Introduction of C17 side chains in steroids. The use of phosphoryl substituted methyl isocyanides as connective reagents
Stoelwinder, Johannes

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1992

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-10-2020
SUMMARY

Steroids are an important group of natural products, which play a prominent role in life. In many steroids the basic ring system is equipped with a side chain at C17. Subclasses of steroids carry characteristic side chains, which may differ considerably in length and functional groups. The physiological activity of steroids relies in part on size and structure of the side chain. This explains continued interest in the search for general applicable methods for the construction of steroid side chains, and especially for methods that allow ready introduction of additional functionality. Recently, there has been a revival in steroid chemistry, due to the discovery of new steroid activities. The discovery of the potential cytostatic action of 1a-25-dihydroxy vitamin D₃ is one example, which has served as a source of inspiration for many organic chemists to (re)enter the field of steroid chemistry. Furthermore, a new interesting area in steroid chemistry is formed by the action of steroids as inhibitors (agonists) of enzymes, which are responsible for in vivo steroid synthesis and metabolism. Continuous industrial interest for new alternative steroid syntheses exists, not only to improve steroid applications or to find new active compounds, but also to dodge the many patents applied in the steroid field.

Nowadays microbiological degradation of vegetable sterols, such as β-sitosterol, provides an efficient low-cost method of manufacturing 17-oxosteroids. This makes 17-oxosteroids ideal starting materials for chemical manipulation into more elaborated steroidal molecules. The results of our investigation towards new methods for the introduction of various side chains in 17-oxosteroids are described in this thesis.

A general introduction on steroids is given in Chapter I. A short survey of natural steroid sources and physiological action is described, as well as a brief review on partial and total synthesis of steroids. Furthermore, an introduction is presented on aspects of the chemistry of the isocyanide functional group, which plays an important role throughout this thesis.

Chapter II describes reactions of commercially available diethyl (isocyanomethyl)-phosphonate (PhosMIC) with 17-oxosteroids. i-Butyl methyl ketone was used as a model substrate for these reactions, and solvent/base variations have been investigated. By the use of this model system problems of low reactivity and selectivity in the reaction of PhosMIC with ketones were solved. It was established that the combination potassium hydride with dichloromethane gave oxazolines of type 201 with a remarkably high selectivity.

Next, the results obtained with i-butyl methyl ketone were transferred to 17-oxosteroids. In an one-pot process, 17-oxosteroids such as compounds 200 were converted via oxazolines 201 as intermediates into formamido steroids 202. The formamide groups of 202 were easily dehydrated to yield (E)-17-[(dialkylphosphoryl)isocyanomethylene] steroids 203, which represent a new class of compounds. Furthermore, the reduction of the exocyclic double bond of steroids 203 enabled us to synthesize steroids 220, with two additional stereogenic centers. One hydrogen was introduced stereospecifically in the important C17-position, and the other hydrogen was introduced at C20.

An example of the conversion of 17-oxosteroids 200 to intermediates 203 and 220
Summary

The new intermediates 203 and 220 carry short side chains with functional groups suitable for further elaboration. These side chains, the "handles", offer the possibility to develop new methods for the introduction of polyfunctional steroid side chains into 17-oxosteroids. Thus, the isocyanato- and phosphorus groups of steroids 203 and 220 were used in a connective approach to attach one or more carbon fragments to 17-oxosteroids.

In Chapter III a series of new derivatives of α-isocyanomethylphosphonates 301a is described, which were formed by allylic alkylation of (E)-17-[(diethylphosphono)-isocyanomethylene] steroids 203a at C20. Simultaneous with alkylation at C20 a double bond formed at C16-C17, which is desirable in steroid chemistry for further functionalization. It was possible to hydrolyze compounds 301a under relatively mild conditions with diluted perchloric acid to Δ16,20-ketosteroids 302. By doing so we were the first to show that geminal N and P substituted carbon compounds do react as N,P-acetals. We have proposed a mechanism for this conversion of N,P-acetals to ketones, in which oxidation of an intermediate at nitrogen by perchloric acid plays a crucial role. After this oxidation, an 'aza-Wittig' reaction is assumed to occur. Some evidence for this mechanism was obtained by detecting the eliminated phosphate group by in situ 31P NMR measurements.

![Conversion of steroids 203 into Δ16-pregnanes 302](image)

An example of the conversion of steroids 203 into Δ16-pregnanes 302

Chapter IV describes Wittig-Horner-Emmons reactions of steroids 203a and 220a with several aldehydes and with acetone. In this way, a series of polyfunctional unsaturated Δ16,20-20-isocyanosteroids (412, comparable to 425F) was formed. It proved possible to hydrolyze steroids of type 412 with diluted sulfuric acid in high yield to a variety of both new and known Δ16,20-ketosteroids 413 (comparable to 426F). Neutral hydrolysis of steroids 412 was possible also, via an intermediate Δ16,20-isocyanostereoid, leading to A-ring protected 16-dehydroprogesterone. The Wittig-Horner-Emmons reaction, together with the described hydrolyses, provides a new method particularly suitable for the introduction of steroid side chains with a variety of size, structure and functional groups. This is demonstrated by a stereoselective synthesis of progesterone, and by a stereoselective synthesis of 20-keto-21-norcholesterol 426F.

![Stereochemistry of progesterone](image)

The stereoselective synthesis of 20-keto-21-norcholesterol 426F

118
In Chapter V, a series of α,β-unsaturated isocyanosteroids 501 is described, which are formed by a n-ButLi induced Wittig-Horner-Emmons reaction of PhosMIC and 17-oxosteroids 200. Acid hydrolysis of the α,β-unsaturated isocyanosteroids 501 gave 17-formylsteroids 502 in high yields. Thus, our application of the Wittig-Horner-Emmons reaction, followed by acid hydrolysis, provides a straightforward method for one carbon homologation of 17-oxosteroids 200 to 17-formylsteroids 502 in a short and effective manner. Furthermore, the introduction of a second carbon-atom into steroids 200 proved possible with PhosMIC. To our surprise, a thermal rearrangement takes place upon heating at 200 °C, which converts α,β-unsaturated isocyanosteroids 501 stereospecifically and in high yield to α,β-unsaturated cyanosteroids 503. This means that the isocyanocarbon also can be used in steroidal carbon-carbon bond forming reactions. We obtained a nearly quantitative conversion when the rearrangements were carried out without solvents. With these results, we are the first to describe actual examples of the thermal rearrangement of α,β-unsaturated isocyanides to α,β-unsaturated cyanides.

Conversion of 200 into 17-formylsteroids 502 and into α,β-unsaturated cyanosteroids 503

In Chapter VI, as a spin off of the synthesis of α,β-unsaturated isocyanosteroids, a new synthesis is developed of erbstatin 606, which is an antibiotically active fermentation product equipped with an α,β-unsaturated formamide group. Erbstatin has been shown to inhibit the growth of human epidermoid carcinoma cells in tissue cultures. Such inhibitors have the potential of providing leads to new classes of therapeutic agents for treatment of skin cancer. We have introduced the α,β-unsaturated formamide functionality into the phenolic aldehyde 601 by a Wittig-Horner-Emmons reaction of aldehyde 601 with PhosMIC, followed by controlled hydration of the α,β-unsaturated isocyanide group of 602.