formation of a productive complex. Conversely, interference with these dynamics provides a possible mechanism by which nonnucleoside analogue inhibitors of NS5B block de novo initiation of RNA synthesis.

391-Pos
Simulating the Relaxation of DNA Supercoils By Topoisomerase I
Todd D. Lillian1, Maryna Taranova2, Ioan Andricioaei, Noel C. Perkins1.
1University of Michigan, Ann Arbor, MI, USA, 2University of Irvine, Irvine, CA, USA.
Many cellular processes involving DNA, including replication and transcription, result in significant superhelical stresses. During transcription, for example, RNA polymerase locally untwists about a helical turn of the DNA double helix. Then to elongate the RNA transcript, it proceeds along the template strand of the DNA and thereby induces supercoiling. DNA topoisomerases play an important role in removing these stresses. In this work, we focus on understanding the action of human DNA topoisomerase I (TopoI) which operates in three basic steps: (i) cleaving a single strand of the DNA double helix, (ii) allowing the DNA superhelical stresses to relax, and (iii) religating the DNA. Recently, the Dekker lab, at Delft University of Technology, performed single molecule experiments to probe the relaxation of supercoils by topoI. A significant molecular dynamics (MD) effort (>100 cpu years) by the Andricioaei lab, at the University of California Irvine, characterized the energetics and topological changes of topoI in complex with only a short fragment of DNA (~20 bp). Including a longer length of DNA to represent a biologically relevant length-scale (greater than a persistence length), is computationally prohibitive for MD and was necessarily neglected. Here we introduce an elasto-dynamic rod model as a first approximation to provide a dynamic description of the DNA as it relaxes. The rod model describes bending and torsion of the DNA helical axis, electrostatic and self-contact interactions, and approximates the hydrodynamic drag on the molecule. For our simulations, we provide as initial conditions, a eukaryotic supercoiled. The MD simulations serve to provide boundary conditions to the rod model by characterizing the torque applied to the DNA by topoI as it relaxes. Here we present preliminary results for the relaxation rates of supercoils.

392-Pos
Nucleoprotein Complex Formation By Bacillus Subtilis Spoj/ParB
Candice M. Eton1, David Z. Rudner2, Antoine M. van Oijen2.
1Harvard University/Harvard Medical School, Boston, MA, USA, 2Harvard Medical School, Boston, MA, USA.
Although prokaryotes lack the machinery utilized by eukaryotes to achieve well organized chromosome segregation, all cells must faithfully segregate their chromosomes in every cell division cycle. In many bacteria, this process is dependent upon a partitioning locus composed of an ATPase called ParA, a DNA binding protein called ParB, and centromere-like binding sites (parS) that are present adjacent to the origin of replication. ParB binds the parS sites and the ParB-parS complex can facilitate the segregation of replicated origins toward opposite cell poles. In Bacillus subtilis, the ParA protein is called Soj and the ParB protein is referred to as Spoj. There are eight parS sites surrounding the origin of replication of the B. subtilis chromosome. SpojO can bind to these sites and spread along the DNA up to 15 kilobases, forming a nucleoprotein complex. The SpojO-parS complexes are not only a substrate for Soj/ParB, but they also serve to recruit the highly conserved structural maintenance of chromosomes (SMC) complex to the origin. The SMC condensin complex appears to function in both organizing the origin region and facilitating chromosome segregation. To investigate how SpojO spreads along the DNA and ultimately how this complex recruits SMC, we have employed single molecule fluorescence imaging to directly observe the formation of the nucleoprotein complex of purified B. subtilis Spoj0 and lambda DNA. We characterize the physical properties of this nucleoprotein complex and the kinetics of its formation.

393-Pos
Theoretical Analysis of the Molecular Mechanism of Stabilization of Nova-RNA Complex System: Fragment Molecular Orbital Method Based Quantum Chemical Calculation For the Effect of the Complex Formation on the Electronic State of Biomacromolecular System
Ikku Kurisaki1, Kaori Fukuzawa2, Tatsuya Nakano1, Yuji Mochizuki4, Hirofumi Watanabe1,2, Shigemori Tanaka1,3.
1Kobe university, 3-11, Tsurukabuto, Nada, Kobe, Japan, 2Mizuho Information & Research Institute, Inc, 2-3-3 Kanda Nishiki-cho, Chiyoda-ku, Tokyo, Japan, 3National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, Japan, 4Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, Japan, 5Japan Science and Technology Agency, CREST, 5 Sanban-cho, Chiyoda-ku, Tokyo, Japan.
The RNA-binding proteins (RBPs) specifically recognize the shape and/or sequence of RNA molecules for binding the target. The relationship between three-dimensional structure and RNA-binding mechanism of RBPs can be analyzed by performing computer simulations to provide deeper insight into this issue. In the present study, we performed Fragment Molecular Orbital (FMO) based quantum chemical calculations for neuro-oncological ventral antigen third HK domain (NOVA)-RNA complex system to study the molecular mechanism from the viewpoint of electronic state of biomacromolecules. We investigated the effect of the complex formation on an electronic state of NOVA. We found and that the charge redistributes all over the structure and that the secondary structure of NOVA is remarkably associated with the change of electronic state in the complex formation. The results indicate that the whole protein structure participates in realization of the best energetic stabilization in the complex formation and we speculate that secondary structure could play an important role to obtain the optimum inter-molecular interaction energy by associating with charge redistribution. Further, we employ molecular dynamics simulation method to consider structures fluctuating around the equilibrium state. We perform FMO calculations for the obtained snapshots and examine the change of electronic state. The results will provide deeper insight into the relationship between electronic state and structural fluctuation. The details will be reported at the meeting.

394-Pos
Investigating Classic Lac Repressor-Dna Looping Experiments Using A Computational Rod Model
Andrew D. Hirsh, Todd D. Lillian, Noel C. Perkins.
University of Michigan - Ann Arbor, Ann Arbor, MI, USA.
Protein mediated DNA looping is a well known gene regulatory mechanism. A commonly studied system that controls gene expression is lactose repressor (LacI) induced DNA looping. In two new studies, the Miller-Hill group investigates how the lac repressor protein in E. coli forms loops with linear and cyclized DNA. Their experiments analyzed LacI induced looping on linear DNA over a wide range of interoperator lengths (6-21 helical turns) and on supercoiled DNA minicircles of 452 base pairs. In these experiments, electron microscopy, non-denaturing polyacrylamide gel electrophoresis, and DNase I protection experiments were used to detect loop formation, estimate loop size, quantify loop stability, and for supercoiled DNA to detect loop topology (ALK). In our study, we exercise our computational rod model to make side-by-side comparisons of our predictions with their experimental observations. By making comparisons, we look to understand the energetic cost of loop formation and the resulting topology of the looped complex.

395-Pos
High Throughput Screening of Aptamers For Human Thrombin and Factor IXa
Gillian V. Kupakwana1, Lei Chen1, James E. Crill2, Mark P. McPike2, Philip N. Borrer1.
1Syracuse University, Syracuse, NY, USA, 2OrthoSystems, Inc., Syracuse, NY, USA.
The traditional method for discovery of DNA/RNA aptamers is in vitro evolution (SELEX), where multiple cycles of partitioning and amplification enrich aptamer candidates from a pool containing randomized segments of length, m. Previous to our work the consensus sequence for alpha-thrombin aptamers (ThbA) was discovered from an RNA library of m=40 after 8 rounds. We isolated the same ThbA, FIXaA and a novel carbohydrate aptamer (CA) to validate our new method, High Throughput Screening of Aptamers. HTSA uses a single partitioning step, PCR, and counts survivors by massively parallel sequencing. We found the minimal ThbA in a library of DNA hairpins loops (m=15) containing 56,000 copies of each of the 1.1 billion possible sequences. We distinguished two sequence motifs well above the background. The ThbA motif contains the consensus (counted 46,000 times) and dozens of related sequences. The leading candidate in the CA family (29,000 counts) is a novel aptamer that binds glucose (Kd=1,400 nM) and alpha-methyl mannoside (Kd=500 nM). A known FIXaA was counted 52,000 times from a library of DNA hairpins (m=16 with 14,000 copies of each sequence). HTSA simplifies and shortens the discovery process, exhaustively searches the space of sequences within a library, simplifies characterization of the core binding domain, reduces the quantity of the target required, eliminates cycling artifacts, allows multiplexing of targets, and requires no complex automation.

396-Pos
Engineered Holliday Junctions As Single-Molecule Reporters For Protein-DNA Interactions
Nesha May O. Andoy, Susanta Sarkar, Peng Chen.
Cornell University, Ithaca, NY, USA.
Protein-DNA interactions are essential for gene replication and expression. Characterizing how proteins interact with and change the structure of DNA