Protein import into peroxisomes of Hansenula Polymorpha.
Faber, Klaas Nico

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1994

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Faber, K. N. (1994). Protein import into peroxisomes of Hansenula Polymorpha. s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Summary

PROTEIN IMPORT INTO PEROXISOMES OF HANSENULA POLYMORPHA

Eukaryotic cells are characterized by the presence of distinct subcellular compartments which are involved in specific metabolic processes. These compartments are collectively called organelles and include the nucleus, mitochondria, vacuoles and microbodies. Microbodies form a class of relatively recently discovered organelles (1950's), which can be subdivided in peroxisomes, glyoxysomes and glycosomes depending on their metabolic function. Microbodies consist of a protein-rich matrix surrounded by a single membrane. They lack DNA. The size and the number of microbodies per cell is influenced by the environmental conditions. This implies that microbodies are inducible in nature. The essential contribution of microbodies to cell viability is most dramatically demonstrated by an inheritable disease in human called Zellweger Syndrome, which is caused by peroxisomal disfunctioning. Patients suffering from this disease often die early after birth.

In yeasts, clear development of peroxisomes is observed when they are grown on certain specific substrates. Glucose-grown cells contain only 1 or 2 very small peroxisomes with a still unknown function. Oleic acid and methanol induce strong peroxisome proliferation in yeasts capable of growth on these carbon sources.

The organism studied in this thesis is the methylotropic yeast Hansenula polymorpha. During growth of this organism on methanol many peroxisomes are present, which contain the metabolic enzymes, alcohol oxidase (AO), dihydroxyacetone synthase (DHAS) and catalase (CAT). In addition, peroxisome proliferation is observed when the yeast is grown on specific N-sources, such as alkylated amines. Over the past 20 years, studies on peroxisome biogenesis in H. polymorpha have contributed much to our current knowledge about this class of organelles. Industrial interest in H. polymorpha arose when it became clear that methanol-grown cells synthesize the proteins involved in methanol metabolism, such as AO and DHAS, to very high levels. The intrinsically strong, methanol-inducible, transcription and translation machinery is of considerable potential for the production of heterologous proteins.

In this thesis two main subjects were studied: (1) import of proteins into the peroxisomes of H. polymorpha and (2) synthesis and accumulation in peroxisomes of heterologous small functional peptides (SFP's). 'Protein packaging' of these SFP's into microbodies was thought to prevent their rapid, intracellular, proteolytic degradation and/or protect the host cell from toxic effects caused by the SFP's.

Before H. polymorpha could be used for studying peroxisome biogenesis at the molecular level and for expression of foreign genes, basic tools for the genetic manipulation of this yeast had to be developed. Chapters 2 and 3 describe methods for the introduction and maintenance of foreign DNA in H. polymorpha. Electroporation appeared to be a most efficient procedure for transforming this yeast, yielding over 10⁶ transformants per µg plasmid DNA. An increasing number of transformants was obtained when (1) the amount of DNA (up to 10 µg) and/or (2) the cell density of the electroporation mixture was increased,

making this procedure very efficient. Further, linearization of plasmids prior to electroporation was also used for introduction of foreign DNA into H. polymorpha.

The 5' and 3' noncoding regions of the AO gene used in this thesis were shown to promote autoregulation of the gene. Amino acid sequence motifs were also used for targeting of foreign proteins into peroxisomes. Homology was identified in the amino acid sequence motifs of different peroxisomal targeting signals (PTS). Analysis of PTS motifs from different peroxisomal proteins revealed that amino acid sequence motifs corresponding to the PTS motif, RI-(S/A/C-K/R)-X³-M-R-L-A-F-E-G, were probably involved in targeting of foreign proteins into peroxisomes of H. polymorpha.

Amine oxidase was identified as the sole peroxisomal protein required for growth of this yeast. The PTS signal of AO was shown to be essential for targeting of AO to the peroxisomes. The amino acid sequence motif at nine positions from the end of the PTS sequence, S/A/C-K/R, was shown to be essential for targeting of AO to the peroxisomes, but not for targeting of AO to the mitochondria. Restoration of the PTS signal of AO by a modified PTS motif, RI-SRLAFEG, was shown to facilitate targeting of AO to the peroxisomes.

Subsequent studies showed that (1) the amino acid sequence motif, RI-(S/A/C-K/R)-X³-M-R-L-A-F-E-G, is essential for targeting of foreign proteins into peroxisomes of H. polymorpha, (2) the PTS motif first described for AO is also used for targeting of other peroxisomal proteins, and (3) the amino acid sequence motif, RI-(S/A/C-K/R)-X³-M-R-L-A-F-E-G, is conserved in amino acid sequence motifs of peroxisomal proteins.

Comparative studies of the peroxisomal targeting signal of AO and other peroxisomal proteins, such as NADH dehydrogenase and dihydroxyacetone synthase, showed that the PTS motif of AO is conserved in these peroxisomal proteins.

Before H. polymorpha could be used for studying peroxisome biogenesis at the molecular level and for expression of foreign genes, basic tools for the genetic manipulation of this yeast had to be developed. Chapters 2 and 3 describe methods for the introduction and maintenance of foreign DNA in H. polymorpha. Electroporation appeared to be a most efficient procedure for transforming this yeast, yielding over 10⁶ transformants per µg plasmid DNA. An increasing number of transformants was obtained when (1) the amount of DNA (up to 10 µg) and/or (2) the cell density of the electroporation mixture was increased,
Protein import into peroxisomes of Hansenula polymorpha

PROTEIN IMPORT INTO PEROXISOMES OF HANSENULA POLYMORPHA

Protein import into peroxisomes of Hansenula polymorpha can be achieved effectively by using amine oxidase (AMO) as a reporter. This protein plays a crucial role in the metabolism of H. polymorpha when the yeast is grown on media containing alkylated amines as the sole nitrogen source. AMO is a peroxisomal protein, and its targeting is essential for its function.

Amine oxidase (AMO) is a peroxisomal protein which plays a crucial role in the metabolism of H. polymorpha when the yeast is grown in media containing alkylated amines as the sole nitrogen source. We have located the amino acid sequences in AMO which are essential for peroxisomal targeting. As a first possible candidate, we have examined an SRL motif at nine amino acids from the C-terminus, which fits in the PTS1 consensus sequence S/A/C-K/R|H-L. Variants of this sequence are present at the extreme C-termini of many peroxisomal proteins and are shown to be essential for peroxisomal targeting. However, when a mutated AMO protein, in which the C-terminal sequence was changed from -SRLAFEGSCCGK to -SIETCL, was synthesized in H. polymorpha, we observed normal targeting of the mutant AMO protein. This indicates that the SRL-containing C-terminal sequence is not essential for targeting (Chapter 4).

Subsequently, we focused our attention on the N-terminal part of AMO. The AMO N-terminal sequence shows significant similarity to the targeting sequences found in peroxisomal thiolases (PTS2). Deleting the N-terminal 16 amino acids from AMO indeed abolished peroxisomal import. In addition, fusing the 16 N-terminal amino acids to a reporter protein led to the (partial) peroxisomal accumulation of the hybrid protein, indicating that this sequence indeed contains essential targeting information. Therefore, AMO is considered to be a PTS2 protein (Chapter 5).

Comparable studies were performed with a heterologous protein, glyoxysomal malate dehydrogenase (gMDH) from watermelon. Like the peroxisomal thiolases from rat, this protein contains an N-terminal presequence which is proteolytically processed upon import into glyoxysomes. We synthesized this protein in H. polymorpha and studied its subcellular destination. During methylotrophic growth of transformed cells, pre-gMDH was imported into peroxisomes. The apparent molecular mass of the protein was equal to that of pre-gMDH, implying that N-terminal processing of the transit peptide had not occurred in H. polymorpha (Chapter 6). Subsequently, it was shown that the 37-amino acid N-terminal transit peptide is capable to target a reporter protein, consisting of the mature part of watermelon mitochondrial malate dehydrogenase, to peroxisomes. This peptide contains the motif, RI-X5-HL, which resembles the PTS2 consensus sequence RL-X5-H/QL. Mutational analysis revealed that these amino acids are indeed essential for proper targeting whereas...
Summary

amino acid substitutions outside this sequence did not interfere with subcellular sorting (Chapter 7).

As suggested by the occurrence of different targeting signals, distinct import pathways for peroxisomal proteins exist. Moreover, the import pathway for PTS2 proteins in *H. polymorpha* is inducible by specific growth conditions. This is concluded from results presented in Chapter 8. High-level synthesis of PTS2 proteins (AMO, watermelon gMDH or *S. cerevisiae* thiolase) in methanol-grown *H. polymorpha* cells, was obtained by placing their cognate genes under the control of the alcohol oxidase promoter. Efficient import of these proteins into peroxisomes was only observed if the transformed cells, were grown in the presence of specific N-sources, which in the wild-type host induce the synthesis of AMO.

Finally, as described in Chapter 9, *H. polymorpha* was used for the synthesis of heterologous small functional peptides (SFP’s). Human Insulin-like Growth Factor-II (67 aa) and *Xenopus laevis* magainin II (23 aa) were synthesized as larger hybrid proteins, fused to the C-terminus of the peroxisomal carrier protein AMO. Especially in the case of the antimicrobial peptide magainin-II, this strategy was chosen while production in its mature form is thought to be impossible. High-level synthesis of the hybrid proteins, exceeding 20% of total cellular protein, was obtained when the transformed strains were grown in methanol-limited chemostat cultures. After partial purification, the hybrid proteins could be cleaved by proteolytic treatment with factor Xa, yielding the AMO-carrier and the SFP. Unexpectedly, peroxisomal accumulation of the fusion protein did not occur, indicating that import of these proteins via the PTS2 import pathway is impeded.