De conformatie van enige ortho-tertiairbutylverbindingen en van de dithienyllen
Visser, Gerrit Jan

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date: 1969

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-09-2020
SUMMARY

The synthesis of o-di-t-butyl heteroaromatics has involved difficulties, because of steric hindrance between the t-butyl groups. To obtain more information about the strain in these molecules, the structures of two o-di-t-butyl heteroaromatics, viz. 4,5-di-t-butylimidazole (DTBI) and 2,3-di-t-butylquinoxaline (DTBC), have been determined by X-ray diffraction. Both compounds are monoclinic, space groups P2₁/n and P2₁/c respectively, with two independent molecules per cell. The experimental part of the structure determinations is described in chapter 2 (DTBI) and chapter 3 (DTBC). The intensities of the reflexions of DTBC were measured on an automated Nonius diffractometer at room temperature and at low temperature (-155°C), those of DTBI were collected at low temperature only. The structure models were found by means of the symbolic addition method (Karle and Karle, 1966), using the low temperature (L. T.) intensities of DTBI and the room temperature (R. T.) intensities of DTBC. The coordinates and anisotropic thermal parameters of the 'heavy' atoms were refined by least-squares techniques. Hydrogen atoms were introduced with isotropic temperature factors, with fixed parameters for DTBI and variable parameters for DTBC. The indices R at the end of the refinements are 0.085 (DTBI; 5359 reflexions), 0.072 (DTBC, R. T.; 3296 refl.) and 0.062 (DTBC, L. T.; 8324 refl.). The estimated standard deviations in bond lengths and angles are 0.005 Å and 0.35° for DTBI, 0.005-0.007 Å and 0.4° for DTBC (R. T.) and 0.0035 Å and 0.23° for DTBC (L. T.).

The results are discussed in chapter 4. The two crystallographic non-equivalent molecules of DTBC show an interesting difference. In one of the molecules the quinoxaline group is approximately planar, whereas in the other one this group has a somewhat twisted structure. The non-
planar quinoxaline group lies at shorter distances from its neighbours in the crystal than the planar one. Therefore the deviations from planarity have probably to be ascribed to intermolecular interaction in the crystal; they are not due to steric hindrance of the t-butyl substituents. A similar phenomenon, although less pronounced, occurs in DTBI. Apart from the differences in conformation mentioned above no essential differences have been observed between the corresponding independent molecules at low temperature, and between the room and low temperature structure of DTBC. In the crystal structure of DTBI the molecules have formed chains in which they are linked by N-H...N hydrogen bonds of 2.04 and 1.98 Å.

The conformation of the t-butyl groups is discussed in chapter 5. In DTBC, DTBI and in 1,2,4,5-tetra-t-butylbenzene (TTBB) investigated by v. Bruijnsvoort, Eilermann, v.d. Meer and Stam (1968) essentially the same conformation has been observed for the o-t-butyl groups. In each of the molecules the o-t-butyl groups are related by pseudo two-fold symmetry and fit together like gear wheels (Fig. 5.1c and d). The angles around the quarternary carbon atoms are deformed such as to release the strain between the groups. Between the t-butyl groups in DTBC there are six C...C distances shorter than 3.50 Å, the remaining distances are larger than 3.90 Å. For DTBI these distances are 3.67 and 4.00 Å respectively, and for TTBB 3.46 and 3.90 Å.

![Diagram](image)

Fig. S1 The values of a_1, a_2 and ϕ with their deformations. Ar = aromatic compound.

The angles ϕ and the bonds a_1 and a_2 (see Fig. S1) are affected most by the presence of the t-butyl groups. The
differences from its predecessor. Therefore it is unlikely to be ascribed to a crystal; they are not t-butyl groups. A similar behavior occurs in DTBI. The intermolecular distances mentioned above were observed between the t-butyl groups. The lattice structure of the molecules have been expressed as N-H...N hydrogen bonds is discussed in detail in the literature. The t-butyl groups are not t-butyl groups. In each of these molecules there are six C...C distances are 3.67 and 3.80 Å.

\[\text{Ar is an aromatic compound.} \]

The bond lengths in the thienyl groups do not differ significantly from those in thiophene. For 2,2'-dithienyl it is certain that the majority of the molecules in the crystals have the centrosymmetric, anti conformation although it cannot be excluded that a minority (less than 30%) is in the syn form. Disorder as observed in 3,3'-dithienyl appeared also to be present in thiophene-3-carboxylic acid (Hudson and Robertson, 1964). For 2,3'-dithienyl disorder is complete and no information is available about the conformation in the plane of the molecule.

The packing of the molecules in the crystals is similar...
for the three dithienyls. In all cases the planes of the molecules make an angle of approximately 30° with a short crystal axis of approximately $5.5 \, \text{Å}$. Theoretical calculations as done for biphenyl by Casalone, Mariani, Mugnoli and Simonetta (1968) to understand the difference in conformation between the molecules in the gaseous and in the solid phase, have not been attempted for the dithienyl molecules.