Thermoanaerobacterium thermosulfurigenes cyclodextrin glycosyltransferase. Mechanism and kinetics of inhibition by acarbose and cyclodextrins

Leemhuis, Hans; Dijkstra, Bauke W.; Dijkhuizen, Lubbert

Published in:
Proteins: Structure, Function, and Bioinformatics

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2003

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Thermoanaerobacterium thermosulfurigenes cyclodextrin glycosyltransferase
Mechanism and kinetics of inhibition by acarbose and cyclodextrins

Hans Leemhuis¹, Bauke W. Dijkstra ² and Lubbert Dijkhuizen¹

¹Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, NN Haren, the Netherlands; ²BIOSON Research Institute and Laboratory of Biophysical Chemistry, GBB, University of Groningen, AG Groningen, the Netherlands

Cyclodextrin glycosyltransferase (CGTase) uses an α-retaining double displacement mechanism to catalyze three distinct transglycosylation reactions. To investigate these reactions as catalyzed by the CGTase from Thermoanaerobacterium thermosulfurigenes the enzyme was overproduced (8 mg L⁻¹ culture) using Bacillus subtilis as a host. Detailed analysis revealed that the three reactions proceed via different kinetic mechanisms. The cyclization reaction (cyclodextrin formation from starch) is a one-substrate reaction, whereas the other two transglycosylation reactions are two-substrate reactions, which obey substituted enzyme mechanism kinetics (disproportionation reaction) or ternary complex mechanism kinetics (coupling reaction).

Analysis of the effects of acarbose and cyclodextrins on the disproportionation reaction revealed that cyclodextrins are competitive inhibitors, whereas acarbose is a mixed type of inhibitor. Our results show that one molecule of acarbose binds either in the active site of the free enzyme, or at a secondary site of the enzyme–substrate complex. The mixed inhibition thus indicates the existence of a secondary sugar binding site near the active site of T. thermosulfurigenes CGTase.

Keywords: CGTase; transglycosylation; enzyme mechanism; acarbose; inhibition.

The α-amylase family, or glycoside hydrolase family 13 [1,2], is a large family of starch processing enzymes, which form a wide variety of oligosaccharide products [3,4], via an α-retaining double displacement mechanism involving a covalent glycosyl–enzyme intermediate [5–7].

Cyclodextrin glycosyltransferase (CGTase; EC 2.4.1.19) is an unique member of this family, that forms circular α(1,4)-linked oligosaccharides from starch (cyclodextrins). Cyclodextrins are composed of 6, 7 or 8 glucose residues, α-, β- and γ-cyclodextrin, respectively. CGTase consists of five domains (A-E) [8,9]. Domains A and B constitute the catalytic core, domain E is a raw starch binding domain [10,11], whereas the functions of the C and D domains are less well understood. CGTase binds its substrate across several sugar binding subsites (labeled −7 to +2 [12]) and cleaves it between the sugars bound at subsites −1 and +1 to form a glycosyl–enzyme intermediate covalently linked to Asp230 [6,7].

Cyclodextrins are subsequently formed via an intramolecular transglycosylation reaction with the non-reducing end of this intermediate (cyclization) (Fig. 1). Cyclodextrins are competitive inhibitors, whereas acarbose is a mixed type of inhibitor. Our results show that one molecule of acarbose binds either in the active site of the free enzyme, or at a secondary site of the enzyme–substrate complex. The mixed inhibition thus indicates the existence of a secondary sugar binding site near the active site of T. thermosulfurigenes CGTase.

Acarbose, a pseudotetrasaccharide compound, is a strong inhibitor of many α-amylase family enzymes [16–22]. Three-dimensional structures of CGTases and α-amylases complexed with acarbose have revealed that acarbose binds in the active site [23,24]. However, in these structures acarbose often appears as a longer oligosaccharide derivative (Fig. 2), indicating that acarbose is processed slowly [25].

Here we report an analysis of the transglycosylation reactions catalyzed by the CGTase from Thermoanaerobacterium thermosulfurigenes strain EM1. The inhibitory effects of acarbose and cyclodextrins on the disproportionation reaction show that the inhibition mechanisms are different for the two compounds. Acarbose binds in the active site and at a secondary site to inhibit the disproportionation
reaction, whereas only cyclodextrin binding in the active site results in inhibition.

Materials and methods

Construction of the expression vector

The cgt gene of *T. thermosulfurigenes* was amplified from plasmid pCT2 [26] using an N-terminal primer (p1), that introduced an *Nco*I restriction site, and a primer p2 that removed the internal *Nco*I and *Hind*III restriction sites. The 375 bp product was used as primer in a second PCR amplification together with a C-terminal primer (p3) that introduced a *Hind*III restriction site. The 2100 bp product was cut with *Nco*I and *Hind*III and ligated in the pDP66k- vector [10], to obtain pCScgt-tt, which is an *Escherichia coli*–*Bacillus subtilis* shuttle vector. The following primers were used: p1, 5'-GGGGAACTATGCTCCGATACAGTAAG-3' (*Nco*I); p2, 5'-CAGTAAAGC TGCGAAAGTATGGGATTTGTCCTAAATTCAC GAGGCCAATAACCCTGTTGCATAGTGC-3'; p3, 5'-CG GCAGCTTTATTATTTAATCTATTG-3' (*Hind*III). Restriction sites are underlined.

Production and purification of CGTase

CGTase protein was produced using a 4-L fermentor containing 3 L medium (10 g L⁻¹ NaCl, 5 g L⁻¹ yeast extract, 20 g L⁻¹ trypone and 10 g L⁻¹ casamino acids) and *B. subtilis* DB104A as expression host [27], and purified from the culture supernatant as described previously [28]. Plasmid-carrying strains were grown at 37 °C in the presence of 6 μg mL⁻¹ kanamycin. Transformation of *B. subtilis* was done according to Bron [29].

Enzyme assays

All enzyme assays were performed in 10 mM Na citrate buffer (pH 6.0) at 60 °C and repeated (at least) three times. The rates obtained are initial rates.

Cyclodextrin forming activities. These were determined by incubating 0.2 μg mL⁻¹ enzyme with 2.5% (w/v) partially hydrolyzed potato starch (AVEBE, Foxhol, the Netherlands). Cyclodextrin concentrations were measured with phenolphthalein (β-cyclodextrin) [30] or with HPLC (α-, β- and γ-cyclodextrin) equipped with an Econosphere NH2 5U column (250 by 4.6 mm; Alltech, Breda, the Netherlands) eluted with acetonitrile/water (60:40, v/v, 1 mL min⁻¹) [31].

Coupling activities. These were measured as described [32], using 0.05–0.2 μg mL⁻¹ enzyme, α-, β- and γ-cyclodextrin (up to 10, 2.0 and 10 mM, respectively) as donor substrates and methyl-α-D-glucopyranoside (MαDG2) as acceptor substrate (0–200 mM). The linear products formed were converted to glucose with amyloglucosidase (Sigma, Zwijndrecht, the Netherlands) and the amount of glucose formed was determined with the GOD-PAP reagent of Roche (Almere, the Netherlands).

Disproportionation activity. The disproportionation activity was measured with 0.05 μg enzyme mL⁻¹ and 0.075–1.5 mM 4-nitrophenyl-α-D-maltoheptaoside-4–6-O-ethylidene (EPS; Megazyme, County Wicklow, Ireland)
as donor substrate. Glucose (2–100 mM), maltose (1–20 mM), maltotriose (0.25–10 mM) or maltotetraose (0.25–10 mM) were used as acceptor substrates. Reactions were performed in a glass cuvette (1 mL, light pathway of 1 cm) and activity was measured by liberating p-nitrophenol from the cleaved EPS, using an excess of thermostable α-glucosidase (Megazyme). Under these conditions the molar extinction coefficient of p-nitrophenol is 4.4 mm⁻¹ cm⁻¹ at 401 nm.

Inhibition. Inhibition by acarbose and cyclodextrins was determined for the disproportionation reaction, with maltose as acceptor substrate at a fixed concentration of 25 mM (≈ 5 times KM). The acarbose concentrations were between 0.05 and 0.4 µM and those of α-, β- and γ-cyclodextrin were between 5 and 20 mM, 2.5–12 mM and 2.5–10 mM, respectively. The acarbose and cyclodextrin concentrations used did not significantly affect the action of the α-glucosidase used in the assay. Although cyclodextrins are the substrate of the coupling reactions and they were degraded during the disproportionation assay, the cyclodextrin concentrations did not change significantly during the assay time (data not shown). Acarbose was a gift from J. H. Branolte (Bayer Nederland).

Kinetic analysis

The experimental data were analyzed using the SIGMA- PLOT software (Jandel Scientific), with the following initial rate equations [33]:

\[v = \frac{V \cdot a \cdot b}{(K_{mb} \cdot a + K_{ma} \cdot b + a \cdot b)} \]

(1)

substituted-enzyme mechanism

\[v = \frac{V \cdot a \cdot b}{(K_{ma} \cdot a + K_{mb} \cdot b + a \cdot b)} \]

(2)

ternary complex mechanism

\[v = \frac{V \cdot a}{(K_{m} \cdot (1 + i/K_{ic}) + a \cdot (1 + i/K_{iu}))} \]

(3)

mixed inhibition

\[v = \frac{V \cdot a}{(K_{m} \cdot (1 + i/K_{ic}) + a)} \]

(4)

competitive inhibition.

In these equations \(v \) is the reaction rate, \(V \) is the maximum reaction rate, \(a \), \(b \) and \(i \) are the substrate and inhibitor concentrations, and \(K_{m} \) and \(K_{ma} \) are the concentrations at half maximum rate for the substrates in the absence and presence of a second substrate, respectively. \(K_{ic} \) and \(K_{iu} \) are the competitive and uncompetitive inhibition constants. Although \(K_{mb} \) is not shown in Eqn (2), it can be determined because \(K_{mb}=K_{ma}/K_{ma} \) [33]. The ternary complex mechanism equation applies to the compulsory and random type of this mechanism [33]. The substituted-enzyme and ternary complex mechanisms are two substrate reactions. In the substituted-enzyme mechanism the donor substrate is processed before the acceptor substrate binds to the enzyme, whereas in the ternary complex mechanism both substrates bind to the enzyme before the reaction starts [33].

Results and discussion

Enhanced production of CGTase protein

Previously, \(T. \) \(thermosulfurigenes \) CGTase was produced using an \(E. \) \(coli \) PC1990 (pCT2) expression system, which yielded about 0.3 mg of purified protein per litre culture in a batch fermentor [34]. By constructing an \(E. \) \(coli-B. \) \(subtilis \) shuttle vector (pCScgt-tt) and using \(B. \) \(subtilis \) DB104A as expression host, resulting in extracellular production of CGTase, we succeeded in increasing the production level 27-fold to 8 mg L⁻¹ culture.

Cyclization reactions

All reactions start with substrate cleavage and covalent intermediate formation (Fig. 1). In the cyclization reaction, this intermediate is circularized to form a cyclodextrin. \(T. \) \(thermosulfurigenes \) CGTase forms α-cyclodextrin at the highest rate, although the β-cyclodextrin forming activity is also high (Table 1). \(K_{m} \) values for starch are not reported, since at the low starch substrate concentrations needed, the amount of cyclodextrin formed is too low for reliable activity measurements. The \(K_{m} \) value, however, is clearly below 0.2 mg mL⁻¹ of starch. Although \(T. \) \(thermosulfurigenes \) CGTase produces more β- than α-cyclodextrins after prolonged incubation [35,36] our results indicate that the initial α-cyclodextrin formation activity is higher than that of β-cyclodextrin formation (Table 1). Thus, the cyclization, coupling and disproportionation reactions affect the final ratio of α- and β-cyclodextrin formed upon prolonged incubation.

The disproportionation reaction follows a substituted-enzyme mechanism

In the disproportionation reaction an EPS (4-nitrophenyl-α-\(\alpha \)-maltolheptaoside–4–6-\(\alpha \)-O-ethylidene) molecule is cleaved and the reducing part is transferred to a sugar acceptor to form a linear product. Lineweaver–Burk plots of the initial velocity (\(v \)) at various EPS and maltose substrate concentrations resulted in parallel lines (Fig. 3), revealing a substituted-enzyme mechanism, as observed also for the disproportionation reaction catalyzed by \(B. \) \(acetis \) and alkalophilic \(B. \) \(subtilis \) CGTases [37,38]. The kinetic parameters were calculated using Eqn (1), revealing a high turnover rate and a low \(K_{m} \) value for the EPS substrate (Table 2). Such a substituted-enzyme mechanism makes sense, as CGTase cleaves and reforms α-(1,4)-glycosidic bonds, which necessitates departure of the cleaved-off part of the donor substrate from the acceptor subsites before a new acceptor substrate can bind to them. X-ray structures

<table>
<thead>
<tr>
<th>Cyclodextrin</th>
<th>(k_{cat}) (s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Cyclodextrin</td>
<td>375 ± 13</td>
</tr>
<tr>
<td>β-Cyclodextrin</td>
<td>294 ± 4</td>
</tr>
<tr>
<td>γ-Cyclodextrin</td>
<td>61 ± 9</td>
</tr>
</tbody>
</table>

Table 1. Cyclization activities of \(T. \) \(thermosulfurigenes \) CGTase at 60 °C.
have indeed shown that uncleaved donor substrates bind at the donor and acceptor subsites simultaneously, indicating that an acceptor substrate can only bind after the leaving group has left the active site.

T. thermosulfurigenes CGTase has three acceptor subsites

Mutagenesis and crystallographic experiments have shown that CGTases contain at least two acceptor subsites [12,36,39–42]. The structure of a *T. thermosulfurigenes* CGTase-hexasaccharide inhibitor complex (Fig. 2) suggested the presence of a third acceptor subsite, albeit with only two weak interactions at subsite +3 (3.6 Å). Moreover, these interactions might be an artefact of the crystallization as the +3 glucose moiety had a closer contact (3.4 Å) with a symmetry related CGTase molecule [34]. Also a mutant *B. circulans* CGTase suggested the presence of a +3 acceptor subsite, as an E264A mutant at subsite +3 (Glu265 in *T. thermosulfurigenes*) had reduced disproportionation activity [41]. To investigate this in more detail for *T. thermosulfurigenes* CGTase we determined the *Km* values for acceptor substrates of increasing length (glucose, maltose, maltotriose and maltotetraose) using the disproportionation reaction. The donor substrate concentration was fixed at 2 mM (∼10 times *Km,EPS*). The acceptor substrate used did not have a great effect on the *kcat* value (Table 3), but *Km* values decreased from glucose to maltotriose, although not further for maltotetraose (Table 3). The lower *Km* values for the longer acceptor substrates indicate that the latter have more binding interactions. Thus, *T. thermosulfurigenes* CGTase binds three glucose units of the acceptor substrate, demonstrating the presence of three functional acceptor subsites.

The coupling reaction proceeds via a ternary complex

In the coupling reaction a cyclodextrin is cleaved and transferred to an acceptor sugar to yield a linear product. Lineweaver-Burk plots of the initial velocity (*v*) at various α-, β- and γ-cyclodextrin (donor) and MαDG (acceptor) substrate concentrations yielded straight lines of which the slope and the vertical axis intercept increased with decreasing MαDG concentrations, as shown for α-cyclodextrin (Fig. 4). Formation of a ternary complex can account for these results [33]. Whether the donor and acceptor substrates bind in a random or compulsory order to the enzyme cannot be determined from these initial rate measurements, as both mechanisms of ternary complex
Table 4. Kinetic parameters of the coupling reactions catalyzed by T. thermosulfurigenes strain EMI CGTase at 60 °C. CD, cyclodextrin.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>α-CD coupling</th>
<th>β-CD coupling</th>
<th>γ-CD coupling</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_m (mM)</td>
<td>1.1 ± 0.1</td>
<td>1.0 ± 0.1</td>
<td>1.5 ± 0.1</td>
</tr>
<tr>
<td>K_m,M_{3DG} (mM)</td>
<td>20 ± 2</td>
<td>83 ± 14</td>
<td>45 ± 3</td>
</tr>
<tr>
<td>K^*_m (mM)</td>
<td>0.6 ± 0.1</td>
<td>0.5 ± 0.1</td>
<td>1.0 ± 0.2</td>
</tr>
<tr>
<td>K^*_m (mM)</td>
<td>11 ± 2</td>
<td>42 ± 11</td>
<td>30 ± 6</td>
</tr>
<tr>
<td>k_{cat} (s$^{-1}$)</td>
<td>1586 ± 48</td>
<td>509 ± 44</td>
<td>588 ± 17</td>
</tr>
</tbody>
</table>

* K_m is the K_m value when the other substrate is already bound.

Formation have identical rate equations [33]. While the K_m values for α-, β-, and γ-cyclodextrin are between 1 and 1.5 mM, they are much higher for the acceptor substrate Maltodextrin (20-83 mM, depending on the type of cyclodextrin used as acceptor substrate) (Table 4). Interestingly, after binding of the first substrate (either cyclodextrin or maltodextrin) the K_m value for the second substrate decreased, as indicated by the lower K^*_m values (Table 4), suggesting cooperativity.

When a ternary complex is formed both substrates bind in the active site before the reaction starts. However, X-ray analysis has shown that intact cyclodextrin molecules bind across the donor and acceptor subsites [39,43], preventing acceptor binding at subsites +1/+2. Nevertheless, our kinetic results indicate the formation of a ternary complex during the coupling reaction of T. thermosulfurigenes CGTase. This was also observed for the coupling reaction of B. circulans CGTase [38]. To explain this, it has been suggested that the acceptor substrate binds close to subsite +1 and that it moves rapidly into subsite +1 after cyclodextrin-ring cleavage [38] (the cleaved cyclodextrin is now covalently linked to Asp230). The covalently bound oligosaccharide intermediate subsequently changes from a circular to a linear conformation [44]. If this linearization step is slow compared to the movement of the acceptor, the displacement of the acceptor will not appear in the kinetic analysis. Therefore, although the kinetic mechanism points to ternary complex formation, we deem a substituted enzyme mechanism, as observed for the disproportionation reaction, more likely. Although subsite +3 appears to be a likely candidate to bind the acceptor substrate before cleavage of the cyclodextrin, due to the +1 and +2 subsites being blocked to the cyclodextrin, this is unlikely as an E264A mutation at subsite +3 in B. circulans CGTase (Glu265 in T. thermosulfurigenes CGTase) had no effect on the coupling reaction [41]. Thus, the data indicate the presence of a sugar binding site in the vicinity of the catalytic site that has not yet been identified.

Inhibition by acarbose

Because T. thermosulfurigenes CGTase has a very low K_m value for starch substrates, which makes it impossible to perform reliable kinetic studies of the cyclization reaction, we used the disproportionation reaction with EPS to study the inhibitory effects of acarbose. A Lineweaver–Burk plot of the reciprocal velocity (1/v) against 1/[EPS] yielded straight lines of which the slope and the vertical axis intercept increased with increasing acarbose concentrations (Fig. 5), revealing a mixed type of inhibition. Secondary plots of the slopes and vertical axis intercept of the Lineweaver–Burk plot on the acarbose concentration.

Table 5. Inhibition constants of acarbose and cyclodextrins in the disproportionation reaction at 60 °C.

<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>K_i (competitive)</th>
<th>K_i (uncompetitive)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acarbose (μM)</td>
<td>0.10 ± 0.01</td>
<td>0.25 ± 0.04</td>
</tr>
<tr>
<td>α-Cyclodextrin (mM)</td>
<td>3.4 ± 0.6</td>
<td>–</td>
</tr>
<tr>
<td>β-Cyclodextrin (mM)</td>
<td>0.7 ± 0.1</td>
<td>–</td>
</tr>
<tr>
<td>γ-Cyclodextrin (mM)</td>
<td>1.0 ± 0.1</td>
<td>–</td>
</tr>
</tbody>
</table>
bound to a secondary site that is only accessible after EPS binding (uncompetitive inhibition). A schematic model of this mechanism is shown in Fig. 6.

The precise location of this secondary acarbose binding site requires further investigation. Although X-ray structures have revealed the binding of sugar ligands to the surface of CGTase at various positions at the noncatalytic domains [8,24], binding of acarbose to those sites is unlikely to affect the disproportionation reaction, as they are far from the active site, in particular because the substrate used, the maltoheptaose compound EPS, is relatively short. Thus, the data reveal the presence of a secondary sugar-binding site in the vicinity of the active site.

Cyclodextrins are competitive inhibitors

Whereas cyclodextrins are the products of the cyclization reaction and the substrates for the coupling reaction, they act as inhibitors in the disproportionation reaction, competing with the EPS substrate, as previously observed for B. circulans CGTase [45]. Lineweaver–Burk plots of the initial disproportionation rates (v) at various EPS and α-, β- and γ-cyclodextrin (inhibitor) concentrations yielded straight lines that intersect at a single point on the vertical axis, as shown for α-cyclodextrin (Fig. 7), indicating competitive inhibition. The inhibition constants (Table 5), calculated using Eqn (4), are ≈104-fold higher than those of acarbose (Table 5), showing that cyclodextrins are much less efficient inhibitors than acarbose.

X-ray analysis has shown that cyclodextrins bind in the active site as well as to the noncatalytic domains of CGTase [43]. The observation of competitive inhibition demonstrates, however, that only cyclodextrin binding in the active site inhibits the disproportionation reaction. This indicates that cyclodextrin binding to the noncatalytic domains either does not occur under the assay conditions, or that it has no effect on the disproportionation reaction. The latter explanation seems more likely, as the EPS substrate is too short to reach the noncatalytic domains. Thus, cyclodextrins give competitive inhibition in CGTase catalyzed disproportionation reaction involving a short substrate.

Acarbose and cyclodextrins bind both in the active site of CGTase; the difference between them is, however, that acarbose can also bind at a second site to inhibit the disproportionation reaction. To explain this difference we suggest that a cyclodextrin molecule is too bulky to bind at the secondary site, or that this secondary site has a much lower \(K_m \) value for acarbose than for cyclodextrins.

Conclusions

Characterization of the transglycosylation reactions catalyzed by T. thermosulfurigenes CGTase revealed that they proceed via different kinetic mechanisms, similar to B. circulans CGTase [38]. Whereas the cyclization reaction is a single-substrate reaction, the disproportionation and coupling reactions are two-substrate reactions that have substituted-enzyme and ternary complex mechanism kinetics, respectively. The characterization also revealed that T. thermosulfurigenes CGTase contains three functional acceptor sugar-binding subsites. Inhibition studies showed that cyclodextrins inhibit the disproportionation reaction in a competitive manner, whereas acarbose exerts a mixed-type of inhibition. The ternary complex mechanism kinetics (of the coupling reaction) as well as the mixed-type of inhibition (of the disproportionation reaction) indicate the presence of a secondary sugar binding site in the vicinity of the active site of T. thermosulfurigenes CGTase.

Acknowledgements

The authors thank Harm Mulder (Danisco) for assistance with the construction of the pCSeg-tt vector. H. L. acknowledges Danisco for financial support.
References

