology and taphonomy

Micromorphology samples were originally taken to examine site formation and postdepositional processes, but have proven especially useful for understanding the geological and archaeological context of the 14C-dated materials and tephra. The five sediment thin sections (S.U. 1, 2, 3, 4, and 7, with the number reflecting the layer) have a broadly similar composition; they are all composed of unsorted, detrital geogenic rocks in a speckled and granosertated clayey groundmass (Fig. 3a), the latter exhibiting iron-manganese motting throughout the sequence (Fig. 3b). The prevailing lithology consists of common subangular dolostone and fossiliferous limestone clasts ranging in size from fine sand to coarse gravel (Fig. 4). There are also minor amounts of subangular,
silt to medium sand-sized quartz grains and sand-sized glauconite grains. S.U. 7 (layer 7) contains a notably higher proportion of dolostone bedrock clasts and individual dolomite crystals in the groundmass, whereas fossiliferous limestone clasts become more numerous higher in the sequence.

Biogenic and anthropogenic components occur throughout. S.U. 7 and S.U. 4 (layer 4) contain frequent, subangular burnt and unburnt bone fragments (S.U. 7 contains higher amounts than S.U. 4; Figs. 3c and 4). Flint fragments were identified in low amounts (<5 counts in each stratigraphic unit) throughout the sequence and more frequently in S.U. 4. Charcoal was also observed, concentrating in S.U. 7 and S.U. 4 and in subrounded morphologies (Fig. 3d). Other less well-represented components include calcitic wood ash, which makes up a large proportion of the S.U. 4c groundmass, and calcitic dung spherulites, scattered throughout S.U. 1 (layer 1; Fig. 3e). S.U. 4c also shows that the two grayish black layers visible on profile XI (Fig. 2) consist of calcitic wood ash and other minute combustion residues (Fig. 5a–c).

In their microstructural aspects, most samples exhibit mosaic patterns. S.U. 7, S.U. 4, and S.U. 3 (layer 3) are dominated by granular aggregates (Fig. 5a) consisting of individual elements (rocks, bone, charcoal, or flint fragments) enveloped by clayey sediment. Some of the larger bedrock clasts are thinly coated with clay (Fig. 6b), on occasion showing microlaminated coatings (Fig. 6c). Aside from these granules, the sediment in S.U. 4, S.U. 3, and especially in S.U. 2 (layer 2) is also arranged as parallel, subhorizontal plates (Fig. 6d). In S.U. 4, the top grayish black lens of layer 4c is crumbly, whereas the bottom grayish black lens (layer 4d) preserves localized platy zones (see Fig. 5b–c). At the top of the sequence, S.U. 1 (layer 1) is angular blocky with planes, vesicles, and channels (Fig. 6e). Indeed, vesicles and channels are a common pore type throughout the sequence, as are crumbs, which are more prevalent in the lower units.

The micromorphological features reveal the existence of a local detritic deposit with a polygenetic sedimentary history marked by recurrent syndepositional human occupation, as well as recurrent post depositional cryogenic processes and bioturbation. Based on the frequency of the anthropogenic remains, those from S.U. 7 and S.U. 4 appear to have been deposited either in situ or close to the sampled point. The presence of massive wood ash in layer 4c and layer 4d also supports the idea that anthropogenic components in the layer have not been greatly moved since original deposition. S.U. 3, S.U. 2, and S.U. 1 contain fewer anthropogenic remains, of which many are subrounded. Unfortunately, their original spatial distribution has been disturbed by post depositional processes, which have also caused some rounding of individual elements, particularly charcoal fragments.

The entire sequence shows evidence of recurrent cryogenesis and bioturbation, suggestive of periglacial conditions throughout the formation of the sedimentary sequence. The cryogenic micro-structural features identified, particularly granular aggregates and parallel referred plates, indicate recurrent seasonal freezing of the topsoil under moist conditions such as those documented in present-day periglacial contexts (Harris and Ellis, 1980; Van Vliet-Lanoe, 1982, 1985, 1998; Harris, 1987; Bertran et al., 1995; Bertran and Texier, 1999). Platy microstructures represent seasonal ice lensing, and granular aggregates are associated with gelification, especially in clay-rich materials (Van Vliet-Lanoe, 1976; Van Vliet-Lanoe, 1985; Van Vliet-Lanoe, 1998). Both types of feature result from mechanical stresses related to differential frost heave in clayey sedimentary contexts of diverse composition (in this case rocks, clay, bone fragments, charcoal, and organics). Such cryogenic features are also a consequence of the overall progressive reduction in size of biogenic and geogenic components as the sequence progresses. This micromorphological evidence suggests recurrent syndepositional activity in the Ortvale Klde sequence, as is typical of environments that are subject to both anthropogenic and cryogenic stress.
processes are enhanced by high water content and high porosity (Van Vliet Lanoe, 1998). The Ortvale Klde deposits are porous owing to their sandy and gravely composition and were possibly often water saturated, as evidenced by the ubiquitous presence of vesicles and iron-manganese mottles throughout the sequence. Cryoturbation may develop from angular blocky microstructures (such as those identified in S.U. 1) to platy and lenticular microstructures (S.U. 2, S.U. 3, and S.U. 4) and culminate with granular microstructures and clayey coatings on clasts and aggregates (S.U. 3, S.U. 4, and S.U. 7). This would suggest that S.U. 3, S.U. 4, and S.U. 7 were subject to more intense, recurrent freeze-thaw cycles than the other units (Bertran and Texier, 1999). Regarding bioturbation, it has been previously documented as a common seasonal process in periglacial contexts, where it alternates with ice lensing (Van Vliet Lanoe, 1998). At Ortvale Klde, it is indicated by the presence of crumbs and channels throughout the sequence.

Based on the micromorphological evidence, we consider it unlikely that there was any significant vertical movement of sedimentary elements, and thus the dated samples, between the different stratigraphic layers. Given the inferred periglacial context, the silt and sand-sized components were trapped within clayey aggregates, plates, or blocks as a result of cryoturbation processes operating at the surface. These processes occurred very early on as silt-sand elements and were consolidated within topsoils. Although over time, subsequent bioturbation and interstitial melting water could have released some of the finer elements, it is unlikely that these crossed major stratigraphic boundaries, as is supported by the absence of fine material in the pores, the distinct composition and microstructure of each unit (even of layer 4c and layer 4d) and the presence of roofspall deposits separating layer 2 from layer 3, layer 3 from layer 4, and layer 4 from layer 6 (Fig. 2). In sum, these observations provide strong support for the stratigraphic and contextual integrity of the archaeological materials, tephra, and dated samples found within each layer.

3.2. Tephra results from Ortvale Klde

While no visible volcanic ash layers are observed at Ortvale Klde, cryptotephra was identified within the Ortvale Klde sediment sequence (Fig. 7). These are denoted by peaks in shard concentration and are separated by sediments that do not contain glass shards, indicating that the peaks represent discrete volcanic events. The depths at which glass shards are found are (1) 164–170 cm below the datum (cm bd) in layer 7, where there is a small peak in volcanic glass shards (3 glass shards per gram of dry sediment; shards/g); (2) 112–126 cm bd, extending from the top of layer 6 (OK_6) into the base of layer 5 (OK_5, see Fig. 7a), with a peak concentration of 8 shards/g just after the boundary between the layers at 118–116 cm bd; (3) 96–98 cm bd at the contact between layer 4c and layer 4d, (208 shards/g) and 92–94 cm bd another peak slightly higher up (sample OK_4c; 238 shards/g; Fig. 7a); and (4) 30–32 cm bd in layer 3 (6 shards/g; OK_3).

The glass shards in each cryptotephra concentration are typically colorless and irregular in shape with some vesicles, cuspat features, and fluting and range in size from around 40 to 100 μm across the longest axis (Fig. 7b). There are some variations in shard morphology in some samples, with a few platy shards observed in OK_5 and some brown shards observed in OK_4c (<10%).

Only one shard in OK_7 could be geochemically analyzed, given the small size of shards and their low concentrations. The single OK_7 shard analyzed is trachy-dacitic in composition (Fig. 8) and comprises 64.71 wt.% SiO2 (Fig. 8; Table 2; SOM). Shards from the tephra found at the top of OK_5 and base of OK_6 are compositionally similar. They are calc-alkaline rhyolites with 75–78 wt.% SiO2 and 4.09–5.63 wt.% K2O and have bimodal FeOt compositions (Fig. 8).

Three compositional populations (p1, p2, and p3) are identified in the OK_4c tephra. Two of the populations are rhyolitic (p1 and p2; Table 2 and Fig. 8), and the other is dacitic (p3; Table 2 and Fig. 8). The rhyolitic populations can be differentiated from each other on total alkali concentrations, and p2 is mildly peralkaline and has higher FeOt compositions (3.08–3.28 wt.%) than those found in p1 (Fig. 8 and Table 2). The dacitic population (p3) has 61.48–68.65 wt.% SiO2, 2.78–5.78 wt.% CaO, and 4.16–6.03 wt.% FeOt contents. This OK_4c p3 glass composition is distinct from that of all other tephras in the Ortvale Klde sequence (Fig. 8; SOM).

Glass compositions of OK_3 are rhyolitic, with two different populations (p1 and p2; Fig. 8 and Table 2). The glass chemistry in
p1 is distinct from all other volcanic glasses in the site and is characterized by elevated FeOt (~4 wt.%), while the OK_3 p2 glass shards are compositionally similar to those in OK_5/6 and OK_4c p1, with higher Al2O3 (>12.33 wt.%) and lower FeOt (0.39–1.29 wt.%) contents than those in OK_3 p1.

3.3. Radiocarbon ages

Only 5 of the 27 samples processed in the laboratory yielded enough collagen after pretreatment to be radiocarbon dated (Table 3). As described in Adler et al. (2006), the zooarchaeological assemblage is highly fragmented by hominins, thus limiting our ability to ascribe most bones to species. However, all bones chosen for dating exhibit evidence of hominin fracture (green breaks) rather than postdepositional breakage. One of the samples from layer 4c was dated twice, as the first measurement had a collagen yield (0.16%, 1.16 mg from a sample that weighed 727 mg; OxA-X 2352-43) that is significantly lower than that typically used for radiocarbon dates (1%). The second sample was gelatinized at 60°C instead of 75°C (OxA-X 2559-10) in an attempt to improve the output. Because standard Oxford Radiocarbon Accelerator Unit protocol (Brock et al., 2016) was not adhered to, the samples were assigned OxA-X numbers which imply that they should be treated with some caution. These new radiocarbon ages for samples from both layer 4d and layer 4c are at least 5 ka older than previous measurements (Adler et al., 2008, Table 3).

4. Discussion

4.1. Tephra correlations

The major element glass compositions of deposits from particular eruptions are typically unique, and volcanoes typically erupt deposits that are broadly similar (Lowe, 2011). Hence, the major element glass compositions of the cryptotephra layers in Ortvale Klde were compared with those determined for known large eruptions and particular volcanoes in the region and Eastern Europe to establish the sources of the tephra and the particular eruptions (Fig. 1). The eruption histories of most of the volcanoes in Italy and Greece (Fig. 1) are well known, and major element compositions are published for most of the eruption deposits (e.g., Tomlinson et al., 2012a, 2012b). Less is known about the eruption histories of the volcanoes in Turkey, and the glass chemistry has only been determined for some of the large eruption deposits (e.g., Tryon et al., 2009; Hamann et al., 2010), and unfortunately, very little is known about the explosive activity of volcanoes closest to Ortvale Klde (i.e., those in the Lesser Caucasus Volcanic Province [LCVP]). The lack of glass chemistry data for some of the closest volcanic sources means that it has not been possible to correlate many of the Ortvale Klde tephra at this time. Nonetheless, general compositions have allowed us to suggest likely source regions for some, and there is a cryptotephra layer preserved within the site that is from a known eruption from Turkey (Figs. 9 and 10).

The Nemrut Formation (NF) tephra was generated during a large caldera-forming eruption of Nemrut volcano in eastern Turkey (Sumita and Schmincke, 2013a, b; Fig. 1). The NF proximal deposits have been dated directly to ~30 ka using 40Ar/39Ar single crystal laser dating of anorthoclase phenocrysts (29.7 ± 4.2 ka, 33.7 ± 10.9 ka, and 28.6 ± 3.0 ka; Sumita and Schmincke, 2013a). Three eruption phases are identified in the NF deposits: the plinian fallout (lower NF) that has a peralkaline rhyolite composition; the middle NF (M-NF) pyroclastic density current (PDC) deposits that are rhyolitic to trachytic in composition; and the upper NF PDC and co-PDC deposits (U-NF) that are trachytic in composition (Sumita and Schmincke, 2013a, b).

Glass shards in OK_3 p1 are geochemically similar to those of the lower NF and M-NF units (Fig. 9) indicating that this
cryptotephra is the distal equivalent of the NF. Furthermore, the modeled age estimates for the NF in Ortvale Klde (OK_3) is \(\approx 37 - 25 \) ka cal BP (see in the following paragraphs; based on the boundary transition ages for layer 4a/3 and layer 3/2), which is similar to the \(^{40}\text{Ar}/^{39}\text{Ar}\) age estimates of Sumita and Schmincke (2013a,b), and additional evidence that the correlation of OK_3 to the NF is robust. This occurrence of the NF in Ortvale Klde, more than 400 km north of Nemrut (Fig. 1b), is consistent with the direction of the dispersal (Sumita and Schmincke, 2013a), thus extending the known dispersal area of tephra from this eruption and suggesting that it may be an important chronostratigraphic marker in the Caucasus region.

The rhyolitic calc-alkaline Ortvale Klde cryptotephra typically has CaO compositions <2 wt.% and FeOt compositions <1.2 wt.%, which distinguishes these deposits from known volcanic sources; for example, the Hellenic arc in Greece (e.g., Santorini) and Aeolian Islands and Pantelleria in Italy (Fig. 10A; Wulf et al., 2002; Margari et al., 2007; Aksu et al., 2008; Tamburriino et al., 2012; Tomlinson et al., 2012a, b, 2014). The Ortvale Klde tephra also appears to be compositionally distinct from local volcanoes within the Caucasus although these are not particularly well studied. A deposit from Gutansar volcano, Armenia (Fig. 10), has a calc-alkaline rhyolite composition, but has higher Al$_2$O$_3$ (>14 wt.%) concentrations than the Ortvale Klde glass shards.

OK_5/6 glass shards have bimodal FeOt compositions and are chemically similar to OK_3 p2 and OK_4c p1. Collectively, OK_5/6, OK_4c p1, and OK_3 p2 have similar chemical characteristics to eruption deposits from Acigol and Gollu Dagi in the Central Anatolian Volcanic Province, Turkey (Tryon et al., 2009; Tomlinson et al., 2014, Fig. 10B), suggesting they might be deposits from these volcanoes (see Figs. 1a and 10B). Unfortunately, the limited geochemical data and low-resolution eruption chronology for the volcanoes in the region mean that we cannot yet correlate the OK_5/6, OK_4c p1, and OK_3 p2 cryptotephra layers to specific eruptions of Acigol and Gollu Dagi.

As noted previously, tephra from OK_4c, p3 and the single glass shard analyzed from layer 7 (OK_7) are dacitic and trachy-dacitic in composition. These units typically have higher TiO$_2$ concentrations (>1.08 wt.%) than other well-characterized dacitic deposits, e.g., those from the Hellenic arc (Santorini; Aksu et al., 2008; Margari et al., 2007; Tomlinson et al., 2014b; see Fig. 10C) and erupted products from the Aeolian Islands (Salina; Albert et al., 2012). Volcanic provinces known to erupt dacitic compositions include the East Anatolian Volcanic Province (EAVP), Armenia (LCVP; Fig. 1), the Javakheti volcanic range in the central southern Caucasus (Lebedev et al., 2004; 2011a; Pearce et al., 1990), and Elbrus and the Keli Highlands in the northern Caucasus (Lebedev et al., 2010, 2011a, b; Chnryshev et al., 2002). Given the proximity of Ortvale Klde to these volcanoes, it is likely that they are the source of tephra. However, the tempo of explosive volcanism from these and their glass compositions is unknown, so the OK_7 and OK_4c p3 units cannot yet be correlated to a specific volcano or eruption.

The peralkaline rhyolite in OK_4c, p2, is similar in composition to the ignimbrite flow of the NF deposit (M-NF), but it is significantly older than the NF (see Tables 3–5), suggesting that it is from an earlier eruption from Nemrut. Nemrut is known to have produced a number of peralkaline trachyte and rhyolite eruptions over the last 400,000 years (e.g., AP-6/HP-10 and AP-8b; Sumita and Schmincke, 2013a, b), and some are likely to have had similar compositions (cf. Smith et al., 2011). The Tatvan Ignimbrite eruption glasses in the site. Rh – rhyolite; Da – dacite; TaDa – trachydacite; Ta – trachyte; Ph – phonolite; TePh – tephri-phonolite; PhTe – phonotephrite; Te – tephrite; Ba – basanite; BS – basalt; BaAd – basaltic andesite; Ad – andesite. For full compositional glass data, see SOM Table S2.
occurred at ~45 ka (Sumita and Schmincke, 2013a, b), and this age is consistent with the tephra position in layer 4c (~46 36ka cal BP; see Table 3). However, glass chemistry of a sample from the Tatvan Ignimbrite (Fig. 10) is more evolved, with lower Al$_2$O$_3$ compositions than OK$_{4c}$ (p2) (>11 wt). The different glass chemistry indicates that the OK$_{4c}$ p2 cryptotephra is unlikely to be associated with the Tatvan Ignimbrite (Fig. 10).

Table 2
Average glass shard compositions (with 1 s) of tephra layers that were identified at Ortvale Klde.

<table>
<thead>
<tr>
<th>Layer_sample code</th>
<th>OK_3</th>
<th>OK_4C</th>
<th>OK_5</th>
<th>OK_6</th>
<th>OK_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>p1</td>
<td>p2</td>
<td>p1</td>
<td>p2</td>
<td>p1</td>
</tr>
<tr>
<td>Analysis</td>
<td>n = 18</td>
<td>n = 4</td>
<td>n = 7</td>
<td>n = 30</td>
<td>n = 11</td>
</tr>
<tr>
<td>wt.%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>74.24</td>
<td>0.64</td>
<td>76.35</td>
<td>1.17</td>
<td>75.19</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.24</td>
<td>0.04</td>
<td>0.14</td>
<td>0.09</td>
<td>0.37</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>11.15</td>
<td>0.69</td>
<td>13.16</td>
<td>0.53</td>
<td>13.15</td>
</tr>
<tr>
<td>FeOt</td>
<td>3.96</td>
<td>0.23</td>
<td>0.81</td>
<td>0.23</td>
<td>0.44</td>
</tr>
<tr>
<td>MgO</td>
<td>0.28</td>
<td>0.08</td>
<td>0.54</td>
<td>0.24</td>
<td>1.18</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>5.07</td>
<td>0.33</td>
<td>3.88</td>
<td>0.42</td>
<td>4.04</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>4.71</td>
<td>0.24</td>
<td>4.91</td>
<td>0.59</td>
<td>3.69</td>
</tr>
<tr>
<td>Cl</td>
<td>0.17</td>
<td>0.05</td>
<td>0.06</td>
<td>0.04</td>
<td>0.07</td>
</tr>
</tbody>
</table>

The full data set is presented in SOM Table S2.

Table 3
New ultrafiltration pretreated radiocarbon results on bone samples from Ortvale Klde.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Laboratory code</th>
<th>Unit: depth (cm below datum)</th>
<th>Material</th>
<th>Date ± error</th>
<th>13C</th>
<th>15N</th>
<th>Collagen yield, %</th>
<th>C:N ratio</th>
<th>Date calibration, BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>OxA23901</td>
<td>G7: section</td>
<td>Bone</td>
<td>21,110 ± 130</td>
<td>-18.8</td>
<td>+6.3</td>
<td>1.2</td>
<td>3.2</td>
<td>25,748–25,165</td>
</tr>
<tr>
<td>4c</td>
<td>OxA-X-2559-10</td>
<td>D9-1: section, 312c</td>
<td>Bone</td>
<td>41,900 ± 1500</td>
<td>-19.7</td>
<td>+5.1</td>
<td>1.4</td>
<td>3.4</td>
<td>48,419–42,674</td>
</tr>
<tr>
<td>4c</td>
<td>OxA-X-2352-43</td>
<td>D9-1: section, 312c</td>
<td>Bone</td>
<td>39,800 ± 3100</td>
<td>-19.7</td>
<td>+4.8</td>
<td>0.2</td>
<td>3.4</td>
<td>40,644</td>
</tr>
<tr>
<td>4c</td>
<td>OxA27863</td>
<td>G8a: 278–285</td>
<td>Bone</td>
<td>39,600 ± 1100</td>
<td>-18.6</td>
<td>+6.8</td>
<td>4.5</td>
<td>3.2</td>
<td>44,905–42,115</td>
</tr>
<tr>
<td>4c</td>
<td>OxA27931</td>
<td>G8a: 285–291</td>
<td>Bone</td>
<td>34,650 ± 600</td>
<td>-18.5</td>
<td>+6.5</td>
<td>1.0</td>
<td>3.3</td>
<td>41,658–38,269</td>
</tr>
<tr>
<td>4d</td>
<td>OxA27864</td>
<td>G8a: 300–305/312</td>
<td>Bone</td>
<td>43,200 ± 1700</td>
<td>-18.6</td>
<td>+5.4</td>
<td>2.4</td>
<td>3.2</td>
<td>51,282–43,167</td>
</tr>
</tbody>
</table>

a Uncalibrated age determinations.

b Ages calibrated using IntCal20 in OxCal 4.2 (Bronk Ramsey, 2009a; Reimer et al., 2020) at the 94.5% confidence level. These ages are not modeled.
c Two samples of this bone were dated.

Figure 9. Major element glass compositions of OK$_{3}$ (p1) cryptotephra (black dots) compared with those of the following large eruption deposits from Nemrut volcano, Turkey: ~30 ka Nemrut Formation (NF), ~45 ka Tatvan ignimbrite, ~59 ka AP-8b, and 61 ka AP-6/HP-10 eruptions (data from Sumita and Schmincke, 2013a, b, plotted as colored fields). SiO$_2$ glass compositions versus (A) total alkalis (Na$_2$O + K$_2$O), (B) total FeO (FeOt), (C) CaO, and (D) Al$_2$O$_3$. The different eruption phases of the NF have distinct compositions, labeled on D, one of which is similar to the AP-8b tephra. The glass compositions of OK$_{3}$ (p1) plot are identical to the rhyolitic fall (L-NF) and M-NF PDC phases of the caldera-forming NF eruption, suggesting that the tephra is associated with the NF eruption. PDC = pyroclastic density current; L-NF = lower NF; M-NF = middle NF.
Tatvan Ignimbrite eruption. However, it is possible it had multiple phases with different chemistry, similar to that observed in the NF deposits, and our single proximal sample is not representative of the full range of erupted chemistry. The geochemical similarity between the OK_4c p2 tephra and deposits from Nemrut volcano suggests that Nemrut is the most likely source.

4.2. Potential for using tephrochronology in the Caucasus

Our tephrochronological results suggest that a detailed and complex record of explosive activity is cryptically preserved in Late Pleistocene stratigraphic sequences in the southern Caucasus. Major element data from volcanic glass found in Ortvale Klde suggest that it records volcanic activity from the regional volcanic sources, the EAVP, possibly the CAVP, and the LCVP. Unfortunately, the limited information on past volcanism from these centers means the tephra layers cannot yet be fully exploited as absolute or relative age markers. Ages for the tephra sequence from Ortvale Klde provide a record of explosive activity from ~51–46 ka cal BP to ~32–25 ka cal BP (Table 4 and Fig. 11; model 2 boundary transitions, start layer 7 to boundary transition layer 3/2).

The identification of the ~30 ka NF tephra from Nemrut volcano in the EAVP indicates that it is widespread and probably an important chronostratigraphic marker for the region. The NF tephra is located in the Lake Van sediment cores (e.g., Stockhecke et al., 2014), detailed paleoenvironmental data of which show that the NF tephra was deposited at the end of a relatively warm and humid period (Çağatay et al., 2014), while after the ash fall, there was a high-stand in the lake level, which in turn was followed by a change to cooler and drier conditions (Çağatay et al., 2014). These changes presumably reflect the transition between Oxygen Isotope Stage 3 and Oxygen Isotope Stage 2 (unit III to unit II; Stockhecke et al., 2014). Identification of the NF in other stratigraphic records will allow a better comparison of paleoenvironmental archives and help determine, for example, whether there was a transgression from the Black Sea to the Caspian Sea at ~30 ka (Arslanov et al., 2007; Shumilovskikh et al., 2014). Further work on proximal deposits, including geochemical characterization of the glass, and stratigraphic and chronological studies are needed for the volcanic sources in the Caucasus and Turkey. Such data will provide the chemical fingerprints required to develop a tephrostratigraphy for the region to facilitate the dating and correlation of archaeological sites and sedimentary archives.

4.3. A new Bayesian age model for the Ortvale Klde sequence

Our new Bayesian age model (model 2) diverges from the results of Adler et al. (2008) in layers 5 and layer 4 (Fig. 11). Our new radiocarbon data from samples that were prepared using the most up-to-date pretreatment procedures are more consistent than those published previously, with results from the other chronometric dating techniques used at Ortvale Klde (TL and ESR). It has been shown (Bird et al., 1999; Wood et al., 2012) that ABOx is the most reliable procedure for preparing charcoal samples >30 ka, but as the technique was not then available, the previous charcoal dates of Adler et al. (2008) for layer 4c are likely to be erroneous and are therefore excluded from our main model (model 2). The three bone samples dated from layer 4d (Adler et al., 2008), which did not undergo UF pretreatment, produced highly variable ages (41 to >50 ka cal BP). Adler et al. (2008) did not include the 45.7 ka age in their model as it was perceived an outlier after strict discard protocols. Bone dates from layer 5 (Adler et al., 2008) are also variable, ranging from 45 ka to 38 ka. Because these samples were not processed using ultrafiltration methods, these radiocarbon results have also been excluded from our main model. On the other hand, the radiocarbon data published for layer 3 and layer 2 (Adler et al., 2008) are consistent with new measurements and have been included in the model. The latter data appear to provide further evidence that the earlier pretreatment methods underestimate the ages of samples that are older than 30 ka (see Higham et al., 2009; Wood et al., 2012). To summarize, the data incorporated into the main age model for Ortvale Klde (model 2) include the following: the new UF 14C ages and previously published 40Ar/39Ar ages for the NF tephra in layer 3; and the ESR and TL ages from layer 7, layer 6, and layer 5 (Adler et al., 2008, Tables 1 and 5; Fig. 6).

Another three age models were produced to test the sensitivity of each model, which used different combinations of age data from the site (see Table 5). These models all produced comparable ages for the shift from the LMP to EUP at Ortvale Klde and indicate that...
the EUP appeared before 44 ka cal BP. Model 2 was run using a linear uptake and early uptake model for ESR ages, with the difference between the two being ~420–180 years (95.4% confidence). Model 5 only includes published chronological data (Adler et al., 2008) and is presented for comparison (see Fig. 11, Table 5, and SOM for full details).

4.4. The LMP-EUP at Ortvale Klde and in the Caucasus

The stratigraphic, archaeological, and the age model data presented here indicate that the LMP occupation of Ortvale Klde ended ~47–44 ka cal BP. This age estimate is considerably older than that proposed for neighboring LMP-EUP sites in western Georgia using similar UF methods, for example, Sakajia, Ortvala, and Bronze caves (Adler et al., 2008; Pinhasi et al., 2012). However, these latter sites yielded relatively few datable samples (based on collagen content) on which to build a precise or accurate chronology, and moreover, no taphonomic studies (e.g., micromorphology) have been conducted to investigate site formation or postdepositional processes that might have affected the burial and disposition of the dated samples or accompanying archaeological materials. Consequently, those chronologies must be considered preliminary pending further dating and detailed taphonomic assessment. Only Bondi Cave, located ~5 km east of Ortvale Klde in the parallel valley of the Tabagreh River, provides a roughly contemporaneous age estimate for the end of the LMP (>50 ka BP, Douka and Higham, 2017), although it too currently lacks detailed taphonomic analyses.

After the LMP at Ortvale Klde, there appears to be a hiatus in occupation (between layer 5 and layer 4d) of the southern chamber which, based on the new dates provided here, may have spanned several millennia before the appearance of the EUP at ~47–44 ka cal BP (94.5% probability; modeled boundary transition age, layer 4d; see Fig. 11 and Table 5). However, given the overlap of these two age estimates and their imprecision, the hiatus may have been of much shorter duration, but still long enough to allow for the patination of LMP artifacts in layer 5. The age estimate for the EUP at Ortvale Klde accords well with that for some sites in Eurasia, for example, ~49–45 ka cal BP and ~46–42 ka cal BP in Israel (Kebara Cave, Reblolo et al., 2011; and Manot Cave, Alex et al., 2017, respectively), ~43–35 cal ka BP in Turkey (Üçagızlı Cave, Kuhn et al., 2009), ~48–45 ka cal BP in the Altai (Denisova Cave, Douka et al., 2019), ~45 ka cal BP in Siberia (Urishish, Fu et al., 2014), ~46–43 cal ka BP in Bulgaria (Bacho Kiro, Fowless et al., 2020), and ~47–43 cal ka BP in Italy (Grotta de Cavallo, Benazzi et al., 2011).

Neighboring archaeological sites that have been excavated with a level of precision comparable with that of Ortvale Klde include Aghitu-3 (Armenia), Bondi Cave (Georgia), and Mezmaiskaya Cave (Russia; Fig. 1), and there are broad

Table 5
Summary age data from the new Ortvale Klde Bayesian model compared with the modeled published data.

<table>
<thead>
<tr>
<th>Model</th>
<th>New 14C ages</th>
<th>TL</th>
<th>ESR</th>
<th>Ar39/Ar40</th>
<th>Adler et al. (2008) 14C ages</th>
<th>Boundary transition—layer 5/hiatus (end LMP)</th>
<th>Boundary transition—hiatus/layer 4d (start EUP)</th>
<th>Age NF tephras</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>47,534–$44,282$</td>
</tr>
<tr>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>not layer 4c</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>47,501–$44,191$</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>50,537–$44,717$</td>
</tr>
<tr>
<td>4</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>78,436–$44,628$</td>
</tr>
<tr>
<td>5</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>44,436–$44,628$</td>
</tr>
</tbody>
</table>

Abbreviations: LMP = Late Middle Paleolithic; EUP = Early Upper Paleolithic; TL = thermoluminescence; ESR = electron spin resonance; LU = linear uptake.

* Model 1–4, this study; model 5, Adler et al. (2008).

* Radiocarbon (14C) data are from this study; TL and ESR (LU) data are from Adler et al. (2008); Ar39/Ar40 ages are from Sumita and Schmincke (2013a, b).

* Age determinations are modeled ages using IntCal20 in OxCal 4.2 (Bronk Ramsey, 2009a; Reimer et al., 2020) at the 94.5% confidence level.

* The diamond symbol indicates what age data were used in each model.

* The broader age estimate for model 4 is due to a lack of age constraints below layer 4d.
technotypological similarities between EUP assemblages at these sites (Bar-Yosef et al., 2006; Golovanova et al., 2010a, b; Kandel et al., 2011; 2014, 2017; Tushabramishvili et al., 2012; Pleurdeau et al., 2016). However, the chronologies of these sites indicate that the EUP appeared between roughly 10,000 and 7000 later than at Ortvale Klde (47.44 ka BP), for example, at ~39 ka cal BP in Aghitu-3 (UF14C date, see Kandel et al., 2014, 2017), ~39 ka cal BP in Mezmaiskaya Cave (conventional14C ages from layer 1C/1B; Golovanova et al., 2010b; Pinhasi et al., 2011), and ~40–37 ka cal BP at Bondi Cave (UF14C date from layer V; Douka and Higham, 2017). At Bondi Cave, layer Vb (EUP) contains a tooth (M1 dextra or M2) tentatively attributed to H. sapiens sp. (Tushabramishvili et al., 2012) and dated between 38.7 and 35.3 ka cal BP (95.4% probability, Douka and Higham, 2017).

The temporal gap between the LMP and EUP in the southern chamber of Ortvale Klde appears to be coeval with the rockfall deposit at Bondi Cave (layer VI, 47.5 ± 2.6 ka BP; Douka and Higham, 2017), suggesting EUP hominins may have repopulated a region already devoid of or thinly populated by LMP groups, thus allowing us to reject the hypothesis that this subregion of the southern Caucasus served as a LMP refugium. A similar pattern of regional LMP depopulation before the onset of the EUP, often correlated with Heinrich 5 and Heinrich 4, has been suggested for other sites and regions, including Bacho Kiro in Bulgaria (Fewlass et al., 2020; Hublin et al., 2020), Holiefs in southern Germany (Conard et al., 2006; Rhodes et al., 2019), El Salt in the Iberian Peninsula (Mallol et al., 2012; Galván et al., 2014), and Mezmaiskaya in the northern Caucasus (Golovanova et al., 2010a). While future advances in AMS dating and tephra correlation may narrow this temporal gap, the pattern between sites using the same UF pretreatment protocols is consistent.

The current temporal differences in EUP occupation in the southern Caucasus suggest that simple south-to-north EUP population expansion models may not be feasible and that at a continental scale, EUP development, expansion, contraction, and interactions with LMP populations may have occurred over millennia and likely took many forms (see Greenbaum et al., 2019a,b), including but not limited to expansion into regions devoid of or lightly populated by LMP populations. Therefore, it is possible that undocumented demographic forces adversely impacted some, but not all, LMP populations across Eurasia before the arrival of EUP populations (see Abi-Rached et al., 2011; Racimo et al., 2015; Enard and Petrov, 2015; Gittelman et al., 2016; Hoodcroft and Underdown, 2016).

Figure 11. Bayesian age models for the Ortvale Klde sequence produced using OxCal version 4.2 (Bronk Ramsey, 2009a) and the IntCal20 calibration curve (Reimer et al., 2020). The probability distributions shown in gray are based on the original Adler et al. (2008) data (model 5, see SOM) and are presented alongside the new probability distributions (shown in red) that are based on the new chronological data presented here (model 2, see SOM). The new model dates the appearance of the EUP to ~47–44 ka cal BP (94.5% probability). See Tables 1 and 5 for information on samples and age information incorporated into both models. The actual date ranges are given at the top of the ‘Start EUP’ box at 95.4% probability. Ages are provided for the old remodeled data (in black) and the new modeled data (in red). Layer 7 to layer 5 = LMP; layer 4d–4a to layer 2 (grayscale) = EUP. Only the boundary between each layer is shown. EUP = Early Upper Paleolithic; LMP = Late Middle Paleolithic. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
As recently demonstrated (e.g., Slon et al., 2017; Hublin et al., 2020), the systematic application of aDNA methods is the most plausible way to test demographic hypotheses concerning the decline of the LMP and the expansion of the EUP. The routine inclusion of such methods in future archaeological excavations, or their application to existing sites, will allow the clear correlation of specific hominins (e.g., Neanderthals, H. sapiens, Denisovans, and so on) with specific archaeological cultures (e.g., Mousterian, EUP, IUP, ‘transitional’ assemblages, and so on), finally enabling meaningful discussions of the actual populations represented in any given time interval, their relationships to the archaeological record, and their expansions, interactions, and declines.

5. Conclusions

A detailed cryptotephrā investigation of Ortvale Klde reveals that volcanic ash deposits from at least five eruptions are cryptically preserved across four archaeological layers. While further work is required to firmly source most of these tephra layers, the Ortvale Klde tephrostratigraphy and glass chemistry data set will facilitate future tephra correlations in the region. One cryptotephrā identified in layer 3, which is ~30 ka based on associated radiocarbon determinations, has the same glass composition of the ~30 ka NF eruption from the Nemrut volcano, Turkey. This geochemical correlation extends the known dispersal of this NF eruption to ~400 km from the volcano and indicates that the tephra is a useful regional marker layer that can be used in future to correlate archaeological and paleoenvironmental sequences across the southern Caucasus. This correlation demonstrates that tephrochronology can provide age constraints for sites, and the ability for them to provide both absolute and relative chronological constraints will improve with further research into the eruption histories of volcanoes in the region.

The age of NF was integrated with new and previously published radiocarbon, TL, and ESR data in an OxCal Bayesian age model to further constrain the chronology for the Ortvale Klde sequence. These data indicate the LMP ends at ~47.5–44.2 ka cal BP (94.5% probability) and the EUP begins at ~46.7–43.6 ka cal BP (94.5% probability), which at present is the earliest evidence for the EUP in the Caucasus and among the earliest evidence for any region. These ages are broadly consistent with earlier age estimates for specific EUP sites across northern Eurasia and the Mediterranean, suggesting that the appearance of the EUP in the southern Caucasus may reflect continental demographic processes. However careful, site-by-site inspections, such as those presented here, suggest that the regional and temporal variation in technology exhibited across the LMP-EUP boundary may reflect different trajectories in local cultural evolution, interpopulation connectivity, and population expansions, contractions, and extinctions rather than a single demographic sweep across Eurasia. The potential role of regional LMP population declines before the appearance of the EUP must be investigated at other sites through the systematic application of detailed taphonomic studies. Finally, the widespread implementation of paired tephra and absolute dating programs, along with other chronometric methods, and the intersite temporal linkages such studies allow is currently among the most productive means by which to improve our inter-regional understanding of this critical time interval of human evolution.

Acknowledgments

We would like to thank coordinators and demonstrators of the short course in radiocarbon dating and Bayesian chronological analysis (members of the Oxford Radiocarbon Accelerator Unit) for the guidance in producing OxCal models. We would also like to thank M. Sumita and H.-U. Schmincke for providing proximal tephra samples from Nemrut volcano. We are grateful to R. Pinhasi for his valuable contribution and two anonymous reviewers for their thoughtful comments. Finally, we acknowledge the generous intellectual and logistical support of O. Bar-Yosef, A. Belfer-Cohen, and D. Lordkipanidze. This work was supported by a UK Natural Environment Research Council research studentship award (NE/J500045/1 to V.L.C and grants from the Wenner–Gren Foundation for Anthropological Research (grants 6881 and 7059), the L.S.B. Leakey Foundation (https://leakeyfoundation.org), the American School of Prehistoric Research at Harvard University, and the Davis Center for Russian Studies at Harvard University to D.S.A.

Appendix A. Supplementary Online Material

Supplementary online material to this article can be found on-line at https://doi.org/10.1016/j.jhevol.2020.102908.

References

Journal of Human Evolution 151 (2021) 102908