The Influence of a nonuniform rf field on the ion trajectories in an omegatron I

Bijma, J.; Hoenders, B.J.

Published in:
Journal of Physics E%3A Scientific Instruments

DOI:
10.1088/0022-3735/4/10/002

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1971

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 29-09-2023
The influence of a nonuniform rf field on the ion trajectories in an omegatron I

J Bijma and B J Hoenders
Laboratorium voor Technische Natuurkunde, Rijksuniversiteit Groningen, The Netherlands

MS received 18 May 1971

Abstract The quadrupole field component of a nonuniform rf field causes an effect which improves the resolution and is called rf drift-off. This effect is mathematically analysed. Some experimental results are shown which are in good agreement with the theory.

Nomenclature

- a, a': coefficients defined in (1) and (3a) (V m$^{-1}$)
- b, b': coefficients defined in (1) and (3a) (V m$^{-2}$)
- B: magnetic field strength (T)
- C: coefficients defined in (35)
- d: distance between the y axis and the collectors (figure 3) (m)
- e: unit charge (C)
- E: electric field strength (V m$^{-1}$)
- $K(k, C)$: function defined in (34)
- l: 21 is the mutual distance between the collectors in figure 3 (m)
- m: ion mass (kg)
- m_0: atomic mass unit, 1 a.m.u. (kg)
- M: mass in a.m.u.
- O, O': origin coordinate system defined in (8) and (22)
- r: radial distance to the origin O (m)
- r': radial distance to the moving origin O' (m)
- r_0: residual term defined in (17) and (18) (m)
- R_1, R_2: residual terms defined in (17) and (18) (m)
- R_0: residual term defined in (19a)
- S: resolving power defined in (27)
- t: time (s)
- T: temperature (K)
- v: ion velocity (m s$^{-1}$)
- x, y, z: Cartesian coordinates (m)
- $x(0), y(0), z(0)$: initial coordinates ($t=0$) defined in (8) (m)
- x_0: first order approximation of the perturbed solution defined in (16) (m)
- y_0: first order approximation of the perturbed solution defined in (14) (m)
- y_0': analogue to x_0, x_0' (m)
- y_0: drift-off distance defined in (A10) (m)
- y_{dr}: total drift-off distance defined in (21) (m)
- α, α': coefficients defined in (3) and (3a) (m s$^{-2}$)
- β, β': coefficients defined in (3) and (3a) (s$^{-2}$)
- ζ: angle in cylindrical coordinates defined in (A11)
- ϕ: phase angle of the rf field defined in (1)
- τ: integration variable (s)
- ω: angular frequency of the applied rf field (rad s$^{-1}$)
- Ω: angular frequency defined in (3) (rad s$^{-1}$)
- $\Delta \omega$: angular frequency difference $\Delta \omega = \omega - \Omega$ (rad s$^{-1}$)
- $\Delta \omega_1$: angular frequency difference defined in (26) (rad s$^{-1}$)

1 Introduction

In the existing theories describing the performance of the omegatron (Berry 1954, Warnecke 1959–60) the rf field is assumed to be uniform. Indeed, omegatrons with a uniform rf field have been developed, but simple omegatrons as the much-used Alpert-type (Alpert and Buritz 1954) and the long omegatron of van der Waal (1963) have a nonuniform field. This nonuniform rf field causes two effects (Bijma et al. 1968):

(i) Near-resonant ions ($\Delta \omega = \omega - \Omega \neq 0$) drift off into a direction perpendicular to the magnet field and the rf electric field. This drift-off, which we call rf drift-off, improves the resolving power.

(ii) At a superimposed frequency $\omega = 2 \Omega$ ions with a cyclotron frequency ω_2 reach the collector and give rise to a harmonic peak. This peak can easily be suppressed.

In this paper the abovementioned rf drift-off is described. The harmonic effect will be described in a next paper.

2 Equations of motion in a nonuniform field

In order to derive an expression for the equations of motion in an omegatron we have to determine the electric field. Therefore the field shape in a long omegatron has been measured with the aid of a model in an electrolytic plotting tank. As expected, in this omegatron the field nonuniformity was found to occur mainly in the x and z direction, with which the coordinate system has been defined in figure 1.

In this paper we only consider the motion in the $z=0$ plane, giving a model with which the most important phenomena can be explained. In the $z=0$ plane the rf electric field can be approximated by

$$E_z = (a + bx) \sin(\omega t + \phi)$$

(1)

$$E_x = 0$$

$$E_z = 0.$$
the Newton–Lorentz relation:

\[
\frac{d}{dt}(mu) = e(E + v\Delta B). \tag{2}
\]

\(e\) is the positive unit charge; the ion is assumed to be singly ionized. We define:

\[
\alpha = \frac{ea}{m}, \quad \beta = \frac{eb}{m}, \quad \Omega = \frac{eB}{m} \quad \text{and} \quad \Delta \omega = \omega - \Omega. \tag{3}
\]

After some elementary work from (2) with (1) and (3) we obtain the following system of differential equations:

\[
\begin{align*}
\ddot{x} + \Omega^2 x &= (\alpha + \beta x) \sin(\omega t + \phi) + \Omega \dot{y}(0) + \Omega^2 x(0) \tag{4} \\
\dot{y} &= -\Omega(x - x(0)) + \dot{y}(0) \tag{5} \\
\dot{z} &= 0. \tag{6}
\end{align*}
\]

The homogeneous part of (4):

\[
\ddot{x} + \Omega^2 x = \beta x \sin(\omega t + \phi) \tag{7}
\]

is known in literature as the Matthieu equation. When \(t = 0\) the initial conditions are:

\[
x(0) = y(0) = z(0) = \dot{z}(0) = 0, \quad \text{and} \quad x(0), \ y(0) \text{ have given values}. \tag{8}
\]

To explain the effects mentioned in §1 approximation solutions from (4) are derived in §3. The influence of a dc field can be expressed by including the terms:

\[
\alpha' = \frac{ea'}{m} \quad \text{and} \quad \beta' = \frac{eb'}{m} \tag{3a}
\]

in the differential equation:

\[
\begin{align*}
\ddot{x} + (\Omega^2 - \beta') x &= (\alpha + \beta x) \sin(\omega t + \phi) + \Omega \dot{y}(0) + \alpha' \tag{4a} \\
\dot{y} &= -\Omega x + \dot{y}(0) \tag{5} \\
\dot{z} &= -\beta' z. \tag{6a}
\end{align*}
\]

In the calculations made in §3 it is assumed that \(\alpha' = \beta' = 0\) unless the contrary is indicated.

3 RF drift-off

3.1 Introduction

Calculations with the aid of a computer show a drift-off effect of near-resonant ions in a nonuniform rf field. This drift-off direction is perpendicular to the electric and magnetic field, i.e. in the chosen coordinate system in the \(y\) direction. Figure 2 shows a near-resonant ion trajectory in both a uniform and a nonuniform rf field. In a uniform rf field the path radius is approximated by

\[
r = \frac{a}{B \Delta \omega} \sin \frac{1}{2} \Delta \omega t, \quad \Delta \omega = \omega - \Omega \neq 0 \tag{9}
\]

which condition has been satisfied for the fields considered by us (see Appendix 4). We shall prove that taking \(\beta = 0\) in (4) the general solution of this equation can be written in closed form under the initial conditions of (8). We consider the differential equation

\[
\ddot{x} + \Omega^2 x = f(t, x) \tag{11}
\]

which may be transformed, with the boundary conditions \(x(0) = 0\) and \(x(0)\) and with the aid of Laplace-transformation or variation of constants, to the integral equation

\[
x(t) = \frac{x(0)}{\Omega} \sin \Omega t + \frac{1}{\Omega} \left[f(\tau, x) \sin \Omega(t - \tau) \right] d\tau. \tag{12}
\]

For \(\beta = 0\) the right-hand side of equation (4) becomes

\[
f(t, x) = \alpha \sin(\omega t + \phi) + \Omega \dot{y}(0). \tag{13}
\]

Provided that \(\omega \neq \Omega\), substituting (13) in (12) we obtain the unperturbed solution:

\[
x_a = \frac{x(0)}{\Omega} \sin \Omega t + \frac{y(0)}{\Omega} (1 - \cos \Omega t) + \frac{\alpha}{(\Omega^2 - \omega^2)} \times \left[\sin(\omega t + \phi) - \cos \Omega t \sin \phi - \frac{\omega}{\Omega} \sin \Omega t \cos \phi \right]. \tag{14}
\]

If \(\beta \neq 0\) (4), (12) and (14) yield

\[
x = x_a + \frac{\beta}{\Omega} \int_0^t \sin \Omega(t - \tau) x(\tau) \sin(\omega \tau + \phi) d\tau. \tag{15}
\]
An approximated resolution of this equation can be found by the iteration method of Liouville-Neumann, which method can be applied in our case, since $\sin \Omega(t-\tau)$ is a continuous kernel function (Gröbner and Lesky 1964). We use the first order approximation which consists of replacing $x(t)$ by x_a in the integral form (15):

$$x_p-x_a = \frac{\beta}{\Omega^2} \int_{0}^{\Omega} \sin \Omega(t-\tau) x_a \sin(\omega \tau + \phi) d(\Omega \tau)$$

where x_p is the approximated resolution.

Since $\beta/\Omega^2 < 1$ (see Appendix 4) the first order approximation (16) differs only a little from the exact resolution (15). A second-order approximation gives terms being a factor of β/Ω^2 smaller than the calculated first order terms. For this reason we only apply the first order approximation. Working out (16) gives:

$$x_p-x_a = \frac{\beta}{2 \Omega^2} \left(1-\left(\Delta \omega/\Omega\right)^2\right) x_a \sin \left(\frac{\Delta \omega t + \phi}{\Omega}\right)$$

$$+ \frac{\beta}{2 \Omega^2} \left(1-\left(\Delta \omega/\Omega\right)^2\right) x_a \cos \left(\frac{\Delta \omega t + \phi}{\Omega}\right) + R_1$$

$$+ \frac{\beta}{2 \Omega^2} \left(1-\left(\Delta \omega/\Omega\right)^2\right) x_a \sin \left(\frac{\Delta \omega t + \phi}{\Omega}\right)$$

$$+ \frac{\beta}{2 \Omega^2} \left(1-\left(\Delta \omega/\Omega\right)^2\right) x_a \cos \left(\frac{\Delta \omega t + \phi}{\Omega}\right) + R_2.$$ \hspace{1cm} (17)

The residual term R_1 consists of oscillating terms with frequency of approximately Ω and amplitude less than or equal to $\alpha \beta / 2 \Omega^2 (\Omega^2 - \omega^2)$. For the considered frequencies $|\Delta \omega/\Omega| < 1$ is assumed, in which case the term $|\Delta \omega/\Omega|^2$ is negligible. From (5) and (17) we obtain the perturbation term x_p-x_a, being the rf drift-off:

$$y_{p-d} = y_{0-d} \sin \frac{1}{2} |\Delta \omega t| \cos \left(\frac{1}{2} |\Delta \omega t + \phi|\right)$$

$$+ \frac{\beta}{\Omega^2} \sin \left(\frac{1}{2} |\Delta \omega t + \phi|\right) + \frac{\beta}{\Omega^2} \sin \left(\frac{1}{2} |\Delta \omega t + \phi|\right)$$

$$+ \frac{\beta}{\Omega^2} \sin \left(\frac{1}{2} |\Delta \omega t + \phi|\right) + R_2.$$ \hspace{1cm} (18)

The residual term R_2, consisting of oscillating terms with frequency approximately Ω and amplitude less than or equal to $\alpha \beta / 2 \Omega^2 (\Omega^2 - \omega^2)$, can be neglected. With substitution of (3), (18) is reducible to:

$$y_{p-d} - y_{0-d} = -\frac{\alpha \beta}{2 \Omega^2} \left(1+ R_3\right)$$

$$+ \frac{\beta}{\Omega^2} \left(1+ R_3\right) \sin \left(\frac{1}{2} |\Delta \omega t + \phi|\right) + R_2.$$ \hspace{1cm} (19)

with $R_3 = -\frac{\Delta \omega}{2 \Omega} + \frac{\sin \Delta \omega}{\Delta \omega} - 1 + \frac{\sin \Delta \omega}{\Delta \omega}$

$$|\Delta \omega| - 1 + \frac{\sin \Delta \omega}{\Delta \omega}$$

$$\times \left(2 \cos \phi \cos \left(\frac{1}{2} |\Delta \omega t + \phi|\right) - \frac{4x(0) B}{a} \cos \left(\frac{1}{2} |\Delta \omega t + \phi|\right)$$

$$+ \frac{4x(0) B}{a} \sin \left(\frac{1}{2} |\Delta \omega t + \phi|\right)\right).$$ \hspace{1cm} (19a)

In Appendix 5 the residual term R_3 is shown to be small with respect to the leading term, on conditions fulfilled in practice. The rf drift-off $y_{p-d} - y_{0-d}$ is approximated by:

$$y_{p-d} - y_{0-d} \approx \frac{\alpha \beta}{2 \Omega^2} \left(1+ R_3\right).$$ \hspace{1cm} (20)

3.3 The influence of rf and dc drift-off on the resolving power

The influence of rf and dc drift-off on the resolving power can easily be explained in case of an omegatron with, for instance, three collectors C_1, C_2 and C_3 with a mutual distance 2ℓ. The distance between the y axis and the collectors is d.

Figure 3 Geometry of the long omegatron

If the drift-off distance of O' is smaller than 3ℓ, ions for which $r' > d$ hit one of these three collectors. In the omegatron drawn in figure 3 ions reach

- collector C_1 if $-3 \ell < y_d < -l$
- collector C_2 if $-l < y_d < +l$
- collector C_3 if $+l < y_d < +3 \ell$. \hspace{1cm} (24)

We now determine the frequency range for which $r' \geq d$. With the maximum value of r'

$$r'_{\max} = \frac{a}{B \Delta \omega}$$

we define

$$\Delta \omega_1 = \frac{|\Delta \omega|}{r'_{\max}}$$

hence

$$\Delta \omega_1 = \frac{a}{B \Delta \omega}.$$ \hspace{1cm} (26)

The frequency range for which $r' \geq d$ is equal to $2 \Delta \omega_1$. Hence it follows that the total peak width is $2 \Delta \omega_1$. The resolving power in connection with this total peak width is

$$S = \frac{M}{\Delta \omega} \approx \frac{eB \ell d}{2 am}.$$ \hspace{1cm} (27)
As a result of this drift-off ions from a frequency range $2\Delta\omega_1$ can hit different collectors, in this case three collectors, dividing the total peak in subpeaks, each of them of course, smaller than $2\Delta\omega_1$. The resolving power, measured on each single collector, can be determined as follows. With the radius $r'_0=d$ the drift-off position O' depends on the shift of $\Delta\omega_1$ and can be expressed as a function of a shifting parameter k, defined by

$$k = \frac{\Delta\omega}{\Delta\omega_1}, \quad \text{with} \quad |k| \leq 1. \quad (28)$$

From (23) we derive

$$r' = \frac{a}{B\Delta\omega_1} \frac{\Delta\omega_1}{\Delta\omega} \sin \frac{\Delta\omega_t}{k} = \frac{d}{k} \sin \frac{\Delta\omega_t}{k}. \quad (29)$$

For $r'=d$ with $t=t_1$ it is necessary that

$$\frac{1}{k} \sin \frac{\Delta\omega_t}{k} = 1, \quad \text{so} \quad \sin \frac{\Delta\omega_t}{k} = k. \quad (30)$$

The drift-off distance y_{dr} of O' at $t=t_1$ is equal to

$$y_{dr} = \frac{ab}{4B^2\Delta\omega_1} t_1 \left(\sin \frac{\Delta\omega_t}{k} - 1 \right) - \frac{d}{k} \frac{a'}{a} t_1. \quad (31)$$

$$= -\frac{ab}{4B^2\Delta\omega_1} \left(\frac{\Delta\omega_1}{\Delta\omega} \right)^2 \left(\sin \frac{\Delta\omega_t}{k} - \Delta\omega_t \right) - \frac{a'}{a} \frac{d}{k} t_1. \quad (32)$$

With (26), (28) and (30) this can be turned into:

$$y_{dr} = \frac{bd^2}{a} K(k, C) \quad (33)$$

where

$$K(k, C) = \frac{1}{2k} \left(k(1-k^2)^{1/2} - \sin^{-1} k \right) \frac{C}{k} \sin^{-1} k \quad (34)$$

and

$$C = \frac{2a'}{ab} = \frac{2a'}{a} \frac{bd^2}{a}. \quad (35)$$

![Figure 4](image1.png)

Figure 4 The function $K(k, C)$ for discrete values of C. As an illustration the collecting ranges (K_{-31}, K_{-1}), (K_{-1}, K_{+1}) and (K_{+1}, K_{+31}) are given for $la/bd^2=0.25$

![Figure 5](image2.png)

Figure 5 The function $C(k, K)$ for discrete values of K. As an illustration the collection ranges (K_{-31}, K_{-1}) and (K_{-1}, K_{+1}) intersects with $C=0.5$

The factor bd^2/a in formula (33) is a constant for a given omegatron configuration, so that the drift-off y_{dr} is proportional to the function $K(k, C)$. In figure 4 the function $K(k, C)$ has been drawn.

Connected with this function $K=K(k, C)$ (34) is the function $C=C(k, C)$ (35) for which we can write

$$C(k, C) = -\frac{2Kk + (1-k^2)^{1/2}}{2 \sin^{-1} k} \frac{1}{2k}. \quad (36)$$

In figure 5 this function has been drawn for discrete values of K. The relation (24), which gives the collection ranges for the different collectors, can be transferred into

$$K_{-31} = -3 \frac{a}{bd^2} < K(k, C) < K_{-1} = -\frac{a}{bd^2} \quad \text{for collector } C_3$$

$$K_{-1} = -\frac{a}{bd^2} < K(k, C) < K_{+1} = +\frac{a}{bd^2} \quad \text{for collector } C_2$$

$$K_{+1} = +\frac{a}{bd^2} < K(k, C) < K_{+31} = +3 \frac{a}{bd^2} \quad \text{for collector } C_3 \quad (37)$$

$K_{-31}, K_{-1}, \ldots, K_{+31}$ are discrete values for K in a given omegatron. At a given rf and dc field the function $C(k, K)=(2a'/a)(a/bd)$ has a constant value. The intersection of $C(k, K)$=constant with (K_{-31}, K_{-1}), (K_{-1}, K_{+1}) and (K_{+1}, K_{+31}) gives the peak distribution over the collectors C_3, C_2 and C_3. It can be seen from figure 5 that the peak frequency is shifted by variation of C. $C=(2a'/a)(a/bd)$ depends on the rf field a and the drift-off field a'; the factor a/bd is a constant for a given omegatron configuration. Furthermore, the frequency is shifted by the dc trapping field. It follows from (4a) that

$$\Omega^* = (\Omega^2 - \beta')^{1/2} \approx \Omega - \beta' / 2\Omega. \quad (38)$$

Though the theory of rf drift-off is new, all simple omegatrons with a nonuniform rf field show this effect. The extent of advantage of this effect depends on the place of the collector and the dimensions of the collection range. The theory described by Petley and Morris (1968) can be applied only
on omegatrons with a uniform rf field. The elongated shape with hyperbolic electrodes may be the most favourable shape for an omegatron. For, then the coefficients b and b' determined in §2, which were only valid for the plane $z=0$, can be applied in the entire omegatron. Consequently, we obtain a frequency shift of $\Omega' - \Omega = -\beta/2\Omega$ no longer being dependent on the place in the omegatron. This is one of the conditions to obtain a great resolving power with small rf signals. The coefficient b which causes the rf drift-off is also independent of the place in a quadrupole omegatron. Some typical results of such a quadrupole omegatron are given in figure 6.

Appendix 1 Review of the theory of the ion trajectories in a uniform field

Ion trajectories in a uniform field are determined by the differential equations (4) and (5) with boundary conditions (8) and $\beta = 0$. This system can be resolved elementarily by (see §3)

$$x_u = \frac{x(0)}{\Omega} \sin \Omega t + \frac{y(0)}{\Omega} (1 - \cos \Omega t) + \frac{\alpha}{\Omega^2 - \omega^2} \left[\sin (\omega t + \phi) - \cos \Omega t \sin \phi - \frac{\omega}{\Omega} \sin \Omega t \cos \phi \right]$$

$$y_u = \frac{x(0)}{\Omega} (\cos \Omega t - 1) + \frac{y(0)}{\Omega} \sin \Omega t - \frac{\alpha}{\Omega^2 - \omega^2} \left[\cos (\omega t + \phi) + \frac{\omega}{\Omega} \cos \Omega t \cos \phi \cos \Omega t - \frac{\Omega}{\omega} \cos (\omega t + \phi) - \sin \phi \sin \Omega t \right].$$

The influence of the initial velocities and of the terms with forefactor α/Ω^2 can be neglected. α/Ω^2 is assumed to be small with respect to $\alpha/\Omega_1 \Delta \omega$, which is consistent with the assumption that $\Delta \omega/\Omega < 1$:

$$x_u, \Delta \omega = -\frac{\alpha}{\Omega_1 \Delta \omega} \sin \frac{1}{2} \Delta \omega t \cos \left(\frac{1}{4} (\Omega + \omega) + \phi \right)$$

$$y_u, \Delta \omega = \frac{\alpha}{\Omega_1 \Delta \omega} \sin \frac{1}{2} \Delta \omega t \sin \left(\frac{1}{4} (\Omega + \omega) + \phi \right).$$

The resolutions of this system are given by

$$x = x_u + x_{dc}$$

$$y = y_u + y_{de}$$

The influence of the term x_{dc} on the given derivation from the rf drift-off ($\beta \neq 0$) is negligible, which appears from the relative perturbation term:

$$-\Omega \left[\int_0^t \frac{1}{\Omega_1} \int_0^r \sin \Omega (t - \tau) \frac{a'}{B^2} (1 - \cos \Omega t) \sin (\omega t + \phi) \, d\tau \right].$$

In §3 only the asymptotic behaviour of y_{dc} given by

$$y_{dc} = -\frac{a'}{B} t$$

is important.

Appendix 3 Initial velocity of the ions

The velocity distribution of the gas particles at equilibrium at a certain temperature is given by the Maxwell distribution. The ionization of the gas occurs with an electron beam of about 90 eV. If the gas is ionized but not dissociated the energy distribution is only slightly changed. So, for a good approximation we can use the Maxwell distribution. A simple
notation for the Maxwell distribution can be obtained by transformation from Cartesian to cylindrical coordinates in the velocity space:

\[
\begin{align*}
\dot{x} &= \dot{r} \cos \zeta \\
\dot{y} &= \dot{r} \sin \zeta \\
\dot{z} &= \dot{t}.
\end{align*}
\] (A11)

The velocity distribution in the plane \((x, y) = (r, \zeta)\) is

\[
f(r, \theta) = \frac{m}{2\pi kT} \exp \left(-\frac{m\dot{r}^2}{2kT} \right) \int_0^\infty \frac{d\dot{r}}{r}.
\] (A12)

The average velocity in this plane is

\[
\bar{v} = \int_0^\infty r f(r, \theta) dr d\zeta.
\]

If under influence of the electron impact molecules dissociate, pieces are generated each of them possessing a part of the energy absorbed by the ion. This process mainly occurs in organic molecules (Brunnée-Voshage 1963). In this case it is difficult to estimate the velocity of the obtained ions.

Appendix 4 Numerical data

In this appendix some physical constants are given. Furthermore some values of the magnitude of the field, as they were found to occur in the omegatron considered by us, are given. With the aid of these data some neglected quantities are finally verified.

\[
\begin{align*}
\Omega &= \frac{eB}{m} \text{ rad s}^{-1} \\
e &= 1.6 \times 10^{-19} \text{ C} \\
m &= M \omega_0 \text{ kg} \\
m_0 &= 1.66 \times 10^{-27} \text{ kg} \approx 1 \text{ a.m.u.} \\
M &= \text{ mass in a.m.u.}
\end{align*}
\]

For the performance of an omegatron a magnet with a strength of about 0.4 T is often used:

\[
B \approx 0.4 \text{ T}.
\]

In a long omegatron which measures 2 cm \(\times 2 \text{ cm} \times 5 \text{ cm} \) an rf voltage with an amplitude of \(V_{rt} \text{ V}\) gives for the magnitudes defined in formula (1) the following values:

\[
a \approx 50 \text{ V}_{rt} \text{ m}^{-1} \\
b \approx 5 \times 10^9 \text{ V}_{rt} \text{ V m}^{-2}.
\]

Usually \(V_{rt} = 1\) or 2 V is applied. \(d \approx 10^{-2} \text{ m}\) is the usual collector distance.

\[\beta/\Omega^2\]: with the above-mentioned numerical magnitudes \(\beta/\Omega^2 \approx 1\) can now be verified:

\[
\beta/\Omega^2 \approx \frac{b m_0 M}{B r e} \approx 3 \times 10^{-4} M V_{rt}.
\]

For \(M < 100 \text{ a.m.u.} \) and \(V_{rt} = 1\) or 2 V, \(\beta/\Omega^2 \approx 1\) is valid.

\[\Delta \omega/\Omega\]: in the derivation of formula (20) terms are neglected on account of the assumption that \(\Delta \omega/\Omega \ll 1\). This assumption is satisfied by those ions which can be detected, i.e. for which

\[
r = \frac{a}{B \Delta \omega} \sin \frac{1}{2} \Delta \omega t \gg d.
\]

Then with the above-mentioned numerical magnitudes

\[
\Delta \omega/\Omega = k \Delta \omega_1/\Omega = k \frac{am}{B r_e} \approx 3 \times 10^{-4} k MV_{rt}.
\]

For \(M < 100 \text{ a.m.u.} \) and \(V_{rt} = 1\) or 2 V \(\Delta \omega/\Omega \ll 1\) is valid.

Appendix 5 Analysis of the residual term \(R_3\) (formula 19a)

The magnitude of the rf drift-off of the ions reaching the collector, i.e. for which \(k \ll 1\), is of experimental importance. Therefore the residual term \(R_3\) is considered for \(k \ll 1\).

With the transformation to cylindrical coordinates as given in (A11), from (19a) it follows that

\[
R_3 = -\Delta \omega \left(\sin \frac{\Delta \omega t}{\Delta \omega_1} - 1 + \sin \frac{1}{2} \Delta \omega t \right)
\times \left\{ -2 \cos \phi \cos \left(\frac{1}{2} \Delta \omega t + \phi \right) - \frac{4B r_e}{a} \cos \left(\frac{1}{2} \Delta \omega t + \phi + \zeta \right) \right\}
\]

(A14)

With the aid of the numerical data in Appendix 3 and 4 the magnitude of \(R_3\) can be determined. The greatest contribution can be provided by the term containing the initial velocity \(r\): \[
\frac{+ \Delta \omega a^2 B r_e}{2\Omega} \cos \left(\frac{1}{2} \Delta \omega t + \phi + \zeta \right).
\]

In illustration, suppose \(r\) is equal to the average thermal velocity in the plane \((r, \zeta)\), then with \(R = 500 \text{ K}, B = 0.4 \text{ T} \) and \(a = 10^{-3} \text{ m}\) the following inequality is valid:

\[
\frac{2 \Delta \omega a^2 B r_e}{\Omega} \cos \left(\frac{1}{2} \Delta \omega t + \phi + \zeta \right) \leq 10^{-4} k M^{1/2} \ll 1.
\]

On account of the above-mentioned the residual term \(R_3\) has been neglected in first approximation.

References

Brunnée-Voshage 1964 Massenspektrometrie (Munchen: Karl Thiemig)

Gröbner W and Lesky P V 1964 Mathematische Methoden der Physik II (Mannheim: Bibl. Institut) p. 204

Klopf A and Schmidt W 1960 Vacuum 10 363–72

Steckelmacher W and Buckingham J D 1963 Nuovo Cim. Suppl. 1 418–34

van der Waal J 1963 Nuovo Cim. Suppl. 1 760–9

Warnecke R J 1959–60 Ann. Radioélect. 14 5, 15 60