Modeling and analysis of a hysteretic deformable mirror with electrically coupled actuators

Schmerbauch, Anja E. M.; Vakis, Antonis I.; Huisman, Robert; Jayawardhana, Bayu

Published in:
2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)

DOI:
10.1109/AIM43001.2020.9158999

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Modeling and analysis of a hysteretic deformable mirror with electrically coupled actuators

A.E.M. Schmerbauch1,∗, A.I. Vakis2, R. Huisman3 and B. Jayawardhana1

Abstract—In this paper, we present our novel concept of deformable mirror which enables a high density 2D actuation array through multiplexing. We investigate the resulting electrical coupling effect in the neighboring actuators through finite element analysis. These insights are used to consider the behavior within the least-square fitting performed to achieve wavefront error corrections.

I. INTRODUCTION

Deformable mirrors (DMs) are instruments used for the correction of light wavefront errors in telescope images and are applied in adaptive optical systems. In the search for planets outside our solar system (so called exoplanets), a critical technology development requirement is to advance DM technology. Astronomers have been able to find a few thousand exoplanets in orbit of distant stars, typically using indirect methods, where variations in the light coming from the star reveal the presence of an accompanying planet. To be able to characterize the exoplanet atmosphere, it is necessary to directly observe the light coming from the planet. In this case, the extreme contrast between the brightness of the star and the planet requires unprecedented wavefront control. Future large space telescopes, dedicated to direct imaging of exoplanets like LUVOIR [1], will rely on DMs to achieve clean and stable wavefronts over long periods of time, while reducing the negative effect of star light speckles originating from small surface shape errors of the optics. By increasing the number of actuators used to deform the mirror surface, the higher the quality of the obtained images. Current developments can reach 100 to 6000 actuators but rarely higher [2]. Nevertheless, scaling up the number of actuators will lead to design challenges because one of the major limitations for employing DMs on a space mission is the associated cable harness, electronics and related reliability issues. If every actuator has to be driven continuously to hold a particular position, an assigned channel with high voltage amplifier and converter is required which leads to a massive hardware of electronic components. To reduce the number of wires needed to connect and actuate, a new concept of DM called Hysteric Deformable Mirror (HDM) is presented in [3] which relies on multilayered piezoelectric actuators with high hysteresis that are electronically addressed by time-division multiplexing. A schematic representation of the HDM can be found in Figure 1. The actuators are realized with a purposely designed piezoelectric material to exhibit asymmetric butterfly loops with remnant deformation, and intersecting electrodes to address the particular areas. Figure 2 shows an example of such a butterfly loop collected from previous material tests.

Fig. 1. A schematical representation of the hysteretic deformable mirror which shows the concept in 3D (left) and exploded view (right). The integral components are the mirror surface, an isolation layer, parallel electrodes, piezoelectric layers and perpendicular electrodes.

Fig. 2. Asymmetric butterfly hysteresis loop with remnant deformation. The axial displacement was measured while a certain voltage was applied.

Based on this concept, we can strive for arrays with high numbers of actuators because reducing the cable harness consequently increases the reliability of the DM. Relying on the interconnection electrode design of the HDM decreases the numbers of cables needed to wire the electrodes of the mirror which will enable high density arrays in the long term. However, relying on such a concept poses further challenges. Based on the specific electrode layout, actuators become electrically coupled and will complicate the control process.

1A.E.M. Schmerbauch and B. Jayawardhana are with the Engineering and Technology Institute Groningen - Discrete Technology & Production Automation, Faculty of Science and Engineering, University of Groningen, 9747AG Groningen, The Netherlands
2A.I. Vakis is with the Engineering and Technology Institute Groningen - Computational Mechanical and Materials Engineering, Faculty of Science and Engineering, University of Groningen, 9747AG Groningen, The Netherlands
3R. Huisman is with the Netherlands Institute for Space Research, Groningen, The Netherlands
∗Corresponding author: a.e.m.schmerbauch@rug.nl
for creating the desired wavefront correction. The modeling
and control for the associated butterfly hysteresis behavior is
presented in [4] and [5]. In the following, we will present
finite element method (FEM) simulations that show the
electrical coupling between the actuators, and propose one
approach how to consider this behavior in the control system
and in the surface fitting process to achieve a wavefront error
correction.

This paper is organized as follows. In Section II we
explain the electrical coupling between certain actuators
while actuating the mirror, and validate the behavior with
FEM simulations. We introduce a plate model in Section III
for modeling the reflective mirror surface by consideration
of the particular interconnection layout of the electrodes. In
Section IV we use this plate model to finally fit the mirror to
Zernike polynomials, which are commonly used to represent
wavefronts for aberration correction in optical systems, and
consider the electrical coupling behavior between the actuators.
All theoretic aspects are elucidated by means of a 3×3
actuator array. Conclusions are given in Section V.

II. ELECTRICAL COUPLING BETWEEN ACTUATORS

![Image of 3x3 actuator array]

Fig. 3. Hysteretic deformable mirror for a 3×3 actuator array visualized as electrical circuit.

A. The origin of the electrical coupling

The HDM benefits from time-division multiplexing and
subsequently, provides a very simple electrode layout. The
top and bottom electrodes lie perpendicular to each other
to form intersecting areas of the electrodes presenting an
actuator. The mirror addressing is bundled by sharing the
same electrodes for actuators along a line. The voltage is
transmitted over a shared top electrode while the correspond-
ing bottom electrode for the desired actuator is grounded.
Surrounding electrodes are floating, meaning free of potential
and able to let a potential appear on a single electrode when
all other potentials on the other electrodes are held constant.
Considering this configuration, the neighboring actuators
which share the same electrode with the actuated one will
be affected due to the spillover of the electrical charges and
also experience mechanical deformation that diminishes with
increasing distance due to interaction effects. We refer to this
effect as the electrical coupling of the actuators. To exemplify
the electrical coupling, we can consider a simple 3×3 array

of our HDM and its associated electrical circuit diagram
which is shown in Figure 3. Each actuator is represented as
a parallel-plate capacitor having a capacitance C. When one
actuator is addressed by application of an electrical potential
V, the quantity of charge density on the plates Q is given by

$$Q = CV.$$

(1)

Due to constant thickness and size ratios, we assume that
every actuator possesses the same C and without loss of
generality, let us consider the case when $C = 1$. Following
from this, Equation (1) simplifies to $Q = V$. Due to the fact
that certain actuators share either top or bottom electrodes,
it is implied that neighboring electrodes along a line share
the introduced charges on the plates. An equilibrium of
charges will build up and at this equilibrium, the plates of
neighboring actuators become charged with the charges
$-Q/2$ and $+Q/2$; this results in an additional deformation
on the intersecting areas. Electrical coupling can be further
illustrated by considering the 3×3 actuator array. Addressing
the central actuator affects the direct neighbors (midline
actuators) as well as the remaining ones (diagonal actuators).
Nevertheless, with diagonal actuators the transferred charges
are much smaller due to the high number of intersections
between electrodes, and consequently the electrical coupling
here is negligible.

B. Simulation results

FEM simulations have been performed to simulate the
electric field in the piezoelectric array and the actuator
response. When an electric potential is placed on one of
the top electrodes, while one of the bottom electrodes is
connected to the ground, there is a strong electric field at the
interconnection (Figure 4), which will yield a piezoelectric
response and deformation of the central actuator (Figure 5
and Figure 6).

The FEM simulation and the model are set up with the di-
ensions, material characteristics, and boundary conditions
summarized in Table I. Analysis of the results shows that the
electrical coupling is present. The midline electrodes which
surround the central actuator reveal a smaller deformation as
well. Diagonal actuators are minimally affected and exhibit
a very low deformation.

The behavior of electrically coupled actuators has an
impact on accurate shape control and needs to be considered
in the fitting process. Although it can be expected that due
to the limited field strength observed at the neighboring
actuators, together with the strongly nonlinear nature of the
remnant deformation, unacceptable high shape changes
at other actuators are avoided, but nevertheless we resolve
this and continue with modeling the facesheet and describe
how to consider the electrical coupling in the determination
of required pressures to fit the mirror surface to Zernike
polynomials.

III. PLATE MODEL WITH INTERCONNECTION LAYOUT

An influence function defines the deformed mirror shape
resulting by the actuation of each actuator. Besides their
TABLE I
PARAMETERS AND BOUNDARY CONDITIONS FOR THE FEM SIMULATION.

<table>
<thead>
<tr>
<th>Electrodes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>1 mm</td>
</tr>
<tr>
<td>Spacing (center to center)</td>
<td>2 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Piezoelectric layer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>PZT-5H</td>
</tr>
<tr>
<td>Thickness</td>
<td>0.5 mm</td>
</tr>
<tr>
<td>Diameter</td>
<td>10 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Boundary conditions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrodes</td>
<td>Thin layer boundary condition</td>
</tr>
<tr>
<td>Center top electrode</td>
<td>Grounded</td>
</tr>
<tr>
<td>Center bottom electrode</td>
<td>Electrical potential of 100 V</td>
</tr>
<tr>
<td>Remaining electrodes</td>
<td>Floating potential</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mesh</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain elements</td>
<td>100248</td>
</tr>
<tr>
<td>Boundary elements</td>
<td>32836</td>
</tr>
<tr>
<td>Edge elements</td>
<td>3456</td>
</tr>
<tr>
<td>Number of DOFs solved for</td>
<td>1247337</td>
</tr>
</tbody>
</table>

characterization by means of radially symmetric Gauss functions and splines [6], [7], influence functions can be modeled by application of Kirchhoff or van Kármán theory [8]–[10] for plate deformations smaller than the plate thickness. Furthermore, models based on the Kirchhoff plate use assumptions how actuator forces act on the mirror facesheet, which either presuppose the exerted force as point load or approximated electrode areas with constantly distributed loads, and how facesheets are attached, which is introduced by boundary conditions presenting circularly clamped DMs [11], [12] or facesheets with a free outer edge [13].

In order to increase the modeling accuracy for the HDM and give an exact definition of the electrode shape that exerts a pressure on the mirror surface, we briefly explain our model for calculating the influence functions whose complete description is out of the scope of this work and refer the interested reader to [14].

Given the concept of the HDM, the electrodes have an interconnection layout creating square areas lying under a thin circular facesheet. The actuators are separated by a specified distance. To model this, we consider the Poisson equation and incorporate the square shape of the electrodes during integration. Therefore, each actuator is separated into several areas which can be described by a coordinate transformation using the Cartesian coordinates as well as the radial and angular limits. It is assumed that the thickness of electrodes can be neglected and the actuators modeled as springs in parallel to a force source which creates pressure on the facesheet.

A. Determination of influence matrix

We obtain a mechanical model to describe the relation between the facesheet deflection z and the pressures q applied by the actuators. We consider the Poisson equation
∇²z = −\frac{q}{T} \tag{2}

for small surface displacements for a membrane under tension \(T \). Incorporating the HDM’s particular arrangement of the electrodes into the solution to Poisson’s equation in polar coordinates \((r, \phi)\) leads to

\[z(r, \phi, \bar{r}, \bar{\phi}) = D \int A \mathcal{F}(r, \phi, \bar{r}, \bar{\phi}) q(\bar{r}, \bar{\phi}) \, d\bar{r} \, d\bar{\phi} \tag{3} \]

with

\[A = \{ (\bar{r}, \bar{\phi}) | \phi_1(\bar{r}) \leq \bar{\phi} \leq \phi_2(\bar{r}), 0 \leq \bar{r} \leq 1 \} \tag{4} \]

where

\[\mathcal{F}(r, \phi, \bar{r}, \bar{\phi}) = \begin{cases} f_1(r, \phi, \bar{r}, \bar{\phi}) & \text{if } 0 < \bar{r} < r \\ f_2(r, \phi, \bar{r}, \bar{\phi}) & \text{if } r < \bar{r} < 1 \end{cases} \tag{5} \]

and \(z(r, \phi) \) is the out-of-plane displacement of the thin facesheet, \((\bar{r}, \bar{\phi})\) are the integration variables, \(q(\bar{r}, \bar{\phi}) \) are the distributed forces over the particular electrode area, and constant \(D = a^2/T \) contains the relation between the facesheet radius \(a \) and the surface tension. Edge deflection and slopes are both equal to zero.

The solutions of Equation (3) can be written in matrix form [12] and the surface deflection on a specific point on the facesheet calculated according to

\[z(r, \phi) = \sum_{j=1}^{N_e} M_{(r,\phi)j} q_{(r,\phi)j} \tag{6} \]

where \(M \) represents the coefficients derived from the solutions of the Poisson equation, \(q_{(r,\phi)j} \) are piecewise constant pressures exerted on the respective \(j \)-th electrode, and \(N_e \) is the total number of electrodes.

B. Actuator model

The stiffness of the facesheet is responsible that actuators become coupled. Generally, a mechanical coupling between neighboring actuators, i.e. inter-actuator coupling, can improve the surface accuracy and smooth the deformation on the facesheet [16]. We consider the inter-actuator coupling by modeling each actuator simplified as a spring in parallel with a force source that interact with the facesheet over a specified area (Figure 7).

![Fig. 7. Simplified actuator model, modeled by a stiffness \(k \) in parallel to a force source over an area \(\Phi \).](image)

It is assumed that all the actuators are identical. The pressure term \(q(r, \phi) \) can be split so that it captures both components in terms of stiffness and force source over that area. Consequently, the relation from Equation (6) may be described by

\[z(r, \phi) = \sum_{j=1}^{N_e} M_{(r,\phi)j} \left(\Phi_{Pj}(V) - k_j \bar{z}_j \right) \tag{7} \]

with

\[\Phi_{Pj}(V) = Y_j \Phi_{Tj}(V) \tag{8} \]

and

\[\bar{z}_j := \frac{\sum_{i \in E_j} z_i/n_e}{A_e} \tag{9} \]

where \(\Phi_{Pj}(V) \) denotes the Preisach operator capturing the highly nonlinear hysteresis of the actuators in regard to the total deformation in relation of the initial thickness dimension, \(Y_j \) the diagonal matrix containing the Young’s modulus, \(\Phi_{Tj}(V) \) the longitudinal elongations of the actuators, \(k_j \) the diagonal stiffness matrix containing the actuators’ stiffness, and \(\bar{z}_j \) the mean surface deflection above the respective electrode with area \(A_e \) calculated by means of \(n_e \) surface displacement points \(z_i \) on a specific position within the electrode area. A model for describing the electric-field dependence on the strain in piezoelectric materials purposely designed to exhibit loops with remnant deformation was presented in [4] based on the use of the Preisach operator. The complete definition of this operator can be found in [5].

IV. RESULTS

A. Least-square fitting with consideration of electrical coupling

To represent the optical imperfections which can occur in adaptive optical systems, we use a common representation of wavefront aberrations which is a series of Zernike polynomials. Zernike polynomials are defined on a unit circle as functions of azimuthal frequency \(m \) and radial degrees \(n \) where \(m \leq n \) using polar coordinates \((r, \theta)\). The set of polynomials [17] can be given by

\[Z_n^m(r, \theta) = R_n^m(r) \cos(m\theta) \quad \text{for} \quad m \geq 0 \]
\[Z_n^{-m}(r, \theta) = R_n^m(r) \sin(m\theta) \quad \text{for} \quad m < 0 \tag{10} \]

where

\[R_n^m(r) = \sum_{S=0}^{(n-m)/2} \frac{(-1)^S(n-S)!(n+m)/2-S)!}{S![n-m)/2-S]!} \frac{r^{n-2S}}{r^{n+2S}} \]

Each displacement of a respective point on the facesheet which is defined by \((r, \phi)\) is fit to the corresponding point on the Zernike polynomial so that we can calculate the required pressure terms which can generate the desired shape. An over-determined set of equations is solved in the least-square sense resulting in

\[\Phi = (M^T M)^{-1} M (z_d + M k \bar{z}_d). \tag{12} \]
proposed by the HDM. To determine final values, we can set up a linear system of equations and, by solving it, determine the proportions for direct and indirect pressure. The system of equations in matrix form can be given by

$$
\begin{bmatrix}
\Phi_{P_1} \\
\Phi_{P_2} \\
\vdots \\
\Phi_{P_N}
\end{bmatrix} =
\begin{bmatrix}
\lambda_{P_1} & \lambda_{P_2} & \cdots & \lambda_{P_N} \\
\lambda_{P_1} & \lambda_{P_2} & \cdots & \lambda_{P_N} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_{P_1} & \lambda_{P_2} & \cdots & \lambda_{P_N}
\end{bmatrix}
\begin{bmatrix}
P_1 \\
P_2 \\
\vdots \\
P_N
\end{bmatrix}
$$

(14)

where Φ is a vector containing the constant terms from the least-square fitting, Λ a $N_e \times N_e$ matrix including the coupling factors (λ_{P_n} is 1 if the actuator is actuated directly) and Φ^* a vector with the unknown pressures. If the matrix Λ is square and has full rank, then the system has a unique solution given by

$$
\Phi = \Lambda^{-1} \Phi^*
$$

(15)

where Λ^{-1} is the inverse of Λ.

As an example according to the 3×3 actuator array, with numbering beginning at the center and continuing with the right upper corner clockwise from 1 to 9, we achieve the following matrix

$$
\begin{bmatrix}
\Phi_{P_1} \\
\Phi_{P_2} \\
\vdots \\
\Phi_{P_N}
\end{bmatrix} =
\begin{bmatrix}
\lambda_{P_1} & 0 & \lambda_{P_2} & 0 & \lambda_{P_3} & 0 & \cdots & 0 & \lambda_{P_N} \\
0 & \lambda_{P_2} & \lambda_{P_3} & \lambda_{P_4} & \lambda_{P_5} & \lambda_{P_6} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\lambda_{P_1} & \lambda_{P_2} & \lambda_{P_3} & \lambda_{P_4} & \lambda_{P_5} & \lambda_{P_6} & \cdots & \lambda_{P_N} & 0
\end{bmatrix}
\begin{bmatrix}
P_1 \\
P_2 \\
\vdots \\
P_N
\end{bmatrix}
$$

(16)

The coupling behavior is known from the presented FEM simulations in Section II-B and the coupling factors λ_{P_n} can be extracted as estimation for solving this system. The resulting pressures denoted with Φ^* are needed to control the mirror because they assume the initial state for the input. Together with the electrical coupling behavior the actuators will create the Zernike polynomial. As an example, Figure 8 shows the fitted mirror surface to the Zernike polynomial Z_1^1 with a RMSD of 7.17%. The calculation of coefficients and the simulations were performed using MATLAB R2019a. The optically active region of the mirror was restricted to avoid edge effects due to the clamped facesheet. The stiffness of the actuators was estimated based on general available information of piezoelectric actuators. Low order Zernike polynomials can still be fitted with a low density array but the higher the degree of the polynomial the higher the resulting RMSDs. This can be demonstrated by Figure 9 which shows the fitted mirror surface to the Zernike polynomial Z_2^0 with a
RMSD of 28.63%. By means of high density arrays a higher fitting accuracy and reduction of the RMSD can be reached.

V. Conclusion

We discussed the electrical coupling between the actuators in DMs which underly the concept of the hysteretic deformable mirror and have validated this behavior with FEM simulations. An approach was presented to model the mirror facesheet including the particular interconnection layout of the electrodes. The electrical coupling was analysed and integrated based on the known information. With this, it was possible to simulate the fitting of the mirror surface to Zernike polynomials. It serves as the basis method to calculate the initial pressure of each actuator for controlling and creating desired wavefront error corrections with this mirror.

Acknowledgment

The authors would like to thank M.A. Vasquez-Beltran, Dr. M. Acuautla and Prof. B. Noheda of the University of Groningen, and C. de Jonge, Dr. S.N.R. Kazmi, M. Eggens and H. Smit of the Netherlands Institute for Space Research for their valuable input on the Hysteretic Deformable Mirror project.

References

