AN ISOGENY OF K3 SURFACES

BERT VAN GEEMEN AND JAAP TOP

ABSTRACT

In a recent paper Ahlgren, Ono and Penniston described the L-series of K3 surfaces from a certain one-parameter family in terms of those of a particular family of elliptic curves. The Tate conjecture predicts the existence of a correspondence between these K3 surfaces and certain Kummer surfaces related to these elliptic curves. A geometric construction of this correspondence is given here, using results of D. Morrison on Nikulin involutions.

1. The family

1.1. Recently, Ahlgren, Ono and Penniston [1] studied the K3 surfaces X_t, which are the minimal resolutions of double covers of \mathbb{P}^2 branched over a union of six lines (and hence over a sextic curve):

$$X_t : y^2 = xz(x + 1)(z + 1)(x + zt).$$

Using an elaborate but elementary calculation with character sums, they determined the zeta function of X_t/\mathbb{F}_p. One way of interpreting their result is as follows.

For general $t \in \mathbb{Q}$, the Néron–Severi group of X_t has rank 19 (see Lemma 2.3 below). Hence there is an isomorphism of $G_{\mathbb{Q}} = \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ representations:

$$H^2_{\text{ét}}(X_t, \mathbb{Q}, \mathbb{Q}_\ell) \cong T_{t,\ell} \oplus \mathbb{Q}_\ell(-1)^{19}$$

for some ℓ-adic representation $T_{t,\ell}$ of dimension 3.

Consider the elliptic curve E_t and its quadratic twist $E_t^{(t+1)}$:

$$E_t : y^2 = (x - 1) \left(x^2 - \frac{1}{t + 1} \right); \quad E_t^{(t+1)} : (t + 1)y^2 = (x - 1) \left(x^2 - \frac{1}{t + 1} \right).$$

The Kummer surface $Km(E_t \times E_t^{(t+1)})$ is by definition the smooth surface obtained by blowing up the sixteen double points of the quotient

$$E_t \times E_t^{(t+1)} \big/ [-1] \times [-1].$$

This Kummer surface is also a K3 surface. Since $E_t^{(t+1)}$ is a quadratic twist of E_t, we obtain another three-dimensional $G_{\mathbb{Q}}$-representation:

$$\text{Sym}^2 \left(H^1_{\text{ét}}(E_t, \mathbb{Q}_\ell) \right) \left(\chi^{(t+1)} \right) \subset H^2_{\text{ét}} \left(\text{Km} \left(E_t \times E_t^{(t+1)} \right), \mathbb{Q}_\ell \right).$$

Here, $\chi^{(t+1)}$ is the Dirichlet character of the quadratic extension $\mathbb{Q}(\sqrt{t + 1})/\mathbb{Q}$ if $t+1$ is not a square in \mathbb{Q}, or else it is trivial.

Received 4 September 2003; revised 2 March 2005.

2000 Mathematics Subject Classification 14J27, 14G25, 14J28.
Proposition (Ahlgren, Ono and Penniston). With notation as above, the two Galois representations $T_{t,\ell}$ and $\text{Sym}^2(H^1_{\text{et}}(E_t,\mathbb{Q}_\ell))$ are isomorphic.

This isomorphism produces, via the Künneth formula and Poincaré duality, a Galois invariant class in $H^4_{\text{et}}(X_t,\mathbb{Q} \times K_{m(E_t \times E_{t+1})})$. The Tate conjecture asserts that for a variety X, defined over \mathbb{Q}, the subspace of Galois invariants in $H^2_{\text{et}}(X,\mathbb{Q} \times K)$ is spanned by classes of codimension 2 cycles defined over \mathbb{Q}.

Combined with the proposition above, this suggested our main result, as follows.

Theorem 1.2. For $t \in \mathbb{Q}$ there exists an explicit correspondence

$$\Gamma_t \subset X_t \times \text{Km}(E_t \times E_{t+1}),$$

defined over \mathbb{Q}, which induces an isomorphism of \mathbb{Q}-representations:

$$[\Gamma_t] : T_{t,\ell} \xrightarrow{\cong} \text{Sym}^2(H^1_{\text{et}}(E_t,\mathbb{Q}_\ell))(\chi^{(t+1)}).$$

In [1, Remark 4.4], the authors of that paper suggest finding a dominant rational map from X_t to $K_t = \text{Km}(E_t \times E_t)$. This is actually possible, but only over a finite extension of $\mathbb{Q}(t)$, and we do indeed produce such a map.

Proposition 1.3. Let K be a field of characteristic not equal to 2, and take $t \neq 0, -1$ in K. Then there exists a dominant rational map from X_t to $K_t = \text{Km}(E_t \times E_t)$ over a finite extension of K.

1.4. Such a geometric relation (at least, over the complex numbers) between the two families of K3 surfaces can also be shown to exist using their Picard–Fuchs differential equations. This has been worked out by Ling Long [8].

We now briefly outline the general facts that we used, and the strategy that we followed to obtain our result.

1.5. General results. The general X_t has a Néron–Severi group $\text{NS}(X_t)$ of rank 19, and thus its transcendental lattice $T = \text{NS}(X_t)^\perp$ has rank 3. We compute (see Lemma 2.3) that

$$T \cong \langle 2 \rangle \oplus \langle 2 \rangle \oplus \langle -2 \rangle.$$

Recall that $\text{Km}(A)$, the Kummer surface of an abelian surface A, is the K3 surface obtained by blowing up the sixteen singular points of the quotient of A by the involution $a \mapsto -a$. A K3 surface S with rank $\text{NS}(S) = 19$ is a Kummer surface if and only if the (even) quadratic form $q : T_S = \text{NS}(S)^\perp \longrightarrow 2\mathbb{Z}$ obtained from the intersection product on $H^2(S,\mathbb{Z})$ has values in $4\mathbb{Z}$ (see [10, Proposition 4.3]). In particular, the general X_t is not a Kummer surface.

The transcendental lattice T_S of any K3 surface S of rank 19 embeds into U^3 [10, Corollary 2.6], where U is the hyperbolic plane $\langle Z^2 \text{ with quadratic form } q(x) = 2x_1x_2 \rangle$. This gives an embedding of T_S in the K3 lattice $U^3 \oplus E_8(-1)^2$ which is unique up to isometry [10, Corollary 2.10]. The Néron–Severi group $\text{NS}(X)$ of X thus contains $E_8(-1)^2$. Now [10, Theorem 5.7] implies that X has a Nikulin involution ι (that is, an involution which acts trivially on $H^{2,0}(X)$). The involution has eight fixed points; by blowing them up and taking the quotient we obtain a K3 surface V with $T_V \cong T(2)$; see [10, Theorem 5.7(ii)]. Hence V is a Kummer
surface. The corresponding abelian surface A has transcendental lattice $T_A \cong T$ \cite[Proposition 4.3]{10}. The following diagram, which is called a Shioda–Inose structure for X, summarizes the situation.

\[
\begin{array}{ccc}
X & \xrightarrow{\Phi} & A \\
\downarrow & & \downarrow \\
X/\iota & \cong & \text{Km}(A)
\end{array}
\]

Mukai \cite[Corollary 1.10]{11} gives a very general result on the existence of correspondences between K3 surfaces: if X and Y are K3 surfaces of Picard rank at least 11, and $f : T_X \otimes \mathbb{Q} \rightarrow T_Y \otimes \mathbb{Q}$ is an isometry whose \mathbb{C}-linear extension maps $H^{2,0}(X)$ to $H^{2,0}(Y)$ (such an f is called a Hodge isometry), then $f = [\Gamma]$ for some correspondence Γ on $X \times Y$.

We have already observed that the transcendental lattice T of the general X_t is $\langle 2 \rangle^2 \oplus \langle -2 \rangle$. The transcendental lattice T' of the general $\text{Km}(E \times E)$ is $T' \cong T_{E \times E}(2)$ \cite[Proposition 4.2]{10}, and from this one easily finds that $T' \cong U(2) \oplus \langle 4 \rangle$, where $U(2)$ is \mathbb{Z}^2 with quadratic form $4xy$. The determinants of T and T' are -8 and -16 respectively. On the other hand, if there were a Hodge isometry between $T \otimes \mathbb{Q}$ and $T' \otimes \mathbb{Q}$, then these determinants would differ by a square in \mathbb{Q}, so no such isometry exists. The quotient by the Nikulin involution does not induce a Hodge isometry between T_X and $T_{\text{Km}(A)}$; actually, $T_{\text{Km}(A)} \cong T_X(2) \cong \langle 4 \rangle^2 \oplus \langle -4 \rangle$; see \cite[Theorem 6.3]{10}. Now the determinants of $T_{\text{Km}(A)}$ and T' do differ by a square, and in fact it is not hard to show that for any X_t there exists an elliptic curve E such that $T_{X_t}(2)$ and $T_{\text{Km}(E \times E)}$ are Hodge isometric. However, it is not at all clear to us how to find E explicitly, nor how to show that the correspondence on $\text{Km}(A) \times \text{Km}(E \times E)$, whose existence is guaranteed by Mukai, is defined over \mathbb{Q} (after suitably twisting $E \times E$).

In \cite{4} it is shown how Mukai’s results, extended with the use of Nikulin involutions, allow one to deduce the existence of correspondences in more general cases.

1.6. Summary. For the general X_t it is rather easy to find a sublattice $E_8(-1)^2$ of $\text{NS}(X_t)$; see Section 3.1. Since the Nikulin involution exchanges the two copies of $E_8(-1)$ and we have an interpretation of the simple roots as nodal curves on the surface, we can make an educated guess as to what the involution should be. In Section 3.2 we give the involution explicitly, and we determine the quotient K3 surface V_t. In Remark 3.4 we observe that the general V_t is not isomorphic to the Kummer surface of a product of two elliptic curves.

In Section 4, we show that V_t is isomorphic to a double cover W_t of \mathbb{P}^2 branched along six lines that are tangent to a conic. This shows that $V_t \cong \text{Km}(JC_t)$, where JC_t is the Jacobian of the genus-2 curve C_t which is the double cover of the conic branched in the six points of tangency of the lines to the conic.

Finally, we show that the abelian surface JC_t is isogenous to a product of two elliptic curves $F_t \times F'_t$ which are quadratic twists of E_t (Section 4.5). A major problem is that most isogenies and isomorphisms are not defined over \mathbb{Q} (or $\mathbb{Q}(t)$). The varieties involved do have models over \mathbb{Q}, but one has to choose the right one (or twist a given one) so as to have a non-trivial correspondence defined over \mathbb{Q}. We conclude with some observations on the ‘famous’ K3 surface X_{-1}.

1.7. Moduli. A K3 surface X of Picard rank 19 has a transcendental lattice T of rank 3 with an indefinite quadratic form $q : T \rightarrow \mathbb{Z}$. The polarized Hodge
structure on T is determined by the one-dimensional isotropic subspace $H^{2,0}(X) \subset T \otimes \mathbb{C}$, and such subspaces are parametrized by the upper half-plane (the hyperbolic plane). The Torelli theorem and the ‘surjectivity of the period map’ then show that the moduli spaces of such K3 surfaces are quotients of the upper half-plane by arithmetic subgroups of $\text{PSL}_2(\mathbb{R})$.

In the case where T is non-isotropic (that is, $q(t) \neq 0$ if $t \neq 0$), this quotient is a compact curve. Examples are the Shimura curves that parametrize Kummer surfaces of abelian surfaces whose endomorphism algebra contains a skew field of degree four over \mathbb{Q}.

In the case where T is isotropic, the quotient curve is not compact; examples are the modular curves that parametrize Kummer surfaces of products $E \times E'$, where E and E' are isogenous elliptic curves. The example treated in the present paper belongs to this case; more precisely, the t-line dominates such a noncompact quotient curve.

1.8. Previous work. In the literature, several results comparable to Proposition 1.3 can be found. However, we are not aware of any cases except the present one where a procedure is given to construct such isogenies. We mention some examples here. Note that they are older than Morrison’s paper, which provided the basic technique for our construction. It might be interesting to study whether Long’s method, mentioned above, can be used in the following examples as well, to predict the existence of the isogenies involved.

In 1977, M. Mizukami [9] showed that the Kummer surface $\text{Km}(E'_t \times E'_t)$ is isogenous to the K3 surface X'_t, for $t \neq \pm 1$ in \mathbb{C}, where
$$X'_t : x_1^4 + x_2^4 + x_3^4 + x_4^4 + 2t(x_1^2x_2^2 + x_3^2x_4^2) = 0$$
and
$$E'_t : y^2 = (x^2 + 1)(x^2 + (1 - t)/2).$$
This is proved by explicitly giving a rational 4 : 1 map from $E'_t \times E'_t$ to X'_t.

Similarly, in 1984 W. Hoyt [7] presented an explicit rational dominant map from the product $E''_t \times E''_t$, where
$$E''_t : y^2 = x^3 - (12 - 9t)x + 16 - 18t,$$
to the K3 surface X''_t corresponding to the equation
$$s^2 = x(x - 1)(x - t)y(y - 1)(y - x).$$

2. The K3 surfaces X_t

2.1. Singularities of the branch curve. For $t \neq 0$, the branch curve of the double cover defining X_t consists of six lines (including the line at infinity); from now on, we assume that $t \neq 0$.

For $t \neq -1$, these lines meet in six double points and three triple points. To obtain the corresponding K3 surface, one blows up the double and triple points. Over a triple point, one must next blow up the three intersection points of the strict transforms of the three lines and the exceptional divisor. We denote by E_P the inverse images in the K3 surface X_t of the strict transform of the fibre of the first blow-up in P. Furthermore, by $E_P^t=0$ we denote the inverse image of the exceptional divisor over the point of intersection of E_P and the strict transform of
the line \(l = 0 \). For reasons of symmetry we embed \(\mathbb{C}^2 \) with coordinates \((x, z)\) in \(\mathbb{P}^2 \) by using \((x, z) \mapsto (x : z : -1)\). Thus the exceptional divisor over the double point \((x, z) = (-1, 0)\) is denoted by \(E_{101} \). All these curves, as well as the inverse images of the lines that make up the sextic (we denote these simply by \(l = 0 \) as in \(\mathbb{P}^2 \)), are smooth rational curves, and hence \((-2)\)-curves, in the K3 surface. See [1, p. 363, Figure 1] for a picture of the intersection graph of these \((-2)\)-curves.

In the special case \(t = -1 \) there are three double points and four triple points. The \(6 + 3 + 4 \cdot 4 = 25 \) rational curves in \(X_{-1} \) with self-intersection \(-2\), obtained as above, are denoted in a similar way.

2.2. The case \(t = -1 \). It is shown in [13, p. 298] (see also the proof of Lemma 2.3) that the K3 surface \(X_{-1} \) has transcendental lattice \(T_{-1} \) of rank 2 and discriminant 4; hence \(T_{-1} \) must be

\[
T_{-1} = \langle 2 \rangle \oplus \langle 2 \rangle.
\]

Vinberg [15] studied the (unique) K3 surface with this transcendental lattice, and observed [15, 2.1] that its Picard lattice is isomorphic to the sublattice of \(\mathbb{Z}^{20} \) (with quadratic form \(x_1^2 - \sum_{i=2}^{20} x_i^2 \)) given by the vectors \(x \) with \(\sum x_i \equiv 0 \) (mod 2).

Section 2.1 showed that \(X_{-1} \) is the desingularisation of the quotient of \(E_8^2 \), the self-product of the elliptic curve \(E_i = \mathbb{C}/\mathbb{Z}[i] \), by the automorphism \(\phi \) of order 4 induced by \((z_1, z_2) \mapsto (iz_1, -iz_2)\) on \(\mathbb{C}^2 \); see also Section 5.

The following lemma is not used in the proof of the main result, but it does show that \(X_t \) is not a Kummer surface; hence we cannot avoid the Nikulin involution.

Lemma 2.3. The Néron–Severi group of the general \(X_t \) has rank 19 and is generated by nodal curves defined over \(\mathbb{Q}(t) \). The transcendental lattice \(T \) of the general \(X_t \) is given by

\[
T \cong \langle 2 \rangle \oplus \langle 2 \rangle \oplus \langle -2 \rangle.
\]

Proof. First we consider the special case \(t = -1 \). The sublattice of \(H^2(X_{-1}, \mathbb{Z}) \) generated by the following twenty nodal curves: \(E_{011}, E_{010}^{x=0}, E_{111}^{x=0}, E_{111}^{x=-1} \) and the sixteen curves that span the two copies of \(E_8 \) given in Section 3.1, has rank 20 and determinant \(-4\), as can be verified by a computation with their intersection matrix. Hence the determinant of the transcendental lattice \(T_{-1} \) is either 4 or 1, but since \(T \) is positive definite and even, \(\det(T_{-1}) = 4 \) (and in fact \(T_{-1} \cong \langle 2 \rangle \oplus \langle 2 \rangle \)).

It follows that the twenty curves form a \(\mathbb{Z} \)-basis of \(\text{NS}(X_{-1}) \). According to Nikulin [12, Theorem 1.14.4], the embedding of \(T \) in the K3 lattice \(U^3 \oplus E_8(-1)^2 \) is unique up to isometry. We fix such an embedding, and we identify \(\text{NS}(X_{-1}) \) with \(T^+ \).

Since the K3 surfaces \(X_t \) depend on one parameter, \(\text{NS}(X_t) \) has rank at most 19 for general \(t \). For \(t \neq -1 \), there are three points, \(p_a = (-1, t^{-1}) \), \(p_b = (t, -1) \) and \(p_c = (-1, -1) \), that specialize to the triple point \((x, z) = (-1, -1)\) as \(t \to -1 \). It is easy to check that the lattice spanned by the twenty-four nodal curves in \(X_t \) obtained from the desingularization of the branch locus is isomorphic to the sublattice of \(\text{NS}(X_{-1}) \) spanned by the corresponding curves in the case \(t = -1 \), and where \(E_a \) maps to \(E_{111}^{x=0} + E_{111} + E_{111}^{x=-2} \), and so on (so the exceptional curve over the intersection of two lines \(l = 0 \) and \(m = 0 \) maps to the sum of the curves \(E_{111}^{x=0} + E_{111} + E_{111}^{x=0} \)). Now it is easy to see that the image of \(\text{NS}(X_t) \) in \(\text{NS}(X_{-1}) \) is contained in the orthogonal complement \(L \) of \(E_{111} \). Hence \(L \) is a primitive sublattice, and is actually generated by the twenty-four nodal curves. (In fact, the sixteen
curves in the copies of E_8 and E_{011}, E_{010}^{\natural} and E_c are a \mathbb{Z}-basis of L.) Therefore $\text{NS}(X_t) \cong L$ for general t. A computation shows that $L \cong E_8(-1)^2 \oplus (-2)^2 \oplus (2)$, and that L^\perp is isomorphic to $\langle 2 \rangle \oplus (2) \oplus \langle -2 \rangle$. $lacksquare$

3. The isogeny

3.1. The sublattice $E_8(-1)^2$. It is not hard to identify a sublattice of $\text{NS}(X_t)$ that is isomorphic to $E_8(-1)^2$. One copy of $E_8(-1)$ is spanned by the following eight (-2)-curves on X_t.

$$
\begin{align*}
(x = 0) &- E_{001}^{z=0} - E_{001} - E_{001}^{z=0} - (z = 0) - E_{101} - (x = -1) \\
E_{001}^{z=zt}
\end{align*}
$$

Another copy of $E_8(-1)$, perpendicular to this one, is given by the following curves.

$$
\begin{align*}
E_{010} &- E_{010}^{z} - (l_{\infty}) - E_{100}^{l_{\infty}} - E_{100} - E_{100}^{z=1} - (z = -1) \\
E_{110}
\end{align*}
$$

By considering the effect of the symmetry on the nodal curves, one is led to the following expression for the Nikulin involution.

3.2. The Nikulin involution. The pair of copies of E_8 in $\text{NS}(X_t)$ described in Section 3.1 defines a Nikulin involution ι on X_t as in [10]. It is given by:

$$
\iota = \iota_t : X_t \longrightarrow X_t; \quad \iota(x, z, y) = \left(\frac{1}{z}, \frac{1}{x}, -y/(x^2z^2)\right).
$$

(The minus sign ensures that ι has only isolated fixed points.)

The invariants under the action of ι in the function field of the surface X_t are generated by

$$
\xi_1 = \frac{x}{z}, \quad \xi_2 = \frac{x + 1}{z} \quad \text{and} \quad \eta = y(xz - 1)z^{-3}.
$$

The desingularization of X_t/ι is a K3 surface denoted by V_t:

$$
V_t : \eta^2 = \xi_1(\xi_1 + t)(\xi_1 + \xi_2 + 1)(\xi_2^2 - 4\xi_1).
$$

Note that $\xi_1(\xi_1 + t)(\xi_1 + \xi_2 + 1)(\xi_2^2 - 4\xi_1)$ pulls back to $xz(x + 1)(x + 1)(x + zt)$ times $((xz - 1)/z^3)^2$. As the isogeny is defined over $\mathbb{Q}(t)$, we obtain the following lemma.

Lemma 3.3. The desingularisation of the surface X_t/ι is the K3 surface V_t. The graph of the rational map $X_t \longrightarrow V_t$ defines a correspondence, defined over $\mathbb{Q}(t)$, that induces an isomorphism on the transcendental parts of H^2_{et}.

Remark 3.4. From Lemma 2.3 and [10] we then find, for general t, that

$$
T_{V_t} \cong T(2) = \langle 4 \rangle \oplus \langle 4 \rangle \oplus \langle -4 \rangle.
$$

This implies that the general V_t is not isomorphic to the Kummer surface of a product of two elliptic curves (consider the transcendental lattices!). It is not hard to check that for any elliptic curve E, there is a subgroup $H \subset E \times E$, $H \cong (\mathbb{Z}/2\mathbb{Z})^2$, such that $(E \times E)/H$ has transcendental lattice $\langle 2 \rangle \oplus (2) \oplus \langle -2 \rangle = T$, and hence
the transcendental lattice of the Kummer variety of \((E \times E)/H\) is \(T(2)\). We will not use this result explicitly, however, since it does not guarantee the existence of a correspondence over \(\mathbb{Q}(t)\).

3.5. An alternative description of the Nikulin involution. Using an elliptic fibration on \(X_t\) given in [1], one obtains the following way of describing the involution \(\iota\).

Consider the map
\[
\pi : X_t \to \mathbb{P}^1, \quad (x, y, z) \mapsto \alpha := \frac{y}{z(x + tz)}.
\]
This map in fact defines a morphism. The fibre over a general point \(\alpha \in \mathbb{P}^1\) is the genus-1 curve \(D_\alpha\) with equation
\[
\alpha^2 z(x + zt) = x(x + 1)(z + 1).
\]
Using the change of coordinates
\[
\xi := t\alpha^2/x, \quad \eta := \frac{(\xi + t\alpha^2)}{z},
\]
one obtains for \(D_\alpha\) the equation
\[
\eta^2 + (1 - \alpha^2)\xi\eta + t\alpha^2\xi = \xi^3 + t\alpha^2\xi^2.
\]
In this way, \(\pi : X_t \to \mathbb{P}^1\) is the elliptic surface \(\pi : D_\alpha \to \mathbb{P}^1\) corresponding to \((\xi, \eta, \alpha) \mapsto \alpha\). Note that the fibre of this surface over \(\alpha\) is the same as the fibre over \(-\alpha\).

Let \(P_1\) be the section of this surface over \(\mathbb{P}^1\) given by \(P_1(\alpha) = (0, 0, \alpha)\). The Nikulin involution \(\iota\) is then described as
\[
\iota(\xi, \eta, \alpha) = (P_1(\alpha) - (\xi, \eta), -\alpha),
\]
where \(P_1(\alpha) - (\xi, \eta)\) is interpreted in terms of the group law on the elliptic curve \(D_\alpha\).

3.6. The branch locus of \(V_t\). The branch locus of \(V_t\) consists of four lines (including the line at infinity) and a conic. The line \(\xi_1 + t = 0\) meets the conic transversely in two points, conjugate over the field \(\mathbb{Q}(\sqrt{-t})\), whereas the other three lines are tangent to the conic and all contain the (triple) point \((0, 1, 0)\). Blowing up the singular points of the branch curve (in a point of tangency, one must blow up twice; in the triple point, four times (see 2.1)), one obtains a rational surface such that \(V_t\) is the double cover of this surface branched over six disjoint smooth rational curves (the strict transforms of the five irreducible components of the branch curve and the rational curve that maps to the triple point). In the next section we will see that one can blow down this rational surface to \(\mathbb{P}^2\) in such a way that the images of these six rational curves are lines that are tangent to a conic.

3.7. Five-fold symmetry for \(t = -1\). It is amusing to observe that in the case \(t = -1\) one finds twenty-five nodal curves on the K3 surface \(X_t\) which form a configuration already described by Vinberg.

In the case \(t = -1\), the six lines in \(\mathbb{P}^2\), the three exceptional divisors over the double points \(((1 : 1 : 0), (1 : 0 : 1)\) and \((0 : 1 : 1))\), and the \(4 \cdot 4 = 16\) curves over the four triple points give a configuration of twenty-five \((-2)\)-curves on \(X_{-1}\). The graph of this configuration (where vertices correspond to the nodal curves, and edges are between vertices for which the corresponding nodal curves intersect) is
4. \(V_t \) as a Kummer surface

Lemma 4.1. Let \(W_t \) be the K3 surface defined by:

\[
W_t : t(t + 1)\eta^2 = (\xi_1^2 + t\xi_2^2)(4\xi_7 - 4t\xi_8 - t - 1)((\xi_7 - 2t\xi_8 - t)^2 + t(\xi_8 + 1)^2).
\]

There exists an isomorphism

\[
\phi : V_t \xrightarrow{\cong} W_t
\]

which is defined over \(\mathbb{Q}(t, \sqrt{-t}) \). Let \(\phi' : V_t \rightarrow W_t \) be the \(\text{Gal}(\mathbb{Q}(\sqrt{-t})/\mathbb{Q}(t)) \)-conjugate of \(\phi \), and let \(\Gamma_\phi \) and \(\Gamma_{\phi'} \) be their graphs in \(V_t \times W_t \). Then the correspondence \(\Gamma_\phi + \Gamma_{\phi'} \), which is defined over \(\mathbb{Q} \), induces an isomorphism between the part of \(H^2_{\text{et}}(V_t) \) that is orthogonal to the nineteen algebraically independent cycle classes, and the corresponding part of \(H^2_{\text{et}}(W_t) \).

Proof. To prove this, regard \(V_t \) as a double cover of the plane, with (affine) equation

\[
\eta^2 = \xi_1(\xi_1 + t)(\xi_1 + \xi_2 + 1)(\xi_2^2 - 4\xi_1).
\]

We will explicitly describe two Cremona transformations of the plane whose composition induces the desired isomorphism \(\phi \).

The ramification locus consists of four lines (including the line at infinity) and a conic; note that three of these lines (the lines \(\xi_1 = 0 \) and \(\xi_1 + \xi_2 + 1 = 0 \), and the line at infinity) are tangent to the conic.

We first apply the Cremona transformation, which blows up these three points of tangency and blows down the three lines connecting them. In explicit (affine) coordinates, this map can be described by

\[
(\xi_1, \xi_2) \mapsto (\xi_3, \xi_4) := (\xi_1(\xi_2 + 2)/(\xi_2^2 - 4\xi_1), (\xi_2 + 2\xi_1)/(\xi_2^2 - 4\xi_1)).
\]

It transforms the three lines tangent to the conic and the conic itself into four lines; the remaining line (given by \(\xi_1 + t = 0 \)) is mapped onto a conic. One computes

\[
\eta_1^2 = \xi_3\xi_4(\xi_3 + \xi_4 + 1)(2\xi_3^2 + 2t\xi_4^2 + \xi_3 + t\xi_4),
\]

where \(\eta_1 := \eta\xi_2(\xi_2 + 2)(2\xi_1 + \xi_2)(\xi_2^2 - 4\xi_1)^{-3} \). (The factors in the display above correspond to the equations of the resulting lines and conic.)

In the coordinates \(\xi_3, \xi_4, \eta_1 \), this surface is again described as a double cover of the plane ramified over a conic and four lines, one of which is the line at infinity. Two of the lines intersect in the point \((\xi_3, \xi_4) = (0, 0)\), which is on the conic (and hence the configuration has one triple point); the other intersection points are ordinary double points.
Next, apply the Cremona transformation whose base points are this triple point $(0,0)$, the point $(-t/(t+1), -1/(t+1))$ in the intersection of the line $\xi_3 + \xi_4 + 1 = 0$ and the conic, and a (nonrational) point $(s,1,0)$ where the line at infinity and the conic intersect. (Note that $s^2 = -t$.) This transformation has the property that each of the five components of the branch locus has a line as image.

Explicitly, this second transformation can be given as

$$(\xi_3, \xi_4) \mapsto (\xi_5, \xi_6)$$

$$:= \left(\frac{(s - 1)\xi_3^2 - s^2\xi_2^2 + (s^2 - s)\xi_3\xi_4}{\xi_3 + s^2\xi_4}, \frac{(s - s^2)\xi_4^2 + (s - 1)\xi_3\xi_4 + s\xi_4}{\xi_3 + s^2\xi_4} \right).$$

It lifts to a birational map from our surface to the one given by

$$t(t + 1)\eta_2^2 = \xi_5\xi_6 \left((1 + s)\xi_5 - s\xi_6 + s^2 + s \right) \left((1 - s)\xi_6 + s\xi_5 + s^2 - s \right)$$

$$\left((2 + 2s)\xi_5 + (2 - 2s)\xi_6 + s^2 - 1 \right),$$

with $\eta_2 = \eta_1(1-s)(\xi_3 - s\xi_4)((st + s)\xi_4 - (t + 1)\xi_3 - t + s)(\xi_3 - s\xi_4)^{-2}$.

Finally, put

$$\xi_7 := (\xi_5 + \xi_6)/2; \quad \xi_8 := (\xi_5 - \xi_6)/2;$$

so

$$\xi_5 = \xi_7 + s\xi_8; \quad \xi_6 = \xi_7 - s\xi_8.$$

With these coordinates, the equation is

$$t(t + 1)\eta_2^2 = (\xi_7^2 + t\xi_8^2)(4\xi_7 - 4t\xi_8 - t - 1) \left((\xi_7 - 2t\xi_8 - t)^2 + t(\xi_8 + 1)^2 \right),$$

and thus it defines a K3 surface, W_t, which is defined over $\mathbb{Q}(t)$. The composition of the birational maps described so far yields the isomorphism $\phi : V_t \xrightarrow{\cong} W_t$, defined over $\mathbb{Q}(\sqrt{-t})$. Let ϕ' be the conjugate isomorphism (defined by the same formulas as ϕ but with $-s$ for s). A generator of $H^{2,0}(W_t)$ is given in local coordinates by the regular 2-form $\omega_W := d\xi_7 \wedge d\xi_8/\eta_2$. A straightforward calculation shows that

$$\phi^*\omega_W + (\phi')^*\omega_W = d\xi_1 \wedge d\xi_2/\eta \neq 0.$$

Hence the correspondence on $V_t \times W_t$, defined over \mathbb{Q}, which is the sum of the graphs $\Gamma_{\phi} + \Gamma_{\phi'}$, defines a nonzero map $H^{2,0}(W_t) \to H^{2,0}(V_t)$. Thus it must induce an isomorphism on the transcendental lattices of W_t and V_t. The comparison theorem for complex and ℓ-adic cohomology implies that the same is true for the corresponding Galois representations.

This proves the lemma.

4.2. The K3 surface W_t. The branch curve of the double cover $W_t \to \mathbb{P}^2$ as described in Lemma 4.1 consists of six lines (defined over $\mathbb{Q}(t, \sqrt{-t})$), including the line at infinity. The smooth conic defined by $4\xi_7 + 4t\xi_8^2 - 1 = 0$ is tangent to each of these lines. In particular, W_t is the Kummer surface of the Jacobian of the genus-2 curve C_t which is the double cover of the conic branched over the six points of tangency with the lines (see [2, Exercise VIII.6] and [3, §3.10]). We briefly recall some of these classical results.

4.3. Kummer surfaces and genus-2 curves. Let K be a field of characteristic not equal to 2. Suppose that C/K is given by $y^2 = f(x)$ for some separable polynomial $f \in K[x]$ of degree 5 or 6. Over some extension field of K, we write $f(x) = \prod (x - a_j)$.

The Jacobian JC of C is birational to the symmetric product $(C \times C)/S_2$, and hence its function field is the subfield of $K(x_1, x_2, y_1, y_2)$ (with the relations $y_i^2 = f(x_i)$) of elements fixed under the involution σ given by $\sigma(x_1) = x_2$ and $\sigma(y_1) = y_2$. The Kummer surface $Km(JC)$ is birational to the quotient of JC under the $[-1]$-map, and hence its function field is the subfield of $K(x_1, x_2, y_1, y_2)$ of elements fixed under the two involutions σ and ι, with $\iota(x_i) = x_i$ and $\iota(y_i) = -y_i$.

The latter subfield is generated over K by the functions $\eta := y_1y_2$ and $\xi := x_1x_2$, and $\zeta := x_1 + x_2$. They satisfy a relation

$$\eta^2 = F(\xi, \zeta)$$

with F the unique polynomial such that $f(x_1)f(x_2) = F(x_1x_2, x_1 + x_2)$.

Observe that over an extension of K one has

$$f(x_1)f(x_2) = \prod((x_1 - a_j)(x_2 - a_j)) = \prod(\xi - a_j\zeta + a_j^2).$$

Hence one concludes that $Km(JC)$ is birational over K to a double cover of the plane, ramified over six lines (including the line at infinity in the case where the degree of f is 5). The points $P_j := (\xi = a_j^2, \zeta = 2a_j)$ correspond to the pairs of Weierstrass points $(T, T) \in C \times C$, with $T = (a_j, 0) \in C$. Note that the P_j are also on the conic defined by $\zeta^2 = 4\xi$, and in fact the line $\xi - a_j\zeta + a_j^2 = 0$ is tangent to this conic in P_j. The same is true of the line at infinity (the point of tangency comes from the point at infinity on C in the case where the degree of f is 5). This shows that, seen as a double cover of the plane, $Km(JC)$ is ramified over six lines that are tangent to a given conic. The inverse image of this conic is given by the two equations $\zeta^2 = 4\xi$ and $\eta^2 = \prod((\xi/2 - a_j)^2$. Hence it consists of two irreducible components, both defined over K. Moreover, we can recover the Weierstrass points of C (and hence C itself up to a quadratic twist) from the six points of tangency of the lines with the conic.

Lemma 4.4. The K3 surface W_t studied in Lemma 4.1 and Section 4.2 is isomorphic to $Km(JC_t)$, where the genus-2 curve C_t is defined by

$$C_t : y^2 = x(x^2 - 4x + 4 + 4t)(x^2 + 4x + 4 + 4t).$$

This isomorphism is defined over $\mathbb{Q}(t, \sqrt{-t}, \sqrt{-t-1})$.

Given an equation $\eta^2 = F(\xi, \zeta)$ for $Km(JC_t)$ as above, let $Km(JC_t)(-t-1)$ be the ‘twist’ defined by $(-t-1)^2 = F(\xi, \zeta)$.

Then there is a correspondence on $W_t \times Km(JC_t)(-t-1)$, defined over $\mathbb{Q}(t)$, which induces an isomorphism of $G_{\mathbb{Q}(t)}$-representations between the transcendental parts of the two spaces $H^2_{\mathbb{Q}(t)}$.

Proof. As before, write $s^2 = -t$. We will use new coordinates to describe W_t, namely ξ_9 and ξ_{10} given by

$$\xi_8 = \frac{\xi_{10} - 1}{2s}$$

and

$$\xi_7 = \frac{\xi_9 - 2s\xi_{10} - 4t + 4}{16}. $$

In these coordinates, the conic $4\xi_7 + 4t\xi_8^2 - 1 = 0$ becomes $\xi_{10}^2 = 4\xi_9$. The six lines over which $W_t \rightarrow \mathbb{P}^2$ ramifies become the line at infinity and five lines $\xi_9 - b_j\xi_{10} + b_j^2 = 0$, with

$$\{b_1, b_2, b_3, b_4, b_5\} = \{0, 2 + 2s, 2 - 2s, -2 + 2s, -2 - 2s\}.$$
The equation for W_t in the new coordinates is

$$W_t : 2^{18} t(t + 1)η_2^2 = \prod_{j=1}^{5} (\xi_9 - b_j \xi_{10} + b_j^2),$$

which is in fact an equation over $\mathbb{Q}(t)$.

The discussion in Section 4.3 above shows that, provided we have a square root of $t(t + 1)$ available, this defines a birational model of the Kummer surface $Km(JC_t)$ where C_t is the hyperelliptic curve with Weierstrass points over infinity and over the b_j, so the equation defining C_t is the one given in the lemma:

$$y^2 = \prod_{j=1}^{5} (x - b_j) = x(x^2 - 4x + 4 + 4t)(x^2 + 4x + 4 + 4t).$$

To show the second part, put

$$Km(JC_t)(-t-1) : (-t-1)η^2 = \prod_{j=1}^{5} (\xi - b_j \zeta + b_j^2).$$

A birational map $\psi : Km(JC_t)(-t-1) \longrightarrow W_t$ is given by

$$\psi(\eta, \xi, \zeta) := \left(\eta_2 = \frac{2^{-9} \eta}{s}, \xi_7 = \frac{(\xi - 2s \zeta - 4t + 4)}{16}, \xi_8 = \frac{\zeta}{8s} - \frac{1}{2} \right).$$

One obtains the ‘conjugate’ ψ' by replacing all occurrences of s by $-s$ in this description. A calculation reveals that

$$\psi^* \frac{d\xi_7 \wedge d\xi_8}{\eta_2} = \psi'^* \frac{d\xi_7 \wedge d\xi_8}{\eta_2} = 4 \frac{d\xi \wedge d\zeta}{\eta},$$

from which the lemma follows by the same argument as that used in the proof of Lemma 4.1.

4.5. The product of elliptic curves. The curve C_t has, besides the hyperelliptic involution, another involution:

$$\varphi = \varphi_t : C_t \longrightarrow C_t, \quad \varphi(x, y) := (r^2/x, r^3y/x^3) \quad (r^2 = 4 + 4t).$$

The quotient by this involution is an elliptic curve. In fact, the invariant functions on C_t are generated by $\eta := y(x + r)/x^2$ and $\xi := -x/(2r) - r/(2x)$, and the quotient curve F_t is defined by

$$F_t := C_t/\varphi : \eta^2 = -8r^3(\xi - 1)\left(\xi^2 - \frac{1}{t+1}\right).$$

Replacing r by $-r$ yields yet another involution (namely, the composition of the previous one and the hyperelliptic involution τ) and hence a second elliptic curve

$$F'_t := C_t/(\varphi \circ \tau) : \eta^2 = 8r^3(\xi - 1)\left(\xi^2 - \frac{1}{t+1}\right).$$

By considering the pull-back to C_t of the invariant differentials on these elliptic curves, one concludes that JC_t is isogenous (over $\mathbb{Q}(t, r) = \mathbb{Q}(t, \sqrt{t+1})$) to the product $F_t \times F'_t$ of these two elliptic curves. In explicit form, this isogeny is obtained from the two quotient maps $\alpha : C_t \longrightarrow F_t$ and $\alpha' : C_t \longrightarrow F'_t$ using

$$C_t \times C_t \longrightarrow F_t \times F'_t, \quad (P, Q) \longmapsto (\alpha(P) + \alpha(Q), \alpha'(P) + \alpha'(Q)).$$
The associated Kummer surfaces are isogenous as well (again, over \(\mathbb{Q}(t,r) \), and not necessarily over \(\mathbb{Q}(t)! \)). It is easily seen that the Kummer surface of \(F_i \times F_i' \) is birational over \(\mathbb{Q}(t,r) \) to the surface with equation
\[
-y^2 = (x_1 - 1)\left(x_1^2 - \frac{1}{t + 1} \right) \left(x_2 - 1 \right) \left(x_2^2 - \frac{1}{t + 1} \right).
\]
By twisting, this also gives a rational map, defined over \(\mathbb{Q}(t,r) \), from \(\text{Km}(JC_i)^{(-t-1)} \) to the surface defined by
\[
-(t - 1)y^2 = (x_1 - 1)\left(x_1^2 - \frac{1}{t + 1} \right) \left(x_2 - 1 \right) \left(x_2^2 - \frac{1}{t + 1} \right).
\]
Note that the latter equation in fact defines the Kummer surface of \(E_i \times E_i^{(t+1)} \) over \(\mathbb{Q}(t) \).

Now we show that this rational map, together with its \(\mathbb{Q}(t,r)/\mathbb{Q}(t) \)-conjugate, yields a correspondence defined over \(\mathbb{Q}(t) \) between \(\text{Km}(JC_t)^{(-t-1)} \) and \(\text{Km}(E_i \times E_i^{(t+1)}) \) with the property that it is nonzero on the transcendental part of the \(H_2^{et} \).

4.6. Genus-2 curves with non-simple Jacobians

Suppose that \(k \) is a field of characteristic not equal to 2. Let \(f \in k[x] \) be a separable polynomial of degree 5, and let \(C : y^2 = f(x) \). The regular differentials on \(C \) form a \(k \)-vector space with a basis \(dx/y, x(dx/y) \). Assume that for \(i = 1, 2 \) an elliptic curve \(E_i \) over \(k \) is given, with a nonzero regular differential \(\omega_i \) on \(E_i \) and a morphism
\[
\alpha_i : C \longrightarrow E_i
\]
having the property that \(\alpha_1^*\omega_1 \) and \(\alpha_2^*\omega_2 \) are linearly independent. Moreover, we assume that \(\alpha_i \) sends the point at infinity on \(C \) to the zero on \(E_i \). Write \(\alpha_i^*\omega_i = (a_i x + b_i) dx/y \). The independence of the pull-backs can be phrased by saying that
\[
\delta := a_1 b_2 - a_2 b_1 \neq 0.
\]

Consider the following commutative diagram of rational maps.

\[
\begin{array}{ccc}
C \times C & \longrightarrow & \text{Km}(JC) \\
\downarrow \psi & & \downarrow \\
E_1 \times E_2 & \longrightarrow & \text{Km}(E_1 \times E_2)
\end{array}
\]

Here, \(\psi \) is the morphism \(\psi : (P,Q) \mapsto (\alpha_1(P) + \alpha_1(Q), \alpha_2(P) + \alpha_2(Q)) \).

Note that \(\omega_1 \wedge \omega_2 \) can be regarded both as a regular 2-form on \(\text{Km}(E_1 \times E_2) \) and as the regular 2-form on \(E_1 \times E_2 \) obtained as the pull-back of the one on the Kummer surface. One computes that
\[
\psi^*(\omega_1 \wedge \omega_2) = \delta(x_1 - x_2) \frac{dx_1 \wedge dx_2}{y_1 y_2}
\]
using coordinates \(x_1, y_1, x_2, y_2 \) on \(C \times C \) which satisfy \(y_i^2 = f(x_i) \).

As is explained in Section 4.3 above, one has coordinates \(\eta = y_1 y_2, \xi = x_1 x_2, \text{ and } \zeta = x_1 + x_2 \) on \(\text{Km}(JC) \). The regular 2-form \(\eta^{-1} d\xi \wedge d\zeta \) on \(\text{Km}(JC) \) pulls back under the horizontal rational map at the top of the diagram above to
\[
(y_1 y_2)^{-1} d(x_1 x_2) \wedge d(x_1 + x_2) = (x_2 - x_1)(y_1 y_2)^{-1} dx_1 \wedge dx_2.
\]
Combining the above pull-backs, one concludes that, using the vertical arrow on the right of our diagram, \(\omega_1 \wedge \omega_2 \) pulls back to \(-\delta \eta^{-1} d\xi \wedge d\zeta \) on \(\text{Km}(JC) \).
4.7. We now apply this to the situation described in Section 4.5. Here we have
\[\rho : \text{Km}(JC_t) \rightarrow \text{Km}(F_t \times F'_t) \cong V_t, \]
where \(V_t \) is defined by
\[-y^2 = (x_1 - 1) \left(x_1^2 - \frac{1}{t+1} \right) (x_2 - 1) \left(x_2^2 - \frac{1}{t+1} \right). \]
The surface \(\text{Km}(F_t \times F'_t) \) corresponds to the equation
\[-\tilde{y}^2 = 64r^6(x_1 - 1) \left(x_1^2 - \frac{1}{t+1} \right) (x_2 - 1) \left(x_2^2 - \frac{1}{t+1} \right). \]
An isomorphism between \(V_t \) and this surface is described by \(\tilde{y} = 8r^3 y \). Hence the 2-form \(-1 \frac{dx_1 \wedge dx_2}{\tilde{y}} \) on \(V_t \) pulls back to \((8r^3 \tilde{y})^{-1} \frac{dx_1 \wedge dx_2}{\tilde{y}} \) on \(\text{Km}(F_t \times F'_t) \).

\[\alpha^* \frac{d\xi}{\eta} = \left(\frac{rx}{8t + 8} + \frac{1}{2} \right) \frac{dx}{y} \quad \text{and} \quad \alpha'^* \frac{d\xi}{\eta} = \left(-\frac{rx}{8t + 8} + \frac{1}{2} \right) \frac{dx}{y}, \]
it follows that
\[\delta = \frac{r}{8t + 8}. \]
Hence the pull-back of \(\frac{dx_1 \wedge dx_2}{(8r^3 \tilde{y})} \) to \(\text{Km}(JC_t) \) is \(-(d\xi \wedge d\zeta)/(16t + 16)^2 \eta \).

One concludes that
\[\rho^* \left(\frac{dx_1 \wedge dx_2}{y} \right) = -\frac{d\xi \wedge d\zeta}{(16t + 16)^2 \eta}. \]

Denoting by \(\rho' \) the Gal(\(\mathbb{Q}(t, r)/\mathbb{Q}(t) \))-conjugate of \(\rho \), it follows as before that the sum of the graphs \(\Gamma_{\rho} + \Gamma_{\rho'} \) defines a correspondence over \(\mathbb{Q}(t) \) which is nonzero on the transcendental part of \(H^2_{\text{ét}} \).

Twisting all surfaces over \(\mathbb{Q}(t, \sqrt{-t-1}) \), one obtains the same conclusion for the surfaces \(\text{Km}(JC_t)^{(-t-1)} \) and \(\text{Km}(E_t \times E_t^{(t+1)}) \). Hence we have proved the following lemma.

Lemma 4.8. There is a correspondence on \(\text{Km}(JC_t)^{(-t-1)} \times \text{Km}(E_t \times E_t^{(t+1)}) \), defined over \(\mathbb{Q}(t) \), which induces an isomorphism of \(G_{\mathbb{Q}(t)} \)-representations between the transcendental parts of the spaces \(H^2_{\text{ét}} \).

4.9. Conclusion. Putting together the various correspondences that we have constructed, one obtains the desired correspondence defined over \(\mathbb{Q}(t) \) on the product of \(X_t \) and \(\text{Km}(E_t \times E_t^{(t+1)}) \). This concludes the proof of Theorem 1.2.

The maps that we have constructed, over finite extensions of \(\mathbb{Q}(t) \), compose (possibly after a further field extension to undo twists) to give a dominant rational map:

\[X_t \rightarrow V_t \rightarrow W_t \rightarrow \text{Km}(JC_t) \rightarrow \text{Km}(E_t \times E_t); \]
hence Proposition 1.3 follows as well.

5. The fibre at \(t = -1 \)

5.1. We conclude this paper with some remarks on various models of the famous K3 surface \(X_{-1} \). As was observed in 2.2, the K3 surface \(X_{-1} \) is the desingularisation of the quotient of \(E_i \times E_i \), the self-product of the elliptic curve \(E_i = \mathbb{C}/\mathbb{Z}[i] \), by
the automorphism ϕ of order 4 induced by $(z_1, z_2) \mapsto (iz_1, -iz_2)$ on \(\mathbb{C}^2 \); see [14].

Below, we show how to obtain this isomorphism directly from the equations defining X_{-1} and E_i. It is convenient to use projective coordinates $(u : v : w) = (x : z : -1)$, so the equation for X_{-1} becomes:

$$X_{-1} : \sigma^2 = uvw(u - w)(v - w)(u - v).$$

5.2. The elliptic curve E_i is isomorphic to $E : t^2 = s(s^2 - 1)$, and also to $E' : y^2 = x(1 - x^2)$; hence $E_i \times E_i \cong E \times E'$ and ϕ may be given by $\phi((s, t), (x, y)) = ((-s, it), (-x, -iy))$. The quotient map $E \times E' \to X_{-1}$ is given by

$$(\sigma : u : v : w) = (xs(xs + 1)(x + s)ty : xs^2 - x : xs^2 + s : xs^2 + s^2x);$$

in fact, a straightforward calculation shows that

$$uvw(u - v)(u - w)(v - w) = (xs(xs + 1)(x + s))^2x(1 - x^2)s(s^2 - 1).$$

This map was found from the results below.

5.3. Vinberg’s model. The surface X_{-1} has a projective model Y which is a singular quartic surface in \mathbb{P}^3 (see [15, Theorem 2.5], but we replaced X_0 there by ζX_0 for a $\zeta \in k$ with $\zeta^4 = -1$):

$$Y : X_0^4 = X_1X_2X_3(X_1 + X_2 + X_3).$$

The elliptic curve E_i is isomorphic to $E : t^2 = s^4 - 1$, and also to $E' : y^2 = x^4 + 1$; hence $E_i \times E_i \cong E \times E'$ and ϕ may be given by $\phi((s, t), (x, y)) = ((is, t), (-ix, y))$. The quotient map $E \times E' \to Y$ is given by

$$(X_0 : X_1 : X_2 : X_3) = (sx : y - 1 : 1 + t : 1 - t);$$

it is easy to see that this map has degree 4 and is invariant under ϕ. This map was found by studying the pencil of curves on Y defined by $X_3 = \lambda X_2$.

5.4. An isomorphism $X_{-1} \to Y$ is given by

$$(X_0 : X_1 : X_2 : X_3) = (\sigma : uvw(v - w) : -uvw(u - w) : uv(u - v)).$$

Note that $X_1 + X_2 + X_3 = (u - v)(u - w)(v - w)$, and thus the equation for Y pulls back to $\sigma^4 = (uvw(u - v)(u - w)(v - w))^2$.

References

Bert van Geemen
Dipartimento di Matematica
Università di Milano
via Saldini 50
I-20133 Milano
Italy
geemen@mat.unimi.it

Jaap Top
IWI
Rijksuniversiteit Groningen
P.O. Box 800
9700 AV Groningen, the Netherlands
top@math.rug.nl