Kinetic mechanism of vanillyl-alcohol oxidase with short-chain 4-alkylphenols

Marco W. FRAAIJE, Robert H. H. VAN DEN HEUVEL, Jules C. A. A. ROELOFS and Willem J. H. VAN BERKEL

Department of Biochemistry, Wageningen Agricultural University, The Netherlands

(Received 29 January 1998) — EJB 98 0141/4

The kinetic mechanism of vanillyl-alcohol oxidase with 4-methylphenol, 4-ethylphenol, 4-propylphenol and their Ca-deuterated analogs has been studied at pH 7.5 and 25°C. Conversion of 4-methylphenol is extremely slow (0.005 s⁻¹) while the enzyme is largely in the reduced form during turnover. 4-Ethylphenol and 4-propylphenol are readily converted while the enzyme is mainly in the oxidized form during turnover. The deuterium kinetic isotope effect for overall catalysis ranges between 7–10 whereas the intrinsic deuterium kinetic isotope effect for flavin reduction ranges over 9–10. With all three 4-alkylphenols, flavin reduction appeared to be a reversible process with the rate of reduction being in the same range as the rate for the reverse reaction. During the reductive half-reaction of vanillyl-alcohol oxidase with 4-ethylphenol and 4-propylphenol, a transient intermediate is formed with an absorbance maximum at 330 nm. This intermediate has been tentatively identified as the p-quione methide of the aromatic substrate in complex with reduced enzyme. It is concluded that vanillyl-alcohol oxidase catalysis with 4-ethylphenol and 4-propylphenol favors an ordered sequential binding mechanism in which the rate of flavin reduction determines the turnover rate while the reduced enzyme–p-quione methide binary complex rapidly reacts with dioxygen. During the reaction of vanillyl-alcohol oxidase with 4-methylphenol, a fluorescent enzyme species is stabilized. Based on its spectral characteristics and crystallographic data [Mattevi, A., Fraaije, M. W., Mozzarelli, A., Olivi, L., Coda, A. & van Berkel, W. J. H. (1997) Structure 5, 907–920], it is proposed that this species represents a covalent 5-(4'-hydroxybenzyl)-FAD adduct. With 4-ethylphenol and 4-propylphenol, similar N5 flavin adducts may be formed but their rate of formation is too slow to be of catalytic relevance.

Keywords: alkylphenol; flavoprotein; p-quione methide; kinetic isotope effect; vanillyl-alcohol oxidase.

Vanillyl-alcohol oxidase is a covalent flavoprotein isolated from Penicillium simplicissimum, a filamentous fungus capable of growing on a wide variety of aromatic compounds [1, 2]. The enzyme is a rather stable homooligomer with each 65-kDa subunit containing an 8ε-(N'°-histidyl)-FAD molecule [3, 4]. Vanillyl-alcohol oxidase is active with a wide range of para-substituted phenolic compounds [5], but the physiological function of the enzyme is not fully understood. Based on induction experiments, 4-(methoxymethyl)phenol has been proposed to represent the physiological substrate [2]. A detailed kinetic study with this phenolic methylether has pointed to a ternary complex mechanism in which flavin reduction is the rate-limiting step in catalysis [6]. The reaction of vanillyl-alcohol oxidase with 4-(methoxymethyl)phenol involves the initial formation of a binary complex of reduced enzyme and the p-quione methide of 4-(methoxymethyl)phenol. This complex then reacts with molecular oxygen, reoxidizing the flavin, and after water addition of the p-quione methide, the products 4-hydroxybenzaldehyde and methanol are formed (Eqn 1).

Correspondence to W. J. H. van Berkel, Department of Biochemistry, Wageningen Agricultural University, Dreijenlaan 3, NL-6703 HA Wageningen, The Netherlands
Fax: +31 317 484801
E-mail: willem.vanberkel@fad.bc.wau.nl
URL: http://ggc.tran.wau.nl

Enzymes. Catalase, hydrogen-peroxide oxidoreductase (EC 1.11.1.6); p-cresol methylhydroxylase (EC 1.17.99.1); vanillyl-alcohol oxidase (EC 1.1.3.7).

The reaction mechanism of vanillyl-alcohol oxidase has properties in common with that of p-cresol methylhydroxylase [7]. This bacterial flavocytochrome converts a wide range of 4-alkylphenols first into 4-hydroxybenzyl alcohols and subsequently into 4-hydroxybenzaldehydes. In contrast to vanillyl-alcohol oxidase, flavin reoxidation in p-cresol methylhydroxylase involves the transfer of electrons to a tightly bound cytochrome subunit [8]. The crystal structure of vanillyl-alcohol oxidase has recently been solved at 2.5 Å resolution [9]. Each vanillyl-alcohol oxidase monomer consists of two domains: one creates a binding site for the ADP moiety of the FAD molecule, while the other domain covers the active center which is located between the two domains. The structure shows that the isoalloxazine ring of the flavin makes a covalent bond with His422. Furthermore, the active site is located in the interior of the protein and contains an anion-binding pocket facilitating the deprotonation of phenolic substrates. Based on the structures of several vanillyl-alcohol-oxidase—n inhibitor complexes, it could be determined that the distance between the Ca atom of aromatic substrates and the reactive N5 of the isoalloxazine ring is about 3.5 Å. Equally close to the Ca atom of the inhibitors is the side chain of Asp170 the function of which is not yet clear. The structure of the vanillyl-alcohol oxidase monomer is very similar to that of the
flavoprotein subunit of p-cresol methylhydroxylase [10, 11]. Most active-site residues are conserved but, intriguingly, Asp170 of vanillyl-alcohol oxidase is replaced by Ser in p-cresol methylhydroxylase [12].

The parent substrate of p-cresol methylhydroxylase, 4-methylphenol, is a very poor substrate for vanillyl-alcohol oxidase [13]. The crystallographic analysis of vanillyl-alcohol oxidase suggested that this might be related to the formation of a covalent adduct between the Co atom of 4-methylphenol and flavin N5 [9]. In view of this, it was of interest to address the kinetic mechanism of vanillyl-alcohol oxidase with short-chain 4-alkylphenols. In this study, 4-methylphenol, 4-ethylphenol and 4-propylphenol were used as model substrates and the deuterium kinetic isotope effects for the overall and reductive half-reactions were determined. For this purpose, an improved method for the synthesis of Co-deuterated 4-alkylphenols was developed.

MATERIALS AND METHODS

General. 4-Methylphenol, 4-ethylphenol, 4-propylphenol, methyl-4-hydroxybenzoate, 4-hydroxyacetophenone, 4-hydroxypropiophenone, LiAlD 4 , t-butyl(dimethyl)silyl chloride, imidazole, D 2 O and AlCl 3 were from Aldrich. Glucose oxidase (grade II) was from Boehringer. Vanillyl-alcohol oxidase from *P. simplicissimum* (ATCC 90172) was purified as described before [3, 5]. Enzyme concentrations were calculated from the molar absorption coefficient of the oxidized flavin (εmax = 12.5 mM−1 cm−1) [3].

Analytical methods. HPLC experiments were performed with a Lichrospher RP8 (4.6×150 mm) reverse-phase column, connected to an Applied Biosystems 400 pump and a Waters 996 photodiode-array detector. Products were eluted with methanol/water/acetic acid (33:66:1) at 1 ml min−1. GC/MS analysis was performed on Hewlett Packard HP 5973 MSD and HP 6090 GC equipped with a HP-5 column. The initial temperature was 80°C. After injection, the temperature was raised at 7°C min−1 up to 240°C. ¹H-NMR spectra were recorded on a Bruker AC-200 (200-MHz) spectrometer. Samples were dissolved either in (D2)pyridine or CDCl3, containing tetramethylsilane as internal standard.

Steady-state kinetic experiments were carried out essentially as described earlier [5]. Kinetic experiments were performed at 25°C in 50 mM potassium phosphate, pH 7.5, unless stated otherwise. Oxygen consumption was measured with a Clark electrode [3]. Conversion of 4-ethylphenol and 4-propylphenol was followed by the increase of absorbance at 260 nm. Formation of 4-hydroxybenzaldehyde from 4-methylphenol was measured at 340 nm (εmax = 10.0 mM−1 cm−1). Absorption spectra were recorded at 25°C on an Aminco DW-2000 spectrophotometer. Fluorescence emission spectra were recorded at 25°C on an Aminco SPF-500C spectrofluorometer. The excitation wavelength was 360 nm, using a bandwidth of 4 nm. For anaerobic experiments, samples were flushed with argon.

Stopped-flow kinetic studies were carried out with a Hi-Tech SF-51 apparatus equipped with a Hi-Tech M300 monochromator diode-array detector. Spectra were scanned in the 300–550-nm wavelength range with a scan time of 10 ms. Deconvolution analysis of spectral data was performed using the Specfit Global Analysis program version 2.10 (Spectrum Software Ass.). Single-wavelength kinetic traces were recorded using a Hi-Tech SU-40 spectrophotometer. All concentrations mentioned concerning stopped-flow experiments are those after mixing. In anaerobic experiments, solutions were flushed with argon and contained glucose (10 mM) and glucose oxidase (0.1 mM) to ensure anaerobic conditions. For enzyme-monitored turnover experiments [14], air-saturated enzyme (5 μM) and substrate (1.0 mM) solutions were mixed in the stopped-flow instrument after which the redox state of the flavin cofactor was recorded at 439 nm.

Synthesis of 4-[a-2H]methylphenol. Methyl 4-hydroxybenzoate (4.6 g, 0.030 mol), imidazole (4.0 g, 0.060 mol) and t-butyl(dimethyl)silyl chloride (5.3 g, 0.035 mol) in 120 ml dimethyldimethoxymethane was stirred under nitrogen for 72 h. The mixture was subsequently diluted with 200 ml water and extracted twice with 200 ml petroleum ether (bp 40–60°C). The ether layer was washed with water and dried over magnesium sulphate. The ether was removed by evaporation, yielding a yellow oil of methyl 4-(1-[t-butyldimethylsilyl]-oxy)-benzoate, yield 96%; ¹H-NMR (CDCl3, δppm = 0.3 (t, 4H, CH2), 1.0 (12H, t-butyl), 1.6 (3H, CH3), 6.8 (d, 2H, Ar), 7.0 (d, 2H, Ar). Mass spectrum: m/z (relative abundance) = 266 (M+), 109 (5), 99 (6), 109 (6), 209 (100), 153 (29), 91 (15), 73 (8), 59 (13).

Methyl 4-(1-[t-butyldimethylsilyl]-oxy)-benzoate (4.0 g, 0.015 mol) and AlCl3 (1.6 g, 0.012 mol) in 20 ml ether was added dropwise to a stirred solution containing 4.8 g (0.036 mol) AlCl3 and 2.0 g (0.048 mol) LiAlD4 in 180 ml ether. The mixture was refluxed for 70 h after which some D2O was added to remove remaining LiAlD3. After acidification with H2SO4, the solution was extracted twice with 150 ml ether. The ether was removed by evaporation and, in the final step, the deuterated product was purified by silica column chromatography (eluent: dichloromethane/ethyl acetate, 4:1 yielding 1.37 g pure 4-[a-2H]methylphenol (pale yellow oil): yield, 82%; ¹H-NMR (CDCl3, δppm = 5.1 (s, 1H, OH), 6.7 (d, 2H, Ar), 7.0 (d, 2H, Ar). Mass spectrum: m/z (relative abundance) = 111 (M+), 100 (68), 109 (58), 93 (7), 82 (21), 77 (20), 63 (4), 53 (10).}

Synthesis of 4-[a-2H]ethylphenol and 4-[a-2H]propylphenol. 4-[a-2H]Ethylphenol and 4-[a-2H]propylphenol were synthesized essentially as described above, starting from 4-hydroxyacetophenone and 4-hydroxypropiophenone, respectively. Pure 4-[a-2H]ethylphenol (1.62 g, yellowish crystals) was obtained with a yield of 87%; ¹H-NMR (CDCl3, δppm = 1.2 (s, 3H, -CH3), 5.1 (s, 1H, -OH), 6.8 (d, 2H, Ar), 7.1 (d, 2H, Ar). Mass spectrum: m/z (relative abundance) = 124 (M+), 41), 110 (12), 109 (100), 79 (13), 66 (3), 53 (4). Pure 4-[a-2H]propylphenol (0.79 g, pale yellow liquid) was obtained with a yield of 38%, ¹H NMR (CDCl3, δppm = 1.0 (t, 3H, -CH3), 1.6 (q, 2H, -CH2-), 5.0 (s, 1H, -OH), 6.8 (d, 2H, Ar), 7.1 (d, 2H, Ar). Mass spectrum: m/z (relative abundance) = 138 (M+), 53 (4).

RESULTS

Steady-state kinetics. In a previous study we have shown that vanillyl-alcohol oxidase oxidizes a wide range of phenolic compounds with turnover rates ranging over 1–10 s−1 [5]. Results in Table 1 show that both 4-ethylphenol and 4-propylphenol are converted at a similar rate. With these 4-alkylphenols and using stopped-flow spectrophotometry, it was found that during steady state the enzyme is mainly in the oxidized form. Enzyme-monitored turnover experiments revealed that, with ethylphenol, 69% of the enzyme was in the oxidized state while, with 4-propylphenol, 63% was in the oxidized state during turnover. When the deuterated isomers were used, an increase in the amount of oxidized enzyme during catalysis was observed (90% and 82% oxidized vanillyl-alcohol oxidase for 4-[a-2H]ethylphenol and 4-[a-2H]propylphenol, respectively). Furthermore, the turnover rates for these compounds revealed a relatively large deuterium kinetic isotope effect (Table 1). This suggests that, for both
4-ethylphenol and 4-propylphenol, a step involving flavin reduction is limiting the rate of overall catalysis.

Vanillyl-alcohol oxidase converts both 4-ethylphenol and 4-propylphenol to a mixture of the corresponding benzyl alcohol and alkenylic phenol in a ratio of approximately 4:1 [15]. HPLC product analysis revealed that deuteration of C4 has no effect on the ratio of aromatic products. When the reaction with 4-ethylphenol was performed in D2O, no significant effect was seen on the ratio of aromatic products as well. However, using equimolar amounts of H2O and D2O, a 15% increase of the rate of turnover was observed.

Conversion of 4-methylphenol by vanillyl-alcohol oxidase leads to formation of 4-hydroxybenzaldehyde as final aromatic product [13]. Analogously to p-cresol methylhydroxylase catalysis [16], this reaction involves two consecutive substrate-oxidation steps. However, as can be seen from Table 1, vanillyl-alcohol oxidase converts 4-methylphenol at an exceptionally low rate. Therefore, the enzyme was mixed with 4-methylphenol under aerobic conditions, and the redox state of the flavin was monitored spectrophotometrically. It was found that the enzyme is mainly (58%) in the reduced state during turnover (Fig. 1, spectrum 2) while product is continuously formed as evidenced by the increase in absorbance at 330 nm (Fig. 1, spectrum 3). Moreover, in separate experiments, oxygen consumption could be detected over a long time, confirming continuous turnover. The apparent reduction of the flavin during turnover was even more pronounced at higher pH values and, at pH 9.4, vanillyl-alcohol oxidase became almost fully reduced (Fig. 1, spectrum 4). The absorption spectrum of the 4-methylphenol-reduced enzyme species was strikingly different from free reduced enzyme [6] and showed a typical absorbance maximum at 352 nm with obtained using the procedure of Strickland et al. [9]. Therefore, the apparent reduction of the flavin may reflect formation of this adduct and its slow decay might limit the turnover rate (see also below). As the enzyme is mainly in a reduced state during catalysis at pH 7.5, the relatively large isotope effect on kcat (Table 1) is difficult to interpret. Apparently, a reaction step leading to oxidized enzyme is rate limiting and its velocity is influenced by deuterium replacement of the Ca hydrogens of 4-methylphenol. When vanillyl-alcohol oxidase was mixed with deuterated 4-methylphenol, an increase of oxidized enzyme was observed (77% in the oxidized state), suggesting that the rate of enzyme reduction is partially limiting the rate of overall catalysis.

Reductive half-reaction. The reductive half-reaction of vanillyl-alcohol oxidase can be described by the following equation:

\[\text{E}_{\text{ox}} + S \rightarrow \text{E}_{\text{ox}}S \rightarrow \text{E}_{\text{red}}Q \rightarrow \text{E}_{\text{red}}P \]

where \(\text{E}_{\text{ox}} \) represents oxidized enzyme, \(\text{E}_{\text{cat}} \) represents reduced enzyme, S represents substrate, Q represents intermediate product and P represents the final product.

When vanillyl-alcohol oxidase and 4-ethylphenol were mixed in the stopped-flow spectrophotometer under anaerobic conditions, a fast decrease of absorbance at 439 nm indicative for flavin reduction was observed. The reaction traces could satisfactorily be fitted assuming a biphasic process with rate constants at saturating substrate concentrations \(k_{\text{fast}} = 3.6 \text{s}^{-1} \) and \(k_{\text{slow}} = 0.3 \text{s}^{-1} \), respectively. Furthermore, the slow component \(k_{\text{slow}} \) was not dependent on the substrate concentration while the other component \(k_{\text{cat}} \) reached a finite value at the lowest substrate concentrations measured (Fig. 2). The secondary process was too slow to account for the turnover rate (2.5 s\(^{-1}\)) and therefore is probably of no catalytic importance. When the kinetic data for \(k_{\text{cat}} \) were analyzed, a best fit was obtained using the procedure of Strickland et al. [17] which includes an apparent initial reduction rate at infinite low substrate concentrations indicating that reduction is a reversible process \(k_{2} (k_{-2}, \text{Eqn} 2) \). By this approach a reduction rate of 2.5 s\(^{-1}\) (\(k_{2} \)) was determined while the reversible step occurs at a rate of 1.1 s\(^{-1}\) (\(k_{-2} \) (Fig. 2, Table 2)). The subsequent slow process reflects the decay of the formed binary complex of \(\text{E}_{\text{cat}}Q \) \(k_{3} \) (in Eqn 2).

With 4-[\(\alpha \)-H\(] \)ethylphenol, again a biphasic reduction was observed with markedly decreased rates for both steps \(k_{\text{cat}} = 1.3 \text{s}^{-1} \) and \(k_{\text{slow}} = 0.05 \text{s}^{-1} \) at a substrate concentration of 0.5 mM). However, accurate determination of the rate of the fast phase was hampered by the fact that the absorbance decrease, and therefore the extent of reduction in the first phase, was sig-

Table 1. Steady-state kinetic parameters for the reaction of vanillyl-alcohol oxidase with short-chain 4-alkylphenols and 4-[\([\alpha \)-H\(] \)alkylphenols. All experiments were performed at pH 7.5, 25°C. Values of kinetic parameters have a standard error <10%; n.d., not determined. Values in parentheses are the isotope effect (H/H).

<table>
<thead>
<tr>
<th>Substrate</th>
<th>(k_{\text{cat}})</th>
<th>(K_{m})</th>
<th>(k_{\text{cat}}/K_{m})</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Methylphenol</td>
<td>0.0050</td>
<td>31</td>
<td>0.16</td>
</tr>
<tr>
<td>([\alpha \text{-H}]\text{-Methylphenol})</td>
<td>0.0007</td>
<td>n.d.</td>
<td>(7)</td>
</tr>
<tr>
<td>Ethylphenol</td>
<td>2.5</td>
<td>9.0</td>
<td>300</td>
</tr>
<tr>
<td>([\alpha \text{-H}]\text{-Ethylphenol})</td>
<td>0.24</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>Propylphenol</td>
<td>4.2</td>
<td>3.7</td>
<td>1100</td>
</tr>
<tr>
<td>([\alpha \text{-H}]\text{-Propylphenol})</td>
<td>0.56</td>
<td>3.0</td>
<td>190</td>
</tr>
</tbody>
</table>

Fig. 1. Spectral changes observed upon aerobic reaction of vanillyl-alcohol oxidase with 4-methylphenol. Vanillyl-alcohol oxidase (3.6 μM) was aerobically mixed with 4-methylphenol (500 μM) and spectra were recorded after reaching an apparent equilibrium of the redox state. Spectra: (1) before the addition of 4-methylphenol; (2) after a 1-min incubation at pH 7.5; (3) after a 7.5-min incubation at pH 7.5; (4) after a 1-min incubation at pH 9.4, 50 mM glycine/NaOH. Spectra were recorded at 25°C.
Table 2. Kinetic parameters for the reductive half-reaction of vanillyl-alcohol oxidase with short–chain 4-alkylphenols. All experiments were performed at pH 7.5, 25°C. Rates for deuterated substrates were determined from the ratio of $[E]_{red}/[E]_{oxid} = [k_{-2}(k_{-2} + k_{2})]$, with $k_{oxid} = k_{2} + k_{-2}$ at the end of the first reductive process. Values in parenthesis are the isotope effect (1H/2H).

<table>
<thead>
<tr>
<th>Substrate</th>
<th>k_2</th>
<th>k_{-2}</th>
<th>$K_i = k_{-2}/k_2$</th>
<th>k_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methylphenol</td>
<td>0.076 ± 0.015</td>
<td>0.086 ± 0.013</td>
<td>42 ± 15</td>
<td>–</td>
</tr>
<tr>
<td>[α-H]Methylphenol</td>
<td>0.008 ± 0.002</td>
<td>0.04 ± 0.010</td>
<td>n.d.</td>
<td>–</td>
</tr>
<tr>
<td>Ethylphenol</td>
<td>2.5 ± 0.3</td>
<td>1.1 ± 0.2</td>
<td>10 ± 2</td>
<td>0.3</td>
</tr>
<tr>
<td>[α-H]Ethylphenol</td>
<td>0.3 ± 0.1</td>
<td>1.0 ± 0.1</td>
<td>n.d.</td>
<td>0.05</td>
</tr>
<tr>
<td>Propylphenol</td>
<td>4.4 ± 0.4</td>
<td>1.6 ± 0.3</td>
<td>0.8 ± 0.2</td>
<td>1</td>
</tr>
<tr>
<td>[α-H]Propylphenol</td>
<td>0.5 ± 0.1</td>
<td>1.6 ± 0.2</td>
<td>n.d.</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Fig. 2. Observed reduction rates (k_{obs}) of vanillyl-alcohol oxidase with varying concentrations of 4-ethylphenol. The anaerobic reduction experiments were performed at 25°C and pH 7.5. Flavin reduction was monitored at 439 nm. Each determined reduction rate ($k_{obs} = k_{red}$) is an average of 15 analyzed traces. The arrow indicates the value found for the reverse reduction rate. In the inset the double-reciprocal plot of the kinetic data (corrected for k_{-2}) is shown.

Figures

- Fraaije et al. (Eur. J. Biochem. 253). 715

![Image](https://example.com/image.png)
The rate of the reversible reduction \(k_{\text{rev}} \). Because of the small changes in absorbance and \(k_{\text{tran}} \) upon changing the substrate concentration, the dissociation constant for the Michaelis complex \((k_2/k_3) \) could not be determined accurately. However, it is expected that this parameter will be in the same range as for the non-deuterated substrate. Again, using the fraction of oxidized enzyme formed as a result of reduction by deuterated 4-methylphenol [corresponding to the ratio of \(k_2/(k_2 + k_3) \)] at 250 \(\mu \)M, \(k_{\text{tran}} \) could be calculated. Assuming that the dissociation constant for the Michaelis complex is not significantly affected by deuterium, the rate of reduction could be calculated (Table 2). A relatively large isotope effect was seen on the rate of reduction \(k_2 \) while the rate of the reverse reaction was only slightly affected.

Fluorescence studies. The results presented above (cf. Fig. 1) lend strong support to our earlier proposal from X-ray diffraction studies that vanillyl-alcohol oxidase forms an air-stable covalent adduct with 4-methylphenol [9]. The absorption spectrum of the species generated upon reaction of vanillyl-alcohol oxidase with 4-methylphenol at pH 9.4 resembles that of N5 flavin adducts identified in other flavoprotein oxidases [21–23]. Because N5 flavin adducts are fluorescent [21], the nature of the complex between vanillyl-alcohol oxidase and 4-methylphenol was studied in further detail by fluorescence spectroscopy. As can be seen from Fig. 5 (trace 2), the 4-methylphenol-complexed enzyme displayed an intense fluorescence with a broad emission maximum around 475 nm. In contrast, almost no fluorescence was observed with the free oxidized enzyme (Fig. 5, trace 1) or with the enzyme reduced by vanillyl alcohol (not shown).

Fig. 4. Absorbance changes observed upon anaerobic reaction of vanillyl-alcohol oxidase with 4-methylphenol. Vanillyl-alcohol oxidase (3.3 \(\mu \)M) was mixed with 75 \(\mu \)M 4-methylphenol (trace 1) or 4-[\(^{1}H \)]methylphenol (trace 2) when monitored at 439 nm, pH 7.5, 25\(^\circ \)C. The data could satisfactorily be fitted according to a monophasic process yielding apparent reaction rates of 0.133 s\(^{-1}\) (1) and 0.045 s\(^{-1}\) (2), respectively.

The solvent isotope effect on the rate of enzyme reduction with 4-ethylphenol was also determined. In 50% D\(_2\)O, a similar increase in the initial rate of flavin reduction was found as with the steady-state experiments \((k_2 = 2.8 \text{ s}^{-1}) \). The origin of this stimulating effect is difficult to explain but confirms that flavin reduction does not involve fission of a hydrogen bond originating from a water molecule. However, the observed stimulation of activity by D\(_2\)O may also mask a true solvent isotope effect.

Anaerobic reduction of vanillyl-alcohol oxidase by 4-methylphenol was a slow and apparent monophasic process (Fig. 4). The rate of reduction \((k_2) \) did not lead to fully reduced enzyme in line with this model which includes a reversible reduction (Eqn 2). A maximal reduction rate of 0.076 s\(^{-1}\) \((k_2) \) was determined while the reversible step occurs at a maximal rate of 0.086 s\(^{-1}\) \((k_2) \) (Table 2). With 4-[\(^{1}H \)]methylphenol the rate of reduction \((k_{\text{tran}}) \) significantly decreased (Fig. 4). Furthermore, the extent of reduction also decreased indicating that the rate of reduction \((k_2) \) decreased to a greater extent than the rate of the reversible reduction \((k_{\text{rev}}) \). The observation that vanillyl-alcohol oxidase forms an air-stable covalent adduct with 4-methylphenol [9]. The absorption spectrum of the species generated upon reaction of vanillyl-alcohol oxidase with 4-methylphenol at pH 9.4 resembles that of N5 flavin adducts identified in other flavoprotein oxidases [21–23]. Because N5 flavin adducts are fluorescent [21], the nature of the complex between vanillyl-alcohol oxidase and 4-methylphenol was studied in further detail by fluorescence spectroscopy. As can be seen from Fig. 5 (trace 2), the 4-methylphenol-complexed enzyme displayed an intense fluorescence with a broad emission maximum around 475 nm. In contrast, almost no fluorescence was observed with the free oxidized enzyme (Fig. 5, trace 1) or with the enzyme reduced by vanillyl alcohol (not shown).
this charge balancing is lost, facilitating water attack. However, slow in comparison with flavin reduction. Moreover, during Arg504 and the anionic reduced flavin might favor the stabiliza-
adduct formation with 4-ethylphenol and 4-propylphenol. How-
at the methide carbon. From the crystallographic data we have in Eqn (2) represents this adduct. A similar mechanism as shown
by abstracting a proton from flavin N5 thereby activating the
-quinone methide of the al-
nism which accounts for this adduct formation is presented in

DISCUSSION

In this study we have described the kinetic mechanism of
vanillyl-alcohol oxidase with short-chain 4-alkylphenols. For the
reactions with 4-ethylphenol and 4-propylphenol, it was clearly shown that flavin reduction is rate limiting in overall catalysis. The flavin reduction rates for the non-deuterated and deuterated forms of these substrates are similar to the corresponding k_n values and the enzyme is predominantly in the oxidized state during turnover. During the reductive half-reaction, a transient intermediate is formed which is ascribed to the binary complex between reduced enzyme and the p-quinone methide of the al-
kylphenols. Addition of water to these quinoid species preferen-
tially occurs after flavin reoxidation, followed by product release which completes the catalytic cycle. The kinetic mechanism of
vanillyl-alcohol oxidase with 4-ethylphenol and 4-propylphenol is slightly different from that with 4-(methoxymethyl)phenol [6]. With the latter substrate, the p-quinone methide intermediate is considerably stabilized in the active site of the reduced enzyme, resulting in a true ternary complex mechanism. With 4-ethylphe-
nol and 4-propylphenol, a more rapid decomposition of the reduced-enzyme–p-quinone-methide complex is observed re-
sembling to some extent the sequence of events observed with vanillyl alcohol [6].

The crystal structure of vanillyl-alcohol oxidase has revealed that the active site is located in the interior of the protein and is shielded from solvent [9]. This corresponds to the observed enantioselective hydroxylation of 4-alkylphenols [15], which is indicative for an enzyme-mediated nucleophilic attack of water at the methide carbon. From the crystallographic data we have suggested that charge balancing between the side chain of Arg504 and the anionic reduced flavin might favor the stabilization of the neutral substrate quinone. Upon flavin reoxidation, this charge balancing is lost, facilitating water attack. However, in the enzymatic reactions with 4-ethylphenol and 4-propylphe-
nol, addition of water to the quinone intermediate is less efficient than with 4-(methoxymethyl)phenol and significant amounts of
vinylc phenols are formed [15]. It is not clear whether this com-
peting rearrangement of the 4-alkylphenol p-quinone methide intermediates is related to the water accessibility of the active site. In this respect it is interesting to note that, in the reaction of vanillyl-alcohol oxidase with 2-methoxy-4-propylphenol, hardly any vinylc product is formed [15].

Reduction of vanillyl-alcohol oxidase by short-chain 4-alkyl-
phenols is not very efficient as the reverse reaction can also proceed at a considerable rate. A similar reversible reduction was recently reported for yeast d-amino acid oxidase [18]. In contrast, with the natural substrate 4-(methoxymethyl)phenol, no significant reverse reduction of vanillyl-alcohol oxidase occurs [6]. For the related enzyme p-cresol methyldihydroxylase, a re-
versible reduction of the flavin was also observed upon reaction with 4-ethylphenol, but the rate of reduction was several orders of magnitude higher [24]. With vanillyl-alcohol oxidase and similar to p-cresol methyldihydroxylase, almost no kinetic deute-
rium isotope effect on k_2 was observed. Apparently, the hy-
drogen or deuterium abstracted from Cu of the substrate during reduction of the flavin is not necessarily involved in the reverse reaction. Possibly, there is an alternative source of hydrogen or the transferred hydrogen may be quickly exchanged. A possible residue involved in this may be Asp170, the side chain of which is located close to the Ca atom of the substrate and the N5 atom of the isoalloxazine ring [9].

In the reaction of vanillyl-alcohol oxidase with 4-methylphe-
nol a rather slow reduction of the flavin was observed which was, however, too fast to account for the rate of overall catalysis. Moreover, with this substrate the enzyme is mainly in the reduced state during turnover, particularly at high pH. During the aerobic conversion of 4-methylphenol at pH 9.4, a fluo-
rescent reduced enzyme species was stabilized with spectral fea-
tures similar to that of 4-methylphenol-soaked vanillyl-alcohol oxidase crystals [9]. From this, and the fact that the spectral properties of the complex between vanillyl-alcohol oxidase and 4-methylphenol compare well with the recently identified FAD adduct in nitroalkane oxidase [23] and flavin adducts observed in lactate oxidase [21, 22], it is proposed that the stabilisation of the reduced form of the enzyme is due to the formation of an air-stable 4-methylphenol–N5-flavin adduct. A possible mecha-
nism which accounts for this adduct formation is presented in Scheme 1. The first step of the proposed mechanism involves the transfer of a hydride from the Ca atom of the substrate to the N5 of the isoalloxazine ring. As a result, a binary complex between reduced enzyme and the p-quinone methide of 4-methylphenol is formed. In the second step, Asp170 acts as a base by abstracting a proton from flavin N5 thereby activating the cofactor for nucleophilic attack of the p-quinone methide inter-
mediate.

Taken together, the results of this study indicate that, during
the reaction of 4-methylphenol with vanillyl-alcohol oxidase, an
N5 flavin adduct is formed which decomposes only slowly to
form a product and hence limits turnover. Crystallographic data have suggested that for more bulky 4-alkylphenols, flavin adduct formation may be prevented by steric constraints [9]. However, the results presented here indicate that with both 4-ethylphenol and 4-propylphenol, an N5 flavin adduct is formed under anaer-
obic conditions. From this, it is reasonable to assume that $E_{ox}^{-}P$ in Eqn (2) represents this adduct. A similar mechanism as shown
in Scheme 1 for 4-methylphenol may be operative for flavin adduct formation with 4-ethylphenol and 4-propylphenol. How-
ever, with the latter substrates, adduct formation is relatively slow in comparison with flavin reduction. Moreover, during turnover the enzyme is predominantly in the oxidized form. This indicates that, similar to the reaction with 4-(methoxymethyl)-phenol [6], dioxygen reacts rapidly with $E_{ox}^{-}Q$. From the above
considerations it is concluded that in the reaction of vanillyl-alcohol oxidase with 4-ethylphenol and 4-propylphenol, flavin adduct formation is not of catalytic relevance.

Finally, from the results presented in this paper it is clear that vanillyl-alcohol oxidase and p-cresol methylhydroxylase differ significantly in their kinetic properties with short-chain 4-alkylphenols. Moreover, both covalent flavoenzymes use different electron acceptors for flavin reoxidation. In vanillyl-alcohol oxidase, the 8a-((N3-histidyl)-FAD is reoxidized by molecular oxygen while in p-cresol methylhydroxylase, reoxidation of the 8a-O-tyrolyl-FAD is accomplished by a fast intramolecular electron transfer to the heme. It has been proposed that this latter process is facilitated by the 8a-O-tyrolyl-FAD phenolic ether bond [11]. Unlike p-cresol methylhydroxylase [16] and the related flavocytochrome 4-ethylphenol methylene hydroxylase [25], vanillyl-alcohol oxidase is not involved in the biodegradation of 4-alkylphenols but instead is operative in the metabolism of 4-alkylphenols. Moreover, both covalent flavoenzymes use different 5

We are indebted to Maurice Franssen and Hugo Jongejan (Wageningen Agricultural University) for their help during the synthesis of deuterated substrates. We also thank Marleen Verheul (NIZO, Ede, The Netherlands) and Andrea Mattevi (University of Pavia, Italy) for fruitful discussions.

REFERENCES

