Networking improves robustness in flexible-joint multi-robot systems with only joint position measurements

Emmanuel Nuño a,*, Romeo Ortega b, Bayu Jayawardhana c, Luis Basañez d

a Department of Computer Science, CUCET, University of Guadalajara, Mexico
b Laboratoire des Signaux et Systèmes, SUPÉLEC, Gif-sur-Yvette, France
c ITM, Faculty of Mathematics and Natural Sciences, University of Groningen, The Netherlands
d Institute of Industrial and Control Engineering, Technical University of Catalonia, Barcelona, Spain

A R T I C L E I N F O

Article history:
Received 2 February 2013
Accepted 26 September 2013
Recommended by A. Astolfi
Available online 9 October 2013

A B S T R A C T

This paper studies the robustness in the coordination—via energy-shaping—of multiple nonidentical flexible-joint robots with only joint position measurements. The control objective is to drive all manipulators link positions to the same constant equilibrium. If the physical parameters are exactly known, then a classical decentralized energy-shaping controller solves the desired control objective. However, under parameter uncertainty, the globally asymptotically stable equilibrium point is shifted away from the desired value. The main contribution of the paper is to show that the steady-state performance is improved adding to the decentralized control policy information exchange between the agents. More precisely, it is proven that the equilibrium with the networked controller is always closer (in a suitable metric) to the desired one than that using the decentralized controller, provided the communication graph representing the network is undirected and connected. This result holds globally for sufficiently large interconnection gains and locally (in a suitably defined sense) for all values of the gains. An additional advantage of networking is that the asymptotic stabilization objective can be achieved injecting lower gains into the loop. The paper also provides simulation and experimental evidence, which illustrate the fact that networking improves robustness with respect to parameter uncertainty.

© 2013 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The coordination of networks of multiple—linear and nonlinear—dynamical systems has been extensively studied in the past years [19,23,27,22,4,18]. The coordination main objective is that all systems reach a certain agreement point (consensus point). In many applications (e.g., formation control, network consensus, flocking of agents, synchronization along a given trajectory) the agents of the network have to follow a given desired trajectory (leader) where either each agent controller has the complete knowledge of such trajectory [15,1,13,21], or it contains an internal model that captures the dynamics of the desired trajectory [26,5]. In the referenced results, a distributed control approach using a communication network allows all agents to reach a common control goal despite that the agents can be non-identical and that the communications may induce time-delays.

In a recent work [16] it has been shown that, for a class of fully actuated Euler–Lagrange (EL) systems with complete state feedback, there is an advantage in interconnecting the agents: in the presence of parameter uncertainty, the networked equilibrium is always closer to the desired value than the decentralized one. It should be underscored that, in [10], this robustness property has also been observed in the centroid formation control of multiple thrust propelled vehicles without a formal proof.

The purpose of this paper is to extend the results of [16,17] to a class of under-actuated EL-systems without full state measurements. More precisely, to consider flexible-joint robot manipulators and assume that the controller has access only to the joint (motor) positions. That is, the system has more degrees of freedom (DOF) than control actions and neither the link or joint velocities nor the links positions are available for measurement. Consensus problems for under-actuated EL-systems have been studied in [14,3], assuming full state measurement. In the former the Controlled-Lagrangian technique is employed to solve the network consensus problem, while in the latter the results of [15] are extended to robots with flexible joints.

Control of single flexible-joint robots with full state measurement was first solved in [25]. It was later extended to the case of joint position measurements in [26]. In [7,20] an interpretation of these controllers in terms of energy-shaping was given. It is well-known that, in the case of known parameters, these controllers
generate a globally asymptotically stable (GAS) equilibrium at the desired constant value. However, this equilibrium is shifted away from the desired value in the face of parameter uncertainty. In a network, if the agents are identical, i.e., their (uncertain) parameters are identical, then the shifted equilibrium is the same for the decentralized and networked approaches, and thus, exchanging information does not offer any advantage to the resulting steady-state error. On the other hand, if the non-identical case is considered, the papers’ main result shows that adding information exchange between the agents to the decentralized controller improves the steady-state performance. More precisely, it is proven that if the agents exchange information through a network modeled by an undirected and connected communication graph, the equilibrium with the networked controller is always close (in a suitable metric) to the desired one than that with the decentralized control policy. The result holds globally for sufficiently large gains and locally (in a suitably defined sense) for all values of the gains.

The robustness improvement of the networked controller is illustrated through numerical simulations, with ten 2-DOF flexible-joint robot manipulators, and with experiments using two 3-DOF robot manipulators.

Notation: Unless stated otherwise, throughout the paper the subindex i takes values in the set $\{1, \ldots, m\}$, where $m \in \mathbb{Z}_+$ is the number of flexible-joint robot manipulators. This clarification is omitted for brevity. Also, we define $\text{col}(z_i)$ as the mn-dimensional column vector $[z_{i1}^\top, \ldots, z_{in}^\top]^\top$, where $z_i \in \mathbb{R}^n$, and $\text{diag}(A)$ as the square block-diagonal matrix $\text{diag}(A_1, \ldots, A_m) \in \mathbb{R}^{mn \times mn}$, where $A_i \in \mathbb{R}^{n \times n}$. The notations 1_m and 0_m denote vectors of dimension m with all entries equal to 1 and equal to zero, respectively. The square of the Euclidean norm of a vector $x \in \mathbb{R}^m$ is denoted as $|x|^2 = x^\top x$. For a positive definite matrix $W \in \mathbb{R}^{mn \times mn}$, the square of the weighted Euclidean norm of x is defined by $\|x\|_{W} := x^\top W x$, the spectrum of W is denoted by $\sigma(W)$ while the minimum and the maximum of its spectrum are denoted by $\sigma_{\text{min}}(W)$ and $\sigma_{\text{max}}(W)$, respectively. Finally, the (transposed) gradient of a scalar function $V : \mathbb{R}^n \to \mathbb{R}$, is denoted by $\nabla V := (\partial V / \partial x)^\top$ and its Hessian by $\nabla^2 V := \partial^2 V / \partial x^2$.

2. Background

In order to make the paper self-contained, this section briefly introduces the nonlinear model of the flexible-joint robot manipulators and the energy-shaping, position-feedback controller of [7]. This controller is used to illustrate the main result but, as will become clear later, the same result can be proven for any energy-shaping EL controller of the family given in Proposition 3.6 of [20].

2.1. Robots with joint flexibility

Let us consider a network of m non-identical, flexible-joint robot manipulators with n DOF. Directly actuated, revolute joints robots are assumed and the simplified model for flexibility of [24] is adopted. For every i, the nonlinear dynamics of the i-th manipulator is given by

$$
\begin{align*}
\mathbf{M}_i(q, \dot{q}) \ddot{q} + \mathbf{C}_i(q, \dot{q}) q + \mathbf{G}_i(q) + \mathbf{K}_i(\theta_i - \theta_i^*) &= \mathbf{0}_n, \\
\mathbf{J}_i(\dot{\theta}_i) + \mathbf{K}_i(\dot{\theta}_i - \dot{\theta}_i) &= \tau_i,
\end{align*}
$$

(1)

where $q \in \mathbb{R}^n$ is the link angular position and $\dot{\theta}_i \in \mathbb{R}^n$ is the joint (motor) angular position. The matrix $\mathbf{M}_i(q) \in \mathbb{R}^{n \times n}$ is the motor inertia, the matrix $\mathbf{C}_i(q, \dot{q}) \in \mathbb{R}^{n \times n}$ describes the Coriolis and centrifugal effects (defined via the Christoffel symbols of the first kind), the vector $\mathbf{G}_i(q) := \nabla U_i(q)$ is the gravity force with $U_i : \mathbb{R}^n \to \mathbb{R}$ the corresponding potential energy of the rigid dynamics, the matrix $\mathbf{J}_i \in \mathbb{R}^{n \times n}$ is the Jacobian of the joints, which is symmetric and positive definite, the matrix $\mathbf{K}_i(\dot{\theta}_i - \dot{\theta}_i)$ contains the joint stiffness coefficients, which is also symmetric and positive definite, and the vector $\tau_i \in \mathbb{R}^n$ is the control input. Note that the overall potential energy of the system is given by

$$
U_i(q) + \frac{1}{2} \left[\mathbf{q} \quad \dot{\theta}_i \right]^\top \begin{bmatrix} \mathbf{K}_i(-\mathbf{K}_i) & -\mathbf{K}_i \\
-\mathbf{K}_i & \mathbf{K}_i \end{bmatrix} \begin{bmatrix} \mathbf{q} \\
\dot{\theta}_i \end{bmatrix},
$$

that, following the principles of passivity-based control, is going to be shaped to assign a minimum at the desired equilibrium point.

For EL-systems described by (1), the following properties are well-known [24,8] and thus assumed throughout this paper.

(P1) $\mathbf{M}_i(q) \in \mathbb{R}^{n \times n}$ is symmetric and there exists $\lambda_{\text{min}}, \lambda_{\text{max}} > 0$ such that $0 < \lambda_{\text{min}} \mathbf{I}_n \leq \mathbf{M}_i(q) \leq \lambda_{\text{max}} \mathbf{I}_n$ holds for all $q \in \mathbb{R}^n$.

(P2) The matrix $\mathbf{M}_i(q) - 2 \mathbf{C}_i(q, \dot{q})$ is skew-symmetric.

(P3) There exists $k_{\text{fp}} > 0$ such that $|\mathbf{g}_i(q) / \|\dot{q}\|| \leq k_{\text{fp}}$. Hence, for all $q_1, q_2 \in \mathbb{R}^n$ the following inequality holds $|\mathbf{g}_i(q_1) - \mathbf{g}_i(q_2)| \leq k_{\text{fp}}|q_1 - q_2|$.

2.2. Stabilization with only joint position feedback

As described in Introduction, the control objective is to drive $q(t)$ towards a constant desired value $q_d \in \mathbb{R}^n$ using only the measurement of the joint angular positions. For this paper makes use of the output-feedback controller proposed in [7]. A relevant observation is that other recent controllers, as those in [12,13,9], cannot be employed here because they also require joint velocity and, the latter, joint torque measurements.

Thus, for every i, let

$$
\dot{\theta}_i = q_i + K_{i}^{\star} \mathbf{g}_i(q),
$$

(2)

which is a function of q_i, and consider the following output-feedback controller, proposed in [7]:

$$
\begin{align*}
\dot{y}_i &= -A_i y_i + K_{i} \theta_i, \\
\tau_i &= (\mathbf{g}_i(q) - K_{i} \mathbf{q}_i) - K_{i}^\star (\mathbf{g}_i(q) + K_{i} \mathbf{q}_i - \mathbf{q}_i).
\end{align*}
$$

(3)

where $y_i \in \mathbb{R}^n$ is the controller state and $K_{i}^\star A_i, K_{i} \in \mathbb{R}^{n \times n}$ are symmetric and positive definite matrices. As shown in [20], this controller assigns to the closed-loop system the desired potential energy function:

$$
V(q_i, \theta_i) = U_i(q) + q^\top \Phi_i (q - q_i) + \frac{1}{2} \begin{bmatrix} q - q_i \\
\theta_i - \theta_i^* \end{bmatrix}^\top \begin{bmatrix} \mathbf{q}^i - q_i \\
\theta_i - \theta_i^* \end{bmatrix},
$$

(4)

where

$$
\Phi_i := \begin{bmatrix} K_i & -K_i \\
-K_i & K_i + K_{i}^\star \end{bmatrix}.
$$

Clearly, the gradient of V_i evaluated at (q_i, θ_i) satisfies $\nabla V_i(q_i, \theta_i) = 0$. Moreover, $\nabla^2 V_i(q_i, \theta_i) = \sigma_{\text{min}}(\Phi_i) > 0$. Hence, if $\min_i(\Phi_i) > k_{\text{fp}}$ then $\nabla^2 V_i(q_i, \theta_i) > 0$, achieving the desired energy-shaping objective. Moreover, the controller injects a damping that back-propagates to ensure that $(\mathbf{q}_i, \theta_i, q_i, \dot{\theta}_i, y_i) = (\mathbf{q}_i^\star, \theta_i^\star, 0_n, 0_n, A_i^{\star} K_{i}\theta_i)$ is a GAS equilibrium. Indeed, the Lyapunov function:

$$
W_i(q_i, \theta_i, q_i, \dot{\theta}_i, y_i) = \frac{1}{2} |q_i^\top \mathbf{M}_i(q_i) q_i + \dot{\theta}_i^\top \Phi_i \dot{\theta}_i + A_i y_i + K_{i} \theta_i^2| + V_i(q_i, \theta_i)
$$

is proper, i.e., radially unbounded, and satisfies $W_i(q_i, \theta_i, q_i, \dot{\theta}_i, y_i) = -\max_i(\Phi_i) \|\dot{\theta}_i\|^2 \leq 0$. Since the closed-loop system with

\[As shown in [20], a sufficient condition is $\min_i(K_i, K_{i}^\star) > 3(3 - \sqrt{5})k_{\text{fp}}.\]
the output \(-A_y \dot{y} + K_d \dot{\theta}\) is observable (with respect to the equilibrium state), the GAS claim follows immediately. This GAS property has been established in [2].

3. Stabilization with parameter uncertainty

As stated in Introduction, this paper investigates the performance of the aforementioned output-feedback controller when the parameters appearing in the gravity term of the control law are not precisely known. It is assumed that the upper-bound constant \(k_g\) is available and that the estimated gravity force \(\hat{g}\) satisfies \(|\nabla_{\theta} \hat{g}(q)| \leq k_g\) for all \(q\).

In what follows, the subscript \(D\) refers to the decentralized scheme while the subscript \(N\) corresponds to the networked scheme.

3.1. The decentralized controller

Due to the uncertainty in \(g_i\), let us define the desired motor joint position \(\theta_s \in \mathbb{R}^{n}\) as
\[
\dot{\theta}_s := q_s + K_1 \nabla_{\theta_s} \hat{g}(q_s).
\]
In this case, the output-feedback decentralized controller (3) becomes
\[
y_i = -A_y y_i + K_{dy} \dot{\theta}_i
\]
\[
\tau_{di} = \hat{g}_i(q_i) - K_{p}(\theta_i - \dot{\theta}_s) - K_{d}(A_y y_i + K_{dy} \dot{\theta}_i).
\]
The closed-loop system (1) and (6), using the fact that \(K_1(\dot{\theta}_s - \dot{\theta}_i) - \hat{g}_i(q_i) = 0\), is given by
\[
M_i(q_i, \dot{q}_i, \dot{q}_i) + \dot{g}_i(q_i) + K_i(q_i - q_s) - K_i(\dot{\theta}_i - \dot{\theta}_s) = 0 \quad \forall i
\]
\[
\dot{\theta}_i + (K_1 + K_d)(\dot{\theta}_i - \dot{\theta}_s) + K_1 \sum_{j \in \mathcal{N}_i} \left(\dot{\theta}_j - \dot{\theta}_i\right)\]
\[
y_i + A_y y_i - K_{dy} \dot{\theta}_i = 0 \quad \forall i
\]

hence the EL-systems are endowed with the following potential energy:
\[
V_{D_i}(q_i, \theta_i) = U_i(q_i) - q_i^T \hat{g}_i(q_i) + \frac{1}{2} \left[q_i - q_s\right]^T \Phi_i \left[q_i - q_s\right].
\]

Remark that the extrema of this function are the solutions \((\bar{q}_{D_i}, \bar{\theta}_{D_i})\) of
\[
\begin{bmatrix}
\hat{g}_i(q_i) - \bar{g}_i(q_i) \\
0
\end{bmatrix}
+ \Phi_i \begin{bmatrix}
\bar{q}_{D_i} - q_s \\
\bar{\theta}_{D_i} - \theta_s
\end{bmatrix} = 0_{2n},
\]
which clearly coincide with the desired values if \(\hat{g}_i = g_i\), otherwise they are shifted. Another important property of \(V_{CN}\) is that \(\nabla^2 V_{D_i}(q_i, \theta_i) = \nabla^2 V_{CN}(q_i, \theta_i)\) where \(V_i = \nabla^2 V_{D_i}(q_i, \theta_i)\) is as in (4). Therefore, similar to the known parameter case, if \(\sigma_{min}(\nabla^2 V_{D_i}) > k_g\) then \(\nabla^2 V_{D_i} > 0\) and thus \(V_{D_i}\) is a convex function with an isolated global minimum at \((\bar{q}_{D_i}, \bar{\theta}_{D_i})\). Similar to the previous subsection, it is straightforward to show that for every agent \(i\) the equilibrium point \((q_i, \theta_i, q_s, \dot{\theta}_s, y_i) = (\bar{q}_{D_i}, \bar{\theta}_{D_i}, 0_n, 0_n, A_y^{-1} K_{dy} \bar{\theta}_{D_i})\) is GAS.

3.2. The networked controller

We will now consider the networked controller, where for every agent \(i\), the output-feedback controller (6) is interconnected in a network as follows:
\[
y_i = -A_y y_i + K_{dy} \dot{\theta}_i
\]
\[
\tau_{Ni} = \tau_{Di} - K_i \sum_{j \in \mathcal{N}_i} \left(\theta_j - \dot{\theta}_i + \dot{\theta}_s\right).
\]
where \(\mathcal{N}_i\) is the set of agents transmitting information to the \(i\)-th agent, \(K_i = K_i \in \mathbb{R}^{n \times n}\) and \(K_i > 0\). This corresponds to attaching linear springs between the joints of the “neighboring” manipulators. See Fig. 1 for the physical interpretation of the decentralized and the networked controllers using a couple of flexible-joint pendula.

In what follows, we will make use of the graph Laplacian matrix \(L \in \mathbb{R}^{m \times m}\), whose elements are defined by
\[
\ell_{ij} = \begin{cases}
\sum_{k=1}^{m} a_{ik}, & i = j \\
- a_{ij}, & i \neq j
\end{cases}
\]
where \(a_{ij} = 1\) if \(j \in \mathcal{N}_i\) and \(a_{ij} = 0\) otherwise [19].

In order to ensure that the interconnection forces—i.e., the second right hand terms in (9)—are generated from a potential energy function, the following assumption is needed:

Assumption 1. The undirected communication graph is connected.\(^2\)

The closed-loop system (1) and (9) is given by
\[
\begin{align*}
\dot{q}_i + (K + K_{dy})(\dot{\theta}_i - \dot{\theta}_s) + K_{dy} \sum_{j \in \mathcal{N}_i} \left(\dot{\theta}_j - \dot{\theta}_i\right) - K_i(q_i - q_s) - K_i(\theta_i - \dot{\theta}_s) &= 0 \quad \forall i,
\end{align*}
\]
which is the unique solution to
\[
\begin{align*}
M_i(q_i, \dot{q}_i, \dot{q}_i) + \dot{g}_i(q_i) + K_i(q_i - q_s) - K_i(\dot{\theta}_i - \dot{\theta}_s) &= 0 \quad \forall i,
\end{align*}
\]
\[
\begin{align*}
\dot{\theta}_i + (K_1 + K_d)(\dot{\theta}_i - \dot{\theta}_s) + K_1 \sum_{j \in \mathcal{N}_i} \left(\dot{\theta}_j - \dot{\theta}_i\right) &= 0 \quad \forall i,
\end{align*}
\]
\[
y_i + A_y y_i - K_{dy} \dot{\theta}_i = 0 \quad \forall i
\]

Defining \(\theta = \text{col}(\theta_1, \dot{\theta}_2, \ldots, \dot{\theta}_n)\) and \(q = \text{col}(q_1)\), the potential energy of the EL-system in (11) satisfies
\[
V_N(q, \theta) = \frac{1}{2} (\theta - \dot{\theta}_s)^T (L \otimes K_1)(\theta - \dot{\theta}_s) + \sum_{i=1}^{m} V_{D_i_i}
\]

Furthermore, \(\nabla V_N(q, \theta)\) is given by
\[
\nabla V_N(q, \theta) = \begin{bmatrix}
0_{m \times n} \\
(L \otimes K_1)(\theta - \dot{\theta}_s)
\end{bmatrix}
\]
\[
+ \begin{bmatrix}
-K \\
K + K_{dy}
\end{bmatrix}
+ \begin{bmatrix}
q - (1_{m \otimes q_1}) \\
\theta - \dot{\theta}_s
\end{bmatrix}
\]
\[
+ \begin{bmatrix}
\Phi_i(q_i - \bar{q}_{D_i}) \\
0_{m \times n}
\end{bmatrix}
\]
and
\[
\nabla^2 V_N(q, \theta) = \begin{bmatrix}
\frac{\Phi_i(q_i - \bar{q}_{D_i})}{\ell_{ij}} \\
0_{m \times n}
\end{bmatrix},
\]
where \(K_i = \text{diag}(K_i) \in \mathbb{R}^{m \times n \times n}\) and \(K_{dy} = \text{diag}(K_{dy}) \in \mathbb{R}^{n \times m \times n}\), \(g(q)\) = \text{col}(\dot{g}_i(q_i)) and \(\Psi_i = \begin{bmatrix}
K & -K \\
-K & K + K_{dy}
\end{bmatrix}
\]

Clearly, if \(\sigma_{min}(\Psi_i) > \max(k_{dy})\) then \(V_N\) is a convex function with an isolated minimum at \((q_{D_i}, \theta_{D_i})\) which are the unique solution to \(\nabla V_N(q_{D_i}, \theta_{D_i}) = 0\). By denoting \(y = \text{col}(y_i)\), \(A = \text{diag}(A_1)\) and \(K_{dy} = \text{diag}(K_{dy})\), it can be shown that the equilibrium point of the whole network \((q, \theta, q_s, \dot{\theta}_s) = (q_{D_i}, \theta_{D_i}, 0_n, 0_n, A_y^{-1} K_{dy} \theta_{D_i})\) is GAS.

\(^2\) It is well known that Assumption 1 ensures that \(L = L^T\), \(L_{ij} = 0\) and \(1_n^T L = 0\).

Further, \(\dot{\theta}\) has a single 0 eigenvalue and the rest of its spectrum is strictly positive. Moreover, for any \(y \in \mathbb{R}^{n}\),
\[
y^T (L + K_y \otimes I) y + \sum_{i=1}^{m} \sum_{j \in \mathcal{N}_i} (y_i - y_j)^T K_{dy}(y_i - y_j) \geq 0,
\]
where \(\otimes\) is the standard Kronecker product.
4. Networking improves robustness

In this section it is proved that the networked controller drives the equilibrium point closer (in a suitable defined metric) to the desired one than the decentralized controller. For, let us define the following equilibrium errors for the decentralized and the networked controllers:

\[
\hat{x}_c := \begin{bmatrix} \hat{q}_c \\ \hat{\theta}_c \end{bmatrix} = \begin{bmatrix} \tilde{q}_c - (1_m \otimes q_\star) \\ \tilde{\theta}_c - \hat{\theta}_\star \end{bmatrix},
\]

(13)

where \(\tilde{q}_c := \text{col}(\bar{q}_c) \in \mathbb{R}^{mn} \) and the subindex \(C \in \{D, N\} \). Defining

\[
\begin{bmatrix} K & -K \\ -K & K + K_p \end{bmatrix}, \quad G(q) := \begin{bmatrix} g(q) \\ 0_{mn} \end{bmatrix} \in \mathbb{R}^{2mn},
\]

the decentralized equilibrium equations (8) can be written in matrix form as

\[
\begin{bmatrix} K & -K \\ -K & K + K_p \end{bmatrix} x_D + G(q_D) = G(1_m \otimes q_\star).
\]

(14)

Similarly, the networked equilibria satisfies

\[
\begin{bmatrix} K & -K \\ -K & K + K_p \end{bmatrix} x_N + L \hat{x}_N + G(q_N) = G(1_m \otimes q_\star),
\]

(15)

where

\[
L = \begin{bmatrix} 0_{mn \times mn} & 0_{mn \times mn} \\ 0_{mn \times mn} & 0_{mn \times mn} \end{bmatrix}.
\]

Note, from (14) and (15) that the equilibria of the decentralized and the networked controller coincide if \(L \hat{x}_N = (1_m \otimes \hat{\theta}_N) \) where \(\hat{\theta}_N \in \mathbb{R}^n \). Hence, it is reasonable to assume the following:

Assumption 2. For all \(i \) and all \(j \in N_\delta, \hat{\theta}_{N_i} \neq \hat{\theta}_{N_j}, \) i.e., \(\hat{\theta}_N \) is not in the identity set.

Assumption 2 is always satisfied when the agents are non-identical and the controllers have different proportional gains \(K_p \) and different estimated parameters in the terms \(\bar{q}_c(q_\star) \). This fact can be easily established from (8).

The following proposition states the main result of this work, that is (i) provided a minimum interconnection gain, the equilibrium error of the decentralized scheme is always greater than the equilibrium error of the networked scheme (in a suitable defined metric) and (ii) if both equilibria are close enough then, for all interconnection gains, the error of the decentralized scheme is strictly greater than the error of the networked scheme.

Proposition 1. Consider a network of \(m, n\)-DOF, flexible-joint manipulators of the form (1) in closed loop with either the decentralized controller (3), verifying \(\sigma_{\min}(\bar{Y}) > \max|k_p| \), or the networked controller (9), verifying \(\sigma_{\min}(Y + \Lambda) > \max|k_p| \). Then, if Assumptions 1 and 2 hold, the following statements hold for all \(\bar{g}_i(q) \):

(i) There exists \(K_{p}^{\min} > 0 \) such that for all \(K_i \) satisfying \(\sigma_{\min}(K_i) \geq K_{p}^{\min} \), the steady-state errors of the decentralized and the networked controllers in (13) satisfy

\[
\|\bar{x}_D\|_{\bar{W}} \geq \|\bar{x}_N\|_{\bar{W}} + \alpha
\]

for some \(\bar{W} \geq 0 \) and \(\alpha > 0 \).

(ii) If there exists \(q \in \mathbb{R}^{mn} \) such that \(|\bar{q}_D - q| \leq \epsilon \) and \(|\bar{q}_N - q| \leq \epsilon \), where \(\epsilon > 0 \) is sufficiently small, then, for all \(K_i > 0 \),

\[
\|\bar{x}_D\|_{\bar{W}}^2 = \|\bar{x}_N\|_{\bar{W}}^2 + \beta,
\]

where \(\beta = \|\bar{x}_D - \bar{x}_N\|_{\bar{W}}^2 + \bar{\theta}_N^\top (L \otimes K_i) \bar{\theta}_N > 0 \) and \(\bar{W} = Y^+ \Lambda G(q) > 0 \).

Proof. First note that, (14) and (15) imply the following:

\[
\bar{Y}(\bar{x}_D - \bar{x}_N) = \hat{L} \hat{x}_N + G(q_N) - G(q_D).
\]

(17)

Now, for ease of presentation, let us prove first claim (ii). By invoking the assumption that the equilibria are close to approximate the gravity forces as \(g(q) \approx g(q) + \bar{g}(q) \), the expression (17) can be approximated by the linear equation:

\[
\bar{W}(\bar{x}_D - \bar{x}_N) = \hat{L} \hat{x}_N.
\]

(18)

Pre-multiplying (18) by \(\bar{x}_N^\top \) and after some algebraic manipulations we get

\[
\hat{x}_N^\top \bar{W}(\bar{x}_D - \bar{x}_N) \hat{x}_N = (\bar{x}_D - \bar{x}_N)^\top \bar{W}(\bar{x}_D - \bar{x}_N) + 2 \bar{x}_N^\top \hat{L} \hat{x}_N.
\]

Assumptions 1 and 2 ensure that

\[
2 \bar{x}_N^\top \hat{L} \hat{x}_N = \sum_{i=1}^{N} \sum_{j \in N_i} \left(\hat{\theta}_{N_i} - \hat{\theta}_{N_j} \right)^\top K_i (\hat{\theta}_{N_i} - \hat{\theta}_{N_j}) > 0
\]

(19)

and if \(K_p \) is set such that \(\sigma_{\min}(\bar{Y}) > \max|k_p| \) then \(\bar{W} > 0 \). This completes the proof of claim (ii).

Let us proceed now to establish claim (i). Using (13) we can write \(\bar{g}(q_D) = g(1_m \otimes q_\star) + q_\star \). For every agent \(i \), using the continuity of \(\bar{g} \) and the mean-value theorem, we have that for every \(k \in \{1, 2, ..., n\} \), there exist \(a_k \in [q_\star, q_\star + q_{D_k}] \subset \mathbb{R}^p \) and \(b_k \in [q_\star, q_\star + q_{N_k}] \subset \mathbb{R}^q \), where \([q_\star, q_\star] \) denotes the straight line interval between
where g_a^k denotes the k-th element of g_a.

Now, denoting $\text{VG}_a=\text{diag}(\text{VG}_a(b_a))$ and $\text{VG}_N=\text{diag}(\text{VG}_N(b_N))$, where

$$
\text{VG}_a(a_k) = \begin{bmatrix}
\text{VG}_a^1(a_1) \\
\text{VG}_a^2(a_2) \\
\vdots \\
\text{VG}_a^n(a_n)
\end{bmatrix}, \\
\text{VG}_N(b_k) = \begin{bmatrix}
\text{VG}_N^1(b_1) \\
\text{VG}_N^2(b_2) \\
\vdots \\
\text{VG}_N^n(b_n)
\end{bmatrix},
$$

then (17) can be compactly written as

$$
Y(x_D - \tilde{x}_N) = \Delta x_N + \text{VG}_N \tilde{x}_N - \text{VG}_D x_D. \quad (20)
$$

Due to the continuity of the potential energy $U(q_i)$ and the fact that $\sigma_{\text{min}}(\nabla_i) > \max|k_i|$, we have that $\text{VG}_N=\text{YG}_N$ and $\text{VG}_D=\text{YG}_D$ are positive definite matrices. Using VG_N and VG_D, (20) becomes $\text{VG}_D x_D = \text{VG}_N x_N + \Delta x_N$, which can be used to prove the claim of (ii), implies that

$$
\forall x_N, W_N x_N - \Delta x_N, W_N x_N = x_N, W_N x_N - 2\text{N}_i, W_N x_N + \Delta x_N, W_N x_N + 2\text{N}_i, \Delta x_N.
$$

Since $\tilde{x}_N^i, W_N \tilde{x}_D = \tilde{x}_N^i, W_N \tilde{x}_N - W_N x_N + \Delta x_N, W_N x_N + 2\text{N}_i, \Delta x_N$. Adding the term $\text{VG}_N \tilde{x}_N - \text{VG}_N \tilde{x}_N - W_N \tilde{x}_N + W_N \tilde{x}_N - W_N \tilde{x}_N + W_N \tilde{x}_N$ on the above equation, yields

$$
||\Delta x_N||_{W_N}^2 = ||\Delta x_N||_{W_N}^2 ||\Delta x_N||_{W_N}^2 + ||\Delta x_N||_{W_N}^2 (2\text{N}_i, W_N - W_N \tilde{x}_N + W_N \tilde{x}_N)_{\tilde{x}_N}^2.
$$

Fix $\mu > 0$ and define

$$
K_i^{\text{min}} = \sum_{k=1}^{n} \sum_{j=1}^{n} |g_j^k|^2 \mu + (\sigma_{\text{max}}(W_N W_N^{-1} W_N - W_N W_N^{-1} W_N)) ||\Delta x_N||_{W_N}^2.
$$

Invoking (19) it is easy to see that, for all K_i satisfying $\sigma_{\text{min}}(K_i) > K_i^{\text{min}}$, we have the bound

$$
\forall x_N, W_N x_N - 2\text{N}_i, W_N x_N + 2\text{N}_i, \Delta x_N, \Delta x_N, \sigma_{\text{min}}(K_i) > K_i^{\text{min}}, \\
$$

and hence (16) holds with $\alpha = ||x_D - W_N^{-1} W_N x_N||_{W_N}^2 + \mu$. This completes the proof. \Box

4.1. Remarks

(1) Claim (i) of Proposition 1 shows that networking reduces the stead-state error if the interconnection gain K_i is sufficiently large. In claim (ii) it is assumed that the equilibria are close, which is essential to obtain the linear equation (18) that approximates the link gravity forces in a neighborhood of q_i. The interest of (ii) is threefold. First, it allows to prove that the networked equilibrium point is strictly closer to the desired equilibria for any $K_i > 0$. Second, it replaces the estimate on the errors norms, with a sharp identity. Finally, an explicit expression for the norm weight, which is only known to exist for the general case, is given. It should be underscored that these results hold for any equilibria if the potential energy function is quadratic.

(2) The networked controller can potentially achieve the GAS objective using lower gains K_i, than the decentralized scheme. Indeed, the former condition is $\sigma_{\text{min}}(\nabla_i) > \max|k_i|$, while the decentralized condition is $\sigma_{\text{min}}(\nabla_i) = \max|k_i|$. This shows that such condition is sufficient, but not necessary, for positiveness of the Hessian $\nabla^2 Y(q, \nabla)$. Hence a minimum can be assigned to the networked closed-loop potential energy with smaller controller gains K_i.

(3) It is important to remark that, if the stiffness coefficient of the linking spring K_i increases, the gap between the errors of the two approaches also increases, that is, σ and β in Proposition 1 are larger. Clearly, the values of K_i required to increase the gap are inversely proportional to the distance of the equilibria to the unitary set. Moreover, for the global result (i), the value of K_i^{min} is unknown.

5. Numerical simulations

Some numerical simulations have been performed to illustrate the robustness improvement due to the interconnection. The simulations employ a network of ten 2-DoF revolute flexible-joint robot manipulators. Each manipulator nonlinear dynamics follows the EL-equations (1), whose inertia and Coriolis matrices are given, respectively, by

$$
\text{M}_i(q_i) = \begin{bmatrix}
\alpha_i + 2\beta_i \xi_i & \beta_i \xi_i \\
\beta_i \xi_i & \beta_i \xi_i
\end{bmatrix}, \\
\text{C}_i(q_i, \dot{q}_i) = \begin{bmatrix}
-2\beta_i \xi_i \dot{q}_i & -\beta_i \xi_i \dot{q}_i \\
-\beta_i \xi_i \dot{q}_i & 0
\end{bmatrix}.
$$

In these expressions, ξ_i, β_i are short notation for $\cos(q_i)$ and $\sin(q_i)$, q_i is the position of link k of manipulator i, with $k \in \{1, 2\}$; $\alpha_i = \frac{\ell_i}{l_i} m_i + \frac{\ell_i}{l_i} m_i + m_i$, $\beta_i = l_i l_i m_i$, and $\xi_i = \frac{\ell_i}{l_i} m_i$, where l_i and m_i are the respective lengths and masses of each link, respectively. The potential energy, due to gravity, of each manipulator is $U_i(q_i) = g l_i (m_i + m_i)(1 + s_i) + g m_i l_i (1 + s_i)$ where s_i stands for $\sin(q_i) + \dot{q}_i$ and $g = 9.81 \text{ m s}^{-2}$ is the acceleration of gravity constant.

In this case

$$
\text{v}^2 U_i(q_i) = -g m_i l_i \left[\frac{\ell_i}{l_i} \frac{m_i}{m_i} \right] S_i + S_i + S_i + S_i.
$$

As stated in Section 3, the gravity term $g_i(q_i) = \nabla U_i(q_i)$ is uncertain. In these simulations it is assumed that uncertainty appears due to the mass coefficients. The decentralized and networked controller employ only an estimated upper bound of the mass, denoted $\overline{m}_i, \overline{m}_i$. Hence

$$
\hat{g}_i(q_i) = g_i(\overline{m}_i + \overline{m}_i) \cos(q_i) + \overline{m}_i \dot{q}_i \cos(q_i) + \overline{m}_i l_i \cos(q_i) + \overline{m}_i l_i \cos(q_i) + \overline{m}_i l_i \cos(q_i) + \overline{m}_i l_i \cos(q_i).
$$

After some straightforward calculations, it yields $|\nabla \hat{g}_i(q_i)| \leq (1/2) g m_i l_i (l_i + 2 + \sqrt{2} + 4)$ where $b_i = (l_i/l_i) \left((\overline{m}_i/\overline{m}_i) + 1 \right)$.

The flexible-joint manipulators network is composed of three different groups, with all members in each group equal. For simplicity, all m link lengths have been set to $l_i = l_i = 0.25 \text{ m}$. The rest of the physical parameters and the initial link positions for each manipulator are shown in Table 1. The initial joint (motor) positions are equal to the initial link positions, i.e., $\theta(0) = q(0)$, and the initial velocities are all set to zero.

The mass upper bounds have all been set as $\overline{m}_i = 3$, and $\overline{m}_i = 3$. Thus, $|\nabla \hat{g}_i(q_i)| \leq 18.2721$. In order to ensure the existence of a unique solution of the equilibria, the proportional gains K_i, for both controllers must be set such that $\sigma_{\text{min}}(\Phi_i) > |\nabla \hat{g}_i(q_i)|$ for all manipulators. Setting $K_i = 40 l_i$ ensures this condition since, for manipulators 1–4, $\sigma_{\text{min}}(\Phi_i) = 19.2013$, for manipulators 5–7, $\sigma_{\text{min}}(\Phi_i) = 19.0025$, and for manipulators 8–10, $\sigma_{\text{min}}(\Phi_i) = 18.6725$. The filter gains are $K_\theta = 15 l_i, \Lambda_\theta = 15 l_i$ for all controllers. Finally, the desired position is $q_i = \{0, 0\}^\top$ rad which is a point with maximum gravity torques.

1. It is important to underscore that this does not mean that the motion of the flexible joint manipulators are restricted to a small neighborhood, but only that their equilibria are close.
The interconnecting Laplacian matrix is
\[
L = \begin{bmatrix}
 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
-1 & 2 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 \\
 0 & -1 & 0 & -1 & 3 & -1 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 \\
-1 & 0 & -1 & 0 & 0 & 0 & 0 & -1 & 0 & 3
\end{bmatrix}
\]
which corresponds to a simply connected undirected graph. Note that \(\mathbf{1}_{10} \) is the left and right eigenvector associated to the single zero eigenvalue of \(L \).

To verify the robustness improvement of the networked controller, different values of the interconnection gain have been simulated, namely \(K_I \in \{0.01I_2, 0.1I_2, I_2, 10I_2, 100I_2, 1000I_2\} \). Table 2 shows the numerical values of the norms of the decentralized and the networked equilibria for the different values of \(K_I \). The regulation results for the decentralized controller (\(K_I = 0 \)) can be seen in the first column of Fig. 2 (for sake of space only the link positions are shown). Since there are three different groups, each one with identical agents, it can be seen that there are three different equilibria that do not coincide with the desired link position \(q_\star \).

On the other hand, the behavior of the system controlled with the networked approach is depicted, for some of the interconnection

![Fig. 2. Link angular positions and errors for different values of interconnection gains and for \(q_\star = [0, 0]^T \).](image)

![Fig. 3. Experimental setup, composed of two PHANToM Omnix devices.](image)
gains, in the second and the third columns of Fig. 2. In all cases it has been confirmed that $|\mathbf{x}_D| > |\mathbf{x}_N|$.

6. Experiments

This section presents, in the same spirit as the previous one, some experimental evidence that supports the main thesis of the paper: interconnection improves performance. The experimental setup is composed of two 3-DOF mechanical systems. These devices (agents) are the PHANToM Omni®, from Sensable Technologies (http://sensable.com). The devices run in the same computer connected through a Firewire 1934 port. Fig. 3 shows this experimental setup. The controller and all software are implemented in Matlab Simulink®.

Since the PHANToM Omni® devices are fully actuated, the flexible-joint (under-actuated) behavior is emulated using the control scheme in Fig. 4. The closed-loop behavior of such a system is the same as (1). The motor inertia has been set to $J_1 = \text{diag}(0.25, 0.15, 0.1)$ and the manipulator joint stiffness is set to $K_i = 0.9I_1$.

Both the decentralized and the networked controllers are the implementation of (6) and (9) with the gravity vector given by $\mathbf{g}(\mathbf{q}) = \text{col}(0, \mathbf{g}_2, \mathbf{g}_3)$ where $\mathbf{g}_2 = \hat{p}_1 \sin(q_2 + q_3) + \hat{p}_2 \cos(q_2)$ and $\mathbf{g}_3 = \hat{p}_1 \sin(q_2 + q_3)$ for $\hat{p}_1 = \mathbf{m}_2l_2$ and $\hat{p}_2 = \mathbf{m}_2l_2 + \mathbf{m}_1l_1$. In the experiments, the estimation of the physical parameters is $\hat{p}_1 = 1.305 \, \text{Kg} \cdot \text{m}$ and $\hat{p}_2 = 0.2246 \, \text{Kg} \cdot \text{m}$. It can be easily calculated that $\|\mathbf{g}(\mathbf{q})\| \leq 0.415$. Choosing $K_{fi} = 1.5I_1$ yields $\sigma_{\text{min}}(\Phi_f) = 0.4785$. The rest of the control gains is $K_d = 0.8I_1$ and $A_i = 2.5I_1$. The desired position is $\mathbf{q}_s = [0, 0.6, 0.4]^T$.

The experiments employ different values of interconnection gains, namely $K_i \in \{0.1I_1, 1I_1, 2I_1, 5I_1, 10I_1\}$. Table 3 shows the experimental values of the norms of the decentralized and networked equilibria for the different values of K_i.

![Fig. 4. Emulated flexible-joint manipulator.](image)

Table 3
Numerical error norms of the decentralized and networked equilibria for $\mathbf{q}_s = [0, 0.6, 0.4]^T$ rad for different values of the interconnection gain K_i.

<table>
<thead>
<tr>
<th>K_i</th>
<th>$0I_1$</th>
<th>$0.1I_1$</th>
<th>I_1</th>
<th>$2I_1$</th>
<th>$5I_1$</th>
<th>$10I_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>\mathbf{x}_D</td>
<td>^2$</td>
<td>0.3009</td>
<td>0.2406</td>
<td>0.2082</td>
<td>0.1760</td>
</tr>
<tr>
<td>$</td>
<td>\mathbf{x}_N</td>
<td>^2$</td>
<td>0.3009</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. Conclusions

This paper shows that the robustness, of a class of (potential) energy-shaping controllers, for the coordination of multiple flexible-joint EL-systems is improved exchanging information between the agents, provided that the graph representing the

![Fig. 5. Robot link positions and errors for different values of interconnection gains and for $\mathbf{q}_s = [0, 0.6, 0.4]^T$.](image)
network is undirected and connected. It is proved that there exists a lower bound for the interconnection gain that ensures the improvement (in a suitable metric). This lower bound is inversely proportional to the distance of the joint (motor) equilibria to the unitary set. On the other hand, if the equilibria of the decentralized and networked controllers are close together, improvement is achieved for all interconnection gains.

In order to show the robustness effect, the paper presents some numerical simulations using a network composed of ten 2-DOF flexible-joint robot manipulators and experiments with two 3-DOF mechanical manipulators.

Two research avenues are currently being pursued. First, to analyze this robustifying feature when delays arise in the interconnection communications. Second, to extend the result to a larger class of underactuated EL-systems—that is, beyond robots with flexible-joints—and to other energy-shaping controllers, for instance, those including kinetic energy-shaping.

Acknowledgements

The authors gratefully acknowledge the Guest Editors and the Reviewers comments and suggestions, which have improved the quality of this paper. This work has been partially supported by the Mexican project CONACYT CB-129079 and the Spanish CICYT projects DPI2010-15446 and DPI2011-22471.

References