Secondary Ion Mass Spectrometry of Small-Molecule Solids at Cryogenic Temperatures. V. Oxygen
Stulik, Dusan; Orth, Robert G.; Jonkman, Harry T.; Michl, Josef

Published in:
International Journal of Mass Spectrometry and Ion Physics

DOI:
10.1016/0020-7381(83)85127-4

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1983

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
SECONDARY ION MASS SPECTROMETRY OF SMALL-MOLECULE SOLIDS AT CRYOGENIC TEMPERATURES. V [1]. OXYGEN*

DUSAN STULIK, ROBERT G. ORTH, HARRY T. JONKMAN, AND JOSEF MICHL
Department of Chemistry, University of Utah, Salt Lake City, UT 84112 (U.S.A.)
(Received May 20, 1983)

ABSTRACT

Positive secondary ion mass spectra of neat solid O₂ and O₂ diluted with argon at 15-20K were measured as a function of the nature and energy of the primary ions (He⁺, Ar⁺, Kr⁺, 0.5-4.0 keV). With He⁺, the spectrum of solid O₂ is dominated by O₂⁺ and O⁺ peaks, with Ar⁺ and Kr⁺, it is dominated by an intense cluster series O⁺³n+2, n = 0,1,2...

INTRODUCTION

Low-temperature solids such as N₂, NO, CO, N₂O, etc., yield intense series of clusters upon bombardment with heavy ions of keV energies [1-5]; similar results have been reported for solid ice [6], formic acid [7], acetone [8], and other materials. In many cases, the repeated solvating unit is identical with the molecule of the solid (e.g., N₂, CO), but in some, it is different. For instance, the clusters obtained from solid NO have N₂O₃ as the repeated unit. In the present paper, we report our results for another simple solid, oxygen.

EXPERIMENTAL

The secondary ion mass spectrometer [2,4] and the experimental procedures [1] have been described elsewhere. Research grade extra dry oxygen gas was purchased from Matheson.

RESULTS

The positive secondary ion mass spectrum of solid O₂ is a strong function of the nature of the primary ion. With He⁺, the spectrum is weak and only the peaks for O⁺ and, more weakly, O²⁺, are observed. With Ar⁺ and Kr⁺, the spectrum contains a peak at every multiple of 16, with the peaks corresponding to the compositions O⁺³n+2 far more intense than the others (Figure 1).

* Dedicated to Prof. R.M. MacFarlane on the occasion of his 50th birthday and presented at a symposium held in his honor at College Station, TX, USA, 15-18 May 1983.
The spectra of solid oxygen diluted with argon in various ratios were also measured. The positive SIMS of a 1:10 (O₂:Ar) mixture is shown in Figure 2.

Fig. 1. Positive SIMS of solid oxygen.

Fig. 2. Positive SIMS of a solid oxygen-argon mixture (1:10).
DISCUSSION

The SIMS of solid oxygen is readily understood in terms of the mechanistic hypothesis formulated earlier [1, 3, 4, 9]. With He⁺ as the primary ion, only ions sputtered off the surface during the collision cascade phase early in the impact process are observed, with a broad energy distribution (O⁺, O₂⁺). With heavier primary ions, the thermal spike region which subsequently develops has sufficient energy density to permit ejection of a large amount of material from the damage track into vacuum, producing slower cluster ions. The primary damage in the impact region will be due to the fragmentation, electronic excitation, and ionization due to fast nuclear motion and to secondary electrons:

\[\text{O}_2 \rightarrow \text{O}, \text{O}^+, \text{O}_2^-, \text{O}_2^-, \text{O}^+, \text{O}^{+\ast}, \text{O}_2^{+\ast}, \text{O}_2^{-\ast}, \text{e} \]

Except for those species which are rapidly ejected during the collision cascade part of the event, the primary damage centers will be subjected to reactions with the excess O₂ present and possibly with each other, producing secondary damage centers. For instance, for neutral O atoms,

\[\text{O}_2 + \text{O} \rightarrow \text{O}_3 \]

The charges will be scavenged by species of the lowest ionization potential or highest electron affinity: positive charge by O₂, negative by O or O₂. The positively charged clusters will probably still contain more O₂ than O as they separate from the solid. As they cool off by loss of the least firmly bound constituents, they become enriched in the more polar and polarizable O₃ and yield the observed species: the most abundant (O₃)O₂⁺ and the weaker (O₂)(O₃)O₂⁺ and (O₂)(O₃)O₂⁺.

The effect of dilution with argon also fits the proposed mechanism. More of the primary damage now involves argon atoms in processes such as

\[\text{Ar} \rightarrow \text{Ar}^+, \text{Ar}^+, \text{Ar}^{+\ast}, \text{Ar}^{+\ast} \]

These defects are highly mobile and lead to secondary damage on oxygen in processes such as

\[\text{Ar}^+ + \text{O}_2 \rightarrow \text{Ar} + \text{O}_2^+, \text{Ar}^+ + \text{O}_2 \rightarrow \text{Ar} + 2\text{O}_2 \]

Their high mobility is documented by the observation that O₂⁺ is by far the most intense peak even in a 1:10 mixture and also appears as an intense
cluster series, Ar\textsubscript{2}O+. Now, far less O\textsubscript{3} is available for the clusters, since the O atoms, formed in pairs, have much less opportunity to find an O\textsubscript{2} molecule to react with and either recombine or produce ArO+.

We conclude that the results obtained on solid O\textsubscript{2} agree with expectations based on the model proposed.

ACKNOWLEDGEMENT

This work was supported by the National Science Foundation (CHE 81-21122).

REFERENCES