Plant colonization and succession on embanked sandflats
Joenje, Wouter

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1978

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
SUMMARY

In May 1969 over 5000 ha of tidal sandflats were reclaimed and subsequently designated a "nature area". This thesis describes the results of a research into the spontaneous development of the new vegetation cover. On 5 experimental fields representing the main habitat types, the biomass and the densities of the vascular plants were determined. This data may derive a more general meaning from the fact that field data on plant demography combined with descriptions of primary successions are rare. Moreover the data may be useful in understanding the functioning of the sandflat ecosystems and in specifying the nature management to be applied.

The sandflats are characterized by fine grained sands, poor in humus and clay, through which lateral ground water movements occur only very slowly, due to the physical features of the terrain, especially its extent and height profile. In wet periods and especially during winter the ground water remains at the surface. Thus, the very slowly proceeding desalination of notably the lower, siltier areas only occasionally flooded by the reservoir level, resulted mainly from superficial runoff of rain-water. Higher, sandier and well drained areas, such as mussel-banks, creek edges and the topmost zone of a height gradient, desalinated more quickly. In these places many plant species were found early on, showing the importance of anemochorous dispersal.

The flats were colonized from the seedbank present, especially Salicornia (two species) and to a much lesser extent Atriplax hastata and Suaeda maritima, all of them annual Chenopodiaceae, taking advantage of the suitable saline environment. Attention is paid to migration, to the characteristic aggregation stages and to the logistic increase of these and the subsequent, mainly perennial, species: Spergularia marina, S. media, Aster tripolium and several Puccinellia spp. and Poa spp.

In the 4th year the density had increased so much, that apparent mortality in Salicornia in the period of May to September was at a height of up to 70% on many places. However, in subsequent years a mass mortality was observed in March and April; these seedlings emerged under soaked conditions, did not develop properly fixed roots and succumbed at the time the surface dried. Mortality in the remaining plants was low. While the numbers were primarily set by this density independent regulation, at the prevailing low N level in subsequent growth root competition occurred especially in the aggregates of the perennial species mentioned. In several areas and in experiments comprising hoeing, weeding, mowing and addition of nutrients, the plasticity and mortality of the annuals was studied as well as the way in which the annuals were outcompeted by their successors.

The development of the vegetation cover, the initial soil formation after 8 years, and the comparison with more or less comparable areas along the Wadden coast, served as a basis for the prognosis of vegetation development in the different habitat
types on the flats.

On the nutrient-poor higher sands, locally offering a summer drought extreme condition, an increasing accumulation of organic debris occurs. Locally Salix (mainly Salix alba and S. repens), Hippophaë rhamnoides and Calamagrostis epigejos dominate. After several decennia the decalcification will have proceeded to such an extent, that plant species of oligotraphenic, acid environments will invade. After further pedogenesis these areas gradually will link up with the phytogeographical Wadden District and may capture some elements of the Drenthian District as well.

The lower, silter and saline areas after 9 years still harbour an annual halophyte vegetation, which persists because of the autumn grazing by waterfowl, which removes the standing crop. However, as desalination proceeds Puccinellia maritima and Spergularia media will be superseded by Agrostis stolonifera and Phragmites australis, which also will increase primary production and standing crop. These areas and the fringes of the reservoir lake will gradually link up with the adjacent Hafdistrict.

The new natural area will possibly gain much landscape- and floristic diversity, whereas the ornithological value as a hibernating area will be augmented by its function as breeding area.

The Lauwerssee- and salt-marsh today presents unlimited opportunities for study of the development of natural communities, and as such presents a challenge for many years to come.

Samenvattung

In mei 1969 vielen platen droog, welke de "gebied" kregen. In dit van een kwantitatief on van het plantendek. Hic representatief voor de de dichtheden der plant De gegevens ontlenen een held, dat populatiedynamie prik en het doorzien van het verschijnselen van de zouten. Dit treedt op bij het doorzien van het voedsel. Deze zones en de zeezuiden van de lagere, sier en land- en stilere oevers en boven de vroegere, met name do De zandplaten werden va koloniseerd door Zeekraal of zeemossen (Aster tripolium (Suaeda maritima), alle podiaceae), die in enke maximaal uitbuiten. Na teerste aggregatiest de volgende, voornamelijk Gerande Schijnspruit en Zeester (Aster tripolii gras (resp. Puccinellia)

In het 4e jaar was aornia in de periode meest zilte terreinen) sterf en waargenomen in op de drasse platen, on bij droogvallen in mei reste rende planten bleven omvang van de populatie en de als hankelijke aantale white s, wortelconcurrentie op, perenne soorten.

In verschillende voetge wierden, schovenin de plasticiteit en mort zocht, evenals de wijz eerder worden verdrongen.