The Behavioral LQ-problem for linear nD systems
Napp, Diego; Trentelman, H.L.

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2005

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
The Behavioral LQ-problem for linear nD systems

Diego Napp and H.L. Trentelman

II. MULTIDIMENSIONAL SYSTEMS

In behavioral system theory, the behavior is a subset of the space \mathbb{W} (consisting of all trajectories from \mathbb{T}, the indexing set, to \mathbb{W}, the signal space). In this paper we consider systems with $\mathbb{T} = \mathbb{R}^n$ (from which the terminology “nD-system” derives) and $\mathbb{W} = \mathbb{R}^w$. We call \mathcal{B} a linear differential nD behavior if it is the solution set of a system of linear, constant-coefficient partial differential equations; more precisely, if \mathcal{B} is the subset of $C^\infty(\mathbb{R}^n, \mathbb{R}^w)$ consisting of all solutions to

$$R\left(\frac{d}{dx}\right)w = 0 \tag{1}$$

where R is a polynomial matrix in n indeterminates ξ_i, $i = 1, \ldots, n$, and $\frac{d}{dx} = (\frac{d}{dx_1}, \ldots, \frac{d}{dx_n})$. We call (1) a kernel representation of \mathcal{B} and write $\mathcal{B} = \ker(R)$. We denote the set consisting of all linear differential nD-systems with w external variables by \mathcal{C}_n^w. However, there are many other ways to represent an nD-system. One is using some auxiliary variables, called latent variables, that appear in order to express basic physical laws. Let us mention a few: internal voltages and currents in electrical circuits in order to express the external port behavior; momentum in Hamiltonian mechanics in order to describe the evolution of the position; prices in economics in order to explain the production and exchange of economic goods, etc... Hence, \mathcal{B} is the subset of $C^\infty(\mathbb{R}^n, \mathbb{R}^w)$ consisting of all functions w for which there exists $\ell \in C^\infty(\mathbb{R}^n, \mathbb{R}^w)$ such that

$$R\left(\frac{d}{dx}\right)w = M\left(\frac{d}{dx}\right)\ell. \tag{2}$$

Here R and M are polynomial matrices in n indeterminates ξ_i, $i = 1, \ldots, n$, and again $\frac{d}{dx} = (\frac{d}{dx_1}, \ldots, \frac{d}{dx_n})$. We call (2) a latent variable representation of \mathcal{B} and the variable ℓ is called the latent variable.

III. QUADRA TIC DIFFERENTIAL FORMS

A quadratic differential form (QDF) is a quadratic form in the components of a function $w \in C^\infty(\mathbb{R}^n, \mathbb{R}^w)$ and its derivatives. An appropriate tool to express quadratic functionals are $2n$-variable polynomial matrices. In order to simplify the notation, we denote the vector $x := (x_1, \ldots, x_n)$, the multi-indices $k := (k_1, \ldots, k_n)$ and $I := (I_1, \ldots, I_n)$, and use the notation $\zeta := (\zeta_1, \ldots, \zeta_n)$, $\eta := (\eta_1, \ldots, \eta_n)$. Let $\mathbb{R}^{q_1 \times q_2}[\zeta, \eta]$ denote the set of real polynomial $w_1 \times w_2$ matrices in the $2n$ indeterminates ζ and η; that is, an element of $\mathbb{R}^{q_1 \times q_2}[\zeta, \eta]$ is of the form

$$\Phi(\zeta, \eta) = \sum_{k, I} \Phi_{k, I} \zeta^k \eta^I$$
where \(\Phi_{k,1} \in \mathbb{R}^{v_1 \times v_2} \); the sum ranges over the nonnegative multi-indices \(k \) and \(l \), and is assumed to be finite. Such 2n-variable polynomial matrix induces a bilinear differential form \(L \phi \):

\[
L \phi : \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}^1) \times \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}^{v_2}) \rightarrow \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R})
\]

\[
L \phi(v, w) := \sum_{k=1}^{\infty} \left(\frac{d^k v}{d x^k} \right)^T \Phi_{k,1} \left(\frac{d^k w}{d x^k} \right)
\]

where the \(k \)-th derivative operator \(\frac{d^k v}{d x^k} \) is defined as \(\frac{d^k v}{d x^k} := \frac{\partial^k}{\partial x_1^k} \cdots \frac{\partial^k}{\partial x_n^k} \left(\text{similarly for } \frac{d^k w}{d x^k} \right) \). Note that \(\zeta \) corresponds to differentiation of terms to the left and \(\eta \) refers to the terms to the right.

The 2n-variable polynomial matrix \(\Phi(\zeta, \eta) \) is called symmetric if \(w_1 = w_2 =: w \) and \(\Phi(\zeta, \eta) = \Phi(\eta, \zeta)^T \). Note that the former condition is equivalent to \(L \phi(w_1, w_2) = L \phi(w_2, w_1) \) for all \(w_1, w_2 \). We denote the symmetric elements of \(\mathbb{R}^x \times \mathbb{R}^x \) as \(\mathcal{S}^{x \times x} [\zeta, \eta] \). If \(\Phi \) is symmetric then it induces also a quadratic functional

\[
Q_\Phi : \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}^n) \rightarrow \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R})
\]

\[
Q_\Phi(w) := L \phi(w, w)
\]

We will call \(Q_\Phi \) the quadratic differential form associated with \(\Phi \).

Definition 1: Given \(\Phi \in \mathcal{S}^{x \times x} [\zeta, \eta] \). The plant \(\mathcal{B} \) is said to be \(Q_\Phi \)-dissipative if

\[
\int_{\mathbb{R}^n} Q_\Phi(w)dw \geq 0 \quad \forall w \in \mathcal{B} \text{ with compact support} \quad (3)
\]

Dissipativity states that the system absorbs energy (in space and time) during any history in \(\mathcal{B} \) that starts and ends with the system at rest.

Definition 2: Let \(\Phi' \in \mathcal{S}^{x \times x} [\zeta, \eta] \). \(Q_\Phi' \) is said to be average non-negative if

\[
\int_{\mathbb{R}^n} Q_\Phi'(\ell)dx \geq 0 \quad \forall \ell \in \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}^\ell)
\]

Definition 3: Let \(\Phi \in \mathcal{S}^{x \times x} [\zeta, \eta] \). The trajectory \(w \in \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}^\ell) \) is stationary with respect to \(\int_{\mathbb{R}^n} Q_\Phi(w)dw \) if for all \(\Delta \in \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}^\ell) \) of compact support, we have

\[
\int_{\mathbb{R}^n} L \phi(\Delta, w)dw = 0. \quad (5)
\]

Obviously, \(w \in \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}^\ell) \) is stationary if and only if for all \(\Delta \in \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}^\ell) \) of compact support we have

\[
\int_{\mathbb{R}^n} Q_\Phi(w + \Delta) - Q_\Phi(w)dw = \int_{\mathbb{R}^n} Q_\Phi(\Delta)dx. \quad (6)
\]

Theorem 4: Let \(\Phi \in \mathcal{S}^{x \times x} [\zeta, \eta] \). The set of stationary trajectories with respect to \(\int_{\mathbb{R}^n} Q_\Phi(w)dw \) consists of all \(w \in \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}^\ell) \) that satisfy

\[
\Phi(- \frac{d}{dx} \frac{d}{dx})w = 0 \quad (7)
\]

Proof: If \(w \) is stationary then \(\int_{\mathbb{R}^n} L \phi(\Delta, w)dx = 0 \) for all \(\Delta \in \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}^\ell) \) with compact support. Then integrating by parts we obtain

\[
\int_{\mathbb{R}^n} L \phi(\Delta, w)dx = \int_{\mathbb{R}^n} \Delta^T \Phi(- \frac{d}{dx} \frac{d}{dx})w dx, \quad (8)
\]

Since this holds for all \(\Delta \in \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}^\ell) \) with compact support, \(w \) is stationary if and only if \((7) \) holds.

\[
\text{Now we look at the local minimum trajectories and their relation with stationary ones.}
\]

Definition 5: Let \(\Phi \in \mathcal{S}^{x \times x} [\zeta, \eta] \). The trajectory \(w \) is called a local minimum for \(\int_{\mathbb{R}^n} Q_\Phi(w)dw \) with respect to compact support variations if

\[
\int_{\mathbb{R}^n} Q_\Phi(w + \Delta) - Q_\Phi(w)dx \geq 0, \quad (9)
\]

for all \(\Delta \in \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}^\ell) \) of compact support.

Theorem 6: Let \(\Phi \in \mathcal{S}^{x \times x} [\zeta, \eta] \). If \(Q_\Phi \) is average non-negative then the set of local minimum trajectories is equal to the set of stationary trajectories. If \(Q_\Phi \) is not average non-negative, then the set of local minimum trajectories is empty.

Proof: It is easy to see that

\[
\int_{\mathbb{R}^n} Q_\Phi(w + \Delta) - Q_\Phi(w)dx \geq 0
\]

\[
= 2 \int_{\mathbb{R}^n} L \phi(w, \Delta)dx + \int_{\mathbb{R}^n} Q_\Phi(\Delta)dx
\]

Suppose \(Q_\Phi \) is average non-negative. If \(\int_{\mathbb{R}^n} L \phi(w, \Delta)dx \) is not zero for all \(\Delta \) of compact support, then one can always choose a \(\Delta \) in such a way that \(\int_{\mathbb{R}^n} L \phi(w, \Delta)dx + \int_{\mathbb{R}^n} Q_\Phi(\Delta)dx \) is negative since \(L \phi \) is linear in \(\Delta \) and \(Q_\Phi \) is bilinear in \(\Delta \). Once we have \(\int_{\mathbb{R}^n} L \phi(w, \Delta)dx = 0 \) for all \(\Delta \), then we clearly have that \(w \) is local minimum. Now suppose \(Q_\Phi \) is not average non-negative. Using the same arguments as before we have that \(\int_{\mathbb{R}^n} L \phi(w, \Delta)dx \) must be zero as well. Then the set of local minimum is empty.

V. INTERCONNECTION

We now discuss the issue of control as interconnection. Since a plant behavior \(\mathcal{B} \in \mathcal{L}_n^x \) consists of all trajectories satisfying a set of differential equations, one would like to restrict this space of trajectories to a desired subsystem, \(\mathcal{K} \subset \mathcal{B} \). This restriction can be effected by increasing the number of equations that the variables of the plant have to satisfy. These additional laws themselves define a new system, called the controller (denoted by \(\mathcal{C} \)). The interconnection of the two systems (the plant and the controller) results in the controlled behavior \(\mathcal{K} \). After interconnection, the variables have to satisfy the laws of both \(\mathcal{B} \) and \(\mathcal{C} \). In this section we will look at two types of interconnections, full and partial.

The full interconnection of \(\mathcal{B} \) and \(\mathcal{C} \) is defined as the system with behavior \(\mathcal{B} \cap \mathcal{C} \). Note that \(\mathcal{B} \cap \mathcal{C} \) is again an element of \(\mathcal{L}_n^x \). A given behavior \(\mathcal{K} \in \mathcal{L}_n^x \) is called implementable with respect to \(\mathcal{B} \) by full interconnection if there exists a \(\mathcal{C} \in \mathcal{L}_n^x \) such that \(\mathcal{K} = \mathcal{B} \cap \mathcal{C} \). The full interconnection of \(\mathcal{B} \) and \(\mathcal{C} \) is called regular, if

\[
p(\mathcal{B} \cap \mathcal{C}) = p(\mathcal{B}) + p(\mathcal{C}).
\]
Given nontrivial controllers. A controller, the controller that implements local minimum that are already present. In this sense, the controller in a regular interconnection, the controller imposes new restrictions on the plant; it does not re impose restrictions that are already present. In this sense, the controller in a regular interconnection has no redundancy. We call optimal controller, the controller that implements local minimum that are already present. In this sense, the controller in a regular interconnection, the controller imposes new restrictions on the plant; it does not re impose restrictions that are already present. In this sense, the controller in a regular interconnection has no redundancy. We call optimal controller, the controller that implements local minimum that are already present. In this sense, the controller in a regular interconnection, the controller imposes new restrictions on the plant; it does not re impose restrictions that are already present. In this sense, the controller in a regular interconnection has no redundancy. We call optimal controller, the controller that implements local minimum that are already present.

Theorem 7: Given Q_{Φ} average non-negative and $B = \ker R$, there exit nontrivial optimal controllers if

$$R \partial \Phi$$

is no ZRP (zero right prime), that is, there does not exits a polynomial matrix S such that im $(R(\frac{d}{dx})) = \ker (S)$. If so, $C = \ker \partial \Phi$ is one controller. If it is ZRP only the trivial controller is optimal.

Where $\partial \Phi (\xi) = \Phi (\xi, \xi)$.

Proof: See [5].

VI. CONTROLLABILITY AND OBSERVABILITY

One of the properties of behaviors which is very convenient, in particular for LQ problems, is controllability.

Definition 8: A system $B \in \mathbb{L}_n$ is said to be controllable if for all $w_1, w_2 \in B$ and all sets $U_1, U_2 \subset \mathbb{R}^n$ with disjoint closure, there exist a $w \in B$ such that $w \vert_{U_1} = w_1 \vert_{U_1}$ and $w \vert_{U_2} = w_2 \vert_{U_2}$.

There are a number of characterizations of controllability but the one useful for our purposes is the equivalence of controllability with the existence of an image representation. Consider the following special latent variable representation:

$$w = M(\frac{d}{dx})\ell$$

with $M \in \mathbb{R}^{n \times \ell}$. Obviously, by the elimination theorem, see [3], its manifest behavior B is a linear differential n-D system again, i.e. $B \in \mathbb{L}_n$. Such special latent variable representations often appear in physics, where the latent variables in a such representation are called potentials. Clearly, $B = \text{im}(M(\frac{d}{dx}))$. For this reason this representation is called an image representation of its manifest behavior.

Theorem 9: (See [3]), $B \in \mathbb{L}_n$ admits an image representation if and only if it is controllable.

Now, we will consider a useful property of n-D systems, observability. For this property one needs to split the variables of the system in two sets; the first set of variables are interpreted as the observed variables an the other is the set of ‘to be deduced’ variables.

Definition 10: Let $B \in \mathbb{L}_n$ with manifest variable w, $w = (w_1, w_2)$ be a partition of $w \in \mathbb{L}_n$. Then w_2 it is said to be observable from w_1 in B if given any two trajectories $(w_1', w_2'), (w_1'', w_2'') \in B$ we have that $w_1' = w_1''$ implies $w_2' = w_2''$.

So, observability only becomes an intrinsic property of the behavior after a partition of the manifest variable w is given. Although we can divide the set of variables in many ways, one natural way to do it, is when one is looking at a latent variable representation of the behavior is to ask whether the latent variables are observable from the manifest variables. If this is the case we call the latent variable representation observable. For controllable 1-D systems it can be shown that there always exists an observable image representation. This is not true for n-D systems. From now on, we will assume that the plant is controllable and we will assume it has an observable image representation $B := \text{im}M(\frac{d}{dx})$.

If $w = M(\frac{d}{dx})\ell$ is an observable image representation of B, then $w \in B$ has compact support if and only if the corresponding $\ell \in \mathbb{C}^\infty(\mathbb{R}^n, \mathbb{R}^\ell)$ has compact support. Given a 2n-variable polynomial matrix $\Phi(\zeta, \eta)$, suppose $w = M(\frac{d}{dx})\ell$ is an observable image representation of B, we can then consider the induced 2n variable polynomial matrix Φ' defined by

$$\Phi'(\zeta, \eta) := M^T(\zeta)\Phi(\zeta, \eta)M(\eta)$$

Remark 1: Note that B is Q_{Φ}-dissipative if and only if $Q_{\Phi'}$ is average non-negative.

We replace $Q_{\Phi}(w)$ by $Q_{\Phi'}(\ell)$ in the performance functional (or equivalently replace $\Phi(\zeta, \eta)$ by $M^T(\zeta)\Phi(\zeta, \eta)M(\eta)$), and obtain an LQ problem in which the dynamic variable w is replaced by the unconstrained variable ℓ.

Remark 2: Given a 2n-variable polynomial matrix $\Phi(\zeta, \eta)$, suppose $w = M(\frac{d}{dx})\ell$ is an observable image representation of B, then it can be shown that there exist a left inverse $M^{-1}(\xi) \in \mathbb{R}^{n \times \ell}$ of M. Therefore from $w = M(\frac{d}{dx})\ell$,

$$M^{-1}(\frac{d}{dx})w = \ell.$$ (12)

For more details see [1].

Theorem 11: Let $\Phi \in \mathbb{C}^\infty[\zeta, \eta]$ and a behavior $B = \ker R$ and suppose B has also $w = M(\frac{d}{dx})\ell$ as an observable image representation. Assume that the polynomial matrix $\Phi'(\zeta, \eta)$, satisfy $\text{det}(\Phi'(-\xi, \xi)) \neq 0$. The set of stationary trajectories of K with respect to $\int_B Q_{\Phi}(w)dx$, is regularly implementable with respect to B by full interconnection, and a controller $C = \ker C$ that regularly implements K is represented by:

$$M^T(\frac{d}{dx})\Phi(-\frac{d}{dx} d\frac{d}{dx} \phi)w = 0$$ (13)

Proof: The proof that C is the controller which implement the stationary trajectories follows by substitution. To see that the interconnection is regular we need to check that $B + C = \mathbb{C}^\infty(\mathbb{R}^n, \mathbb{R}^e)$. Now, a kernel representation of $B + C$ is obtained as follows: Consider $\begin{bmatrix} R \\ C \end{bmatrix}$ and let $[N \ L]$ be such that $\ker [N \ L] = \text{im} \begin{bmatrix} R \\ C \end{bmatrix}$.

Then obviously $NR = -LC$ and according to ([6], lemma 2.14), $B + C = \ker(NR)$. In our case we
have \(C(\xi) = M^T(\xi)\Phi(-\xi, \xi) \) so we get
\[
N(\xi)R(\xi) + L(\xi)M^T(\xi)\Phi(-\xi, \xi) = 0.
\]
Hence for every \(\ell \in C^\infty(\mathbb{R}^n, \mathbb{R}^\ell) \) we get
\[
L\left(\frac{d}{dx} \right) M^T(\xi)\Phi(-\xi, \xi) = 0.
\]
Recall that \(\Phi(-\xi, \xi) = M^T(-\xi)\Phi(-\xi, \xi)M(\xi) \) which is assumed to be nonsingular. Hence \(L(\xi) = 0 \). Thus \(NR = 0 \) and \(\mathfrak{B} + \mathfrak{C} = C^\infty(\mathbb{R}^n, \mathbb{R}^\ell) \). This proofs that the interconnection is regular.

Remark 3: It can be shown that \(M^T(\xi)\Phi(-\xi, \xi) = w \) represents also a controller that regularly implements \(\mathcal{K} \).

REFERENCES

