Magnetic Behaviour of the Cubic La(Fe,Al)13 Compounds
Kraan, A.M. van der; Buschow, K.H.J.; Palstra, T.T.M.

Published in: Hyperfine Interactions

DOI: 10.1007/bf02147350

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date: 1983

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
MAGNETIC BEHAVIOUR OF THE CUBIC La(Fe,Al)\textsubscript{13} COMPOUNDS

A.M. VAN DER KRAAN
*Inter*universitair Reactor Instituut, 2629 JB Delft, the Netherlands
K.H.J. BUSCHOW
Philips Research Laboratories, 5600 JA Eindhoven, the Netherlands
T.T.M. PALSTRA
Kamerlingh Onnes Laboratorium, Rijksuniversiteit, 2300 RA Leiden, the Netherlands

The magnetic properties of the cubic NaZn\textsubscript{13} type pseudobinary compounds LaFe\textsubscript{x}Al\textsubscript{13-x} were studied in the temperature range T=4.2 - 300 K by means of 57Fe-Mössbauer spectroscopy, magnetization and zero-field susceptibility measurements. The compounds LaFe\textsubscript{x}Al\textsubscript{13-x} show a rather peculiar concentration dependence of the type of magnetic ordering as well as of the ordering temperature.

1. Introduction

LaCO\textsubscript{13}, which is strongly ferromagnetic, is the only compound among 45 binary systems consisting of a rare earth element (R) and one of the metals Fe,Co or Ni (T) with the cubic NaZn\textsubscript{13} type of structure. Kripyakevich et al.\cite{1} showed that the cubic NaZn\textsubscript{13} type of structure can be stabilized in other binary rare earth transition metal systems (R-T) by substitution of Si for part of the transition metal T in RT\textsubscript{13}. Previously we have studied LaFe\textsubscript{x}Si\textsubscript{13-x} \cite{2} in the concentration region 10.5 ≤ x ≤ 11.5. Only in this region single phase samples were obtained. In the present investigation we show that the structure stabilization occurs over a much wider concentration range when part of the transition metal T is substituted by Al. We have studied the magnetic properties of LaFe\textsubscript{x}Al\textsubscript{13-x} by means of 57Fe-Mössbauer spectroscopy, magnetization and temperature-dependent zero-field susceptibility measurements.

2. Experimental

The samples of the compounds LaFe\textsubscript{x}Al\textsubscript{13-x} were prepared by argon arc melting of the appropriate amounts of the starting materials and vacuum annealed for about 10 days at T=1200 K. The samples were investigated by means of X-ray diffraction. Single phase samples of the cubic NaZn\textsubscript{13} type of structure were obtained in the concentration range 6 ≤ x < 12. For x < 6 a contamination with compounds of the tetragonal ThMn\textsubscript{12} structure is observed in the samples. Microscopic measurements indicate besides the NaZn\textsubscript{13} type of structure a so far unidentified second phase for x ≥ 12.

The magnetic properties of these samples were determined by means of an adapted Faraday method in the range T=4.2 - 300 K using magnetic field strengths up to 1.8 T. The temperature dependence of the zero-field susceptibility has been determined with a sensitive pendulum magnetometer in the same T-range.

The 57Fe-Mössbauer spectra were obtained by means of a standard constant-acceleration type spectrometer by using a 57Co-Rh source.

3. Results

The shape of the magnetization versus temperature curve for
The saturation moment per iron atom at $T=4.2$ K (μ_s) and the values of the Curie temperature (T_C) are listed for the various compounds in Table 1 and plotted in fig. 1.

<table>
<thead>
<tr>
<th>x</th>
<th>a (Å)</th>
<th>T_C (K)</th>
<th>μ_s (μB/Fe)</th>
<th>T'_C (K)</th>
<th>H_{eff} (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>11.93</td>
<td>-</td>
<td>0</td>
<td>65</td>
<td>12.0</td>
</tr>
<tr>
<td>7</td>
<td>11.86</td>
<td>-</td>
<td>0</td>
<td>55</td>
<td>12.0</td>
</tr>
<tr>
<td>7.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>70</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>11.80</td>
<td>138</td>
<td>1.02</td>
<td>126</td>
<td>14.5</td>
</tr>
<tr>
<td>9</td>
<td>11.74</td>
<td>237</td>
<td>1.47</td>
<td>238</td>
<td>19.0</td>
</tr>
<tr>
<td>10</td>
<td>11.67</td>
<td>250</td>
<td>1.66</td>
<td>250</td>
<td>22.0</td>
</tr>
<tr>
<td>11</td>
<td>11.61</td>
<td>195</td>
<td>2.00</td>
<td>190</td>
<td>26.5</td>
</tr>
<tr>
<td>11.8</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12.0</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
<td>235</td>
<td>26.0</td>
</tr>
</tbody>
</table>

The saturation moment increases from $\mu_s = 0$ μB for $x = 7$ to $\mu_s = 2.0$ μB for $x = 11$. For $x > 11$ the magnetization is strongly decreasing to about $\mu_s = 0.1$ μB/Fe for $x = 11.8$. However for $x = 12.0$ $\mu_s = 1$ μB/Fe is measured. The Curie temperature (T_C) determined from magnetization measurements increases with increasing x and after reaching a maximum for $x = 9.5$ it decreases. For $x > 11$ it was impossible to determine T_C in this way.

In fig. 2 we have plotted the temperature dependence of the zero-field susceptibility for $x = 11.2$, 11.5, 11.8 and 12.0 respectively. The shape of the curve as found for $x = 11.2$ is characteristic for $x < 11.2$, indicating a sharp transition from ferromagnetic to paramagnetic behaviour. However a drastic change in the temperature dependence of the susceptibility is observed for $x > 11.2$.

The Mössbauer spectra obtained at $T=4.2$ K are shown in fig. 3. The contribution of the unidentified second phase in the spectrum of LaFe$_{12}$Al is clearly observed and the outermost lines of this contribution are indicated by arrows in fig. 3. The unidentified phase
(≈ 40% of the sample) remains magnetically ordered at T=238 K as is shown in fig.4, while the other part of the sample is in the paramagnetic region. It is obvious that the spectrum of the sample with a nominal composition LaFe₄Al₉ really belongs to the compound LaFe₄Al₈ which crystallizes in the ThMn₁₂ type of structure [3]. The mean hyperfine fields deduced are listed in Table 1 and have been plotted in fig.1. The mean hyperfine field shows the same concentration dependence as the saturation magnetization from x = 11 to x = 8. However, for lower values of x, the mean hyperfine field levels off to the value observed for LaFe₄Al₈ (ThMn₁₂ structure), which compound orders antiferromagnetically [3]. The values of the magnetic ordering temperature (Tₘ) defined as the temperature at which the hyperfine splitting of the Mössbauer spectrum disappears are listed in Table 1 and also plotted in fig.1. A remarkable increase of Tₘ for x = 12 has been observed after a decrease from Tₘ = 250 K for x = 10 to Tₘ = 190 K for x = 11.

![Diagram](image)

4. Discussion

The heat of alloying between La and Fe is positive [4]. As a consequence a stable La-Fe intermetallic does not exist. A minimum amount of Al will be required to lead to a pseudo-binary compound of a negative heat of formation and in addition form a suitable structure to accommodate the size of each of the three constituent atomic species.

In the compounds LaFeₓAl₃₋ₓ the moment per Fe atom decreases with decreasing Fe concentration and behaves according to expectation for 8 ≤ x ≤ 11. However, for x ≤ 7 no net magnetization has been found at T=4.2 K while a magnetic hyperfine splitting is still observed in the Mössbauer spectrum. We believe that the loss of the net magnetization for x ≤ 7 is due to formation of a spin glass, which means that for decreasing Fe concentration the ferromagnetic exchange interaction is decreasing faster than the antiferromagnetic one. For x < 6 the ThMn₁₂ type of structure becomes favoured. The composition of the compound formed is LaFe₄Al₈, which orders antiferromagnetically [3]. It is interesting that at the low Fe concentration region not only the antiferromagnetic exchange interaction becomes relatively strong, as in LaFe₄Al₈, but also the magnetic hyperfine field approaches the value observed for LaFe₄Al₈ [3].

In the high Fe concentration region the susceptibility measurements indicate that the pseudo-binary compound is changing from entirely ferromagnetic ordering for x = 11.2 to an antiferromagnetic ordering for x ≥ 11.5. This picture is qualitatively consistent with the very low magnetic moment observed for x = 11.8 while still a large hyperfine field is observed at the Fe-site. The increase of the
magnetic moment for $x = 12$ is due to the large contamination of the sample with the so far unidentified second phase.

The opposite concentration dependencies of T_c and magnetic moment (as observed for $10 \leq x \leq 11.2$) were claimed to be associated with the anomalous thermal expansion below T_c found in Invar type alloys5 and is also observed earlier by us in the compounds $\text{LaFe}_x \text{Si}_{13-x}$.2 In these latter compounds we have observed a cusp like anomaly near T_c in their temperature dependence of the resistivity. Similar measurements on the present samples are in progress. The weakening of the overall ferromagnetic coupling for the compounds in the range $10 \leq x \leq 11.2$ can be understood in terms of the site occupation of the Fe atoms in the NaZn_13 crystal structure in conjunction with the lattice constant decreasing with increasing iron content. Denoting the two Fe sites by $\text{Fe}(1)$ and $\text{Fe}(2)$ in the hypothetical compound $\text{LaFe}_{12}(1)\text{Fe}_1(2)$, an increasing Fe concentration in $\text{LaFe}_x \text{Al}_{13-x}$ will lead to a larger occupation of both sites and hence to a larger occupation of the $\text{Fe}(2)$ site. This site is characterized by a rather low Fe-Fe nearest neighbour separation and by a nearest neighbour configuration consisting of 12 Fe atoms. The $\text{Fe}(2)$ nearest neighbour configuration is in several respects not much different from that of Fe atoms in γ-Fe. In the latter antiferromagnetism prevails and this may explain why one can expect an increasing antiferromagnetic interaction by filling more of the $\text{Fe}(2)$ sites in $\text{LaFe}_x \text{Al}_{13-x}$.

The increase of the ordering temperature for $x > 11.2$ is not yet understood.

References