Tris(4-methylbenzyl)(1,4,7-trimethyl-1,4,7-triazacyclononane)lanthanum(III)

Sergio Bambirra, Auke Meetsma* and Bart Bart Hessen

Center for Catalytic Olefin Polymerization, Stratingh Institute for Chemistry and Chemical Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

Correspondence e-mail: a.meetsma@rug.nl

Received 17 October 2007; accepted 26 October 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean |C27–C27| = 0.012 Å; R factor = 0.048; wR factor = 0.109; data-to-parameter ratio = 18.4.

The title compound, [La(C8H9)3(C9H21N3)], incorporating a fac-κ3N ligand and formed by reaction of La(CH2C6H4-4-Me)3(THF)3 (THF is tetrahydrofuran) and 1,4,7-trimethyl-1,4,7-triazacyclononane (Me3-TACN), was synthesized in THF solution. In the crystal structure, the La atom is seven-coordinated by three N atoms from a TACN ligand and four C atoms from three benzyl ligands, one of which is bound in a cis-fashion.

Related literature

For related literature, see: Hitchcock et al. (1988); Harder (2005); Bambirra et al. (2006)

Experimental

Crystal data

[La(C8H9)3(C9H21N3)]

M_r = 625.67

Orthorhombic, Pna2_1

a = 16.094 (2) Å

b = 13.472 (1) Å

c = 14.488 (1) Å

V = 3141.3 (5) Å³

Z = 4

Mo Kα radiation

µ = 1.38 mm⁻¹

T = 100 (1) K

0.22 × 0.15 × 0.06 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer

Absorption correction: multi-scan (SADABS; Bruker, 2006)

T_min = 0.758, T_max = 0.920

23512 measured reflections

6249 independent reflections

4265 reflections with I > 2σ(I)

R(int) = 0.093

Refinement

R[F² > 2σ(F²)] = 0.048

wR(F²) = 0.109

S = 0.97

6249 reflections

340 parameters

1 restraint

H-atom parameters constrained

Δρ_max = 1.47 e Å⁻³

Δρ_min = −0.60 e Å⁻³

Absolute structure: Flack (1983), 3077 Friedel pairs

Flack parameter: 0.05 (2)

Table 1

Selected geometric parameters (Å, °).

La—N1 2.717 (7)

La—N2 2.806 (7)

La—N3 2.761 (6)

La—C10 2.641 (7)

La—C11 2.959 (7)

La—C12 3.111 (7)

La—C18 2.605 (9)

La—C19 3.165 (7)

La—C26 2.662 (7)

La—C27 3.744 (7)

N1—La—N2 63.4 (2)

N1—La—N3 64.94 (19)

N2—La—N3 63.6 (2)

C10—La—C18 105.1 (2)

C10—La—C26 115.9 (2)

C18—La—C26 117.6 (3)

La—C10—C11 87.9 (4)

La—C18—C19 98.8 (5)

La—C26—C27 127.7 (5)

Data collection: SMART (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 2006); data reduction: SAINT-Plus; program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

This project was supported by NRSC-C.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2078).

References

supplementary materials
Tris(4-methylbenzyl)(1,4,7-trimethyl-1,4,7-triazacyclononane)lanthanum(III)

S. Bambirra, A. Meetsma and B. Bart Hessen

Comment

Homoleptic trialkyl complexes of the type $M(CH_2SiMe_3)_3(THF)_n$ ($n = 2, 3$) of the group 3 metals and lanthanides are valuable starting materials for organo-rare-earth-metal chemistry. These, however, are only available for the small to medium sized metals ($M = Sc—Sm$). For the larger metals such as neodymium and lanthanum they can not be isolated. Nevertheless, trialkyl complexes of lanthanum have been reported. Examples are La[$CH(SiMe_3)_2]$ with relatively large alkyls and La($CH_2C_6H_4$-2-NMe$_2$)$_3$ with an internal Lewis base. Recently we have described the synthesis, structures and reactivity studies of La($CH_2C_6H_4$-4-R)$_3$($THF)_3$ ($R = H, Me$). Here we report the molecular structure of (Me$_3$—TACN)La($CH_2C_6H_4$-4-Me)$_3$($THF)_3$ (I) that has been generated by addition of Me$_3$—TACN to a solution of La($CH_2C_6H_4$-4-Me)$_3$($THF)_3$ in THF. Compound I could be isolated as yellow-orange crystals that are thermally much more stable than its precursor. The asymmetric unit of I contains one formula unit of the title compound shown in Figure 1. As expected the TACN ligand is facially coordinated to the metal center as opposed to the structure of La($CH_2C_6H_4$-2-NMe$_2$)$_3$ (Harder, 2005) where the coordination of one of the aminobenzyl ligands is "upside-down". It appears that the fac-κ^3 coordination of the TACN ligand increases steric congestion around the metal center compared to La($CH_2C_6H_4$-4-Me)$_3$($THF)_3$. This is evidenced by the bonding mode of the benzyl ligands, of which two are clearly η^1 bound to La and one that is bound in a η^2-fashion. The former have rather large La—C—C bond angles of 98.8 (5)$^\circ$ and 127.7 (5)$^\circ$, while the latter has a acute angle of 87.9 (4)$^\circ$.

Experimental

All preparations were performed under an inert nitrogen atmosphere, using standard Schlenk and glovebox techniques. Solid La(CH_2Ph-4-Me)$_3$($THF)_3$ (134.0 mg, 200.0 µmol) was reacted with a solution of [Me$_3$—TACN] (34.0 mg, 200 µmol) in THF (2 ml). The formed red solution was left to stand over night at -30 °C, after which time yellow-orange crystals of the title compound deposit (90 mg, 72%)·H NMR (500 MHz, THF-d_8, 20°C): δ 6.66 (t, $^3J_{HH} = 8.1$ Hz, 6 H, o-Ar), 6.14 (d, $^3J_{HH} = 8.1$ Hz, 6 H, o-Ar), 2.70 (m, 6 H, NCH$_2$), 2.60 (m, 6 H, NCH$_2$), 2.37 (s, 9 H, NMe), 2.10 (s, 9 H, Me), 1.29 (s, 6 H, LaCH$_2$), 13C NMR (125.7 MHz, THF-d_8, 20°C): δ 150.7 (Ar C$_{ipso}$), 131.8 (d, $^1J_{CH} = 153.3$ Hz, Ar CH), 125.9 (Ar CMe), 123.6 (d, $^1J_{CH} = 152.0$ Hz, Ar CH), 68.7 (t, $^1J_{CH} = 125.0$ Hz, LaCH$_2$), 56.6 (t, $^1J_{CH} = 134.8$ Hz, NCH$_2$), 48.2 (q, $^1J_{CH} = 134.8$ Hz, NMe), 21.8 (q, $^1J_{CH} = 125.2$ Hz, ArMe). Anal. Calcd for C$_{33}$H$_{48}$N$_3$La: C 63.35; H 7.73; N 6.72. Found: C, 63.20; H, 7.68; N, 6.45.

Refinement

The structure was solved by Patterson methods and extension of the model was accomplished by direct methods applied to difference structure factors using the program DIRDIF. The positional and anisotropic displacement parameters for the
non-hydrogen atoms were refined. The hydrogen atoms were generated by geometrical considerations, constrained to idealized geometries, and allowed to ride on their carrier atoms with an isotropic displacement parameter related to the equivalent displacement parameter of their carrier atoms. The methyl-groups were refined as rigid groups, which were allowed to rotate freely.

Figures

![Fig. 1. Perspective ORTEP drawing of I. Displacement ellipsoids for non-H are represented at the 50% probability level. The H-atoms have been omitted to improve clarity.](image)

tris(4-methylbenzyl)(1,4,7-trimethyl-1,4,7-triazacyclononane)lanthanum(III)

Crystal data

$$[\text{La}((\text{C}_8\text{H}_{10})_3\text{C}_9\text{H}_{21}\text{N}_3)]$$

$$M_r = 625.67$$

$$D_x = 1.323 \text{ Mg m}^{-3}$$

Orthorhombic, Pna_2_1

Hall symbol: P 2c -2n

Cell parameters from 5692 reflections

$$a = 16.094 (2) \text{ Å}$$

$$b = 13.472 (1) \text{ Å}$$

$$c = 14.488 (1) \text{ Å}$$

$$\theta = 2.4–27.2^\circ$$

$$\lambda = 0.71073 \text{ Å}$$

$$\mu = 1.38 \text{ mm}^{-1}$$

$$T = 100 (1) \text{ K}$$

$$V = 3141.3 (5) \text{ Å}^3$$

Platelet, orange

$$Z = 4$$

$$F_{000} = 1296$$

$$F_{\text{int}} = 0.093$$

Data collection

Bruker SMART APEX CCD area-detector diffractometer

$$6249 \text{ independent reflections}$$

Radiation source: fine focus sealed Siemens Mo tube

$$4265 \text{ reflections with } I > 2\sigma(I)$$

Monochromator: parallel mounted graphite
Detector resolution: 66.06 pixels mm\(^{-1}\)
\(T = 100(1)\) K
\(\theta_{\text{max}} = 26.4^\circ\)
\(\theta_{\text{min}} = 2.5^\circ\)
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
\(h = -20\rightarrow20\)
\(k = -16\rightarrow16\)
\(l = -18\rightarrow17\)
23512 measured reflections

Reifnement
Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full
H-atom parameters constrained

\[\frac{\sum w(\sigma(F_2)^2)}{\sum w(\sigma(F_2)^2)} = 0.048 \]
\[wR(F^2) = 0.109 \]
\[S = 0.97 \]
6249 reflections
340 parameters
1 restraint
Primary atom site location: heavy-atom method
Secondary atom site location: structure-invariant direct methods

Special details
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of \(F^2\) against ALL reflections. The weighted \(R\)-factor \(wR\) and goodness of fit \(S\) are based on \(F^2\), conventional \(R\)-factors \(R\) are based on \(F\), with \(F\) set to zero for negative \(F^2\). The threshold expression of \(F^2 > 2\sigma(F^2)\) is used only for calculating \(R\)-factors(gt) etc. and is not relevant to the choice of reflections for refinement. \(R\)-factors based on \(F^2\) are statistically about twice as large as those based on \(F\), and \(R\)- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\(\text{Å}^2\))

<table>
<thead>
<tr>
<th></th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
<th>(U_{iso}^{*}/U_{eq})</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>0.42537 (2)</td>
<td>0.58635 (2)</td>
<td>0.50450 (4)</td>
<td>0.0211 (1)</td>
</tr>
<tr>
<td>N1</td>
<td>0.5365 (4)</td>
<td>0.6802 (5)</td>
<td>0.3935 (5)</td>
<td>0.026 (2)</td>
</tr>
<tr>
<td>N2</td>
<td>0.5294 (4)</td>
<td>0.7266 (6)</td>
<td>0.5891 (5)</td>
<td>0.027 (3)</td>
</tr>
<tr>
<td>N3</td>
<td>0.5890 (4)</td>
<td>0.5310 (5)</td>
<td>0.5298 (4)</td>
<td>0.025 (2)</td>
</tr>
<tr>
<td>C1</td>
<td>0.4963 (4)</td>
<td>0.6822 (6)</td>
<td>0.3013 (5)</td>
<td>0.029 (3)</td>
</tr>
<tr>
<td>C2</td>
<td>0.5419 (5)</td>
<td>0.7849 (6)</td>
<td>0.4269 (6)</td>
<td>0.024 (3)</td>
</tr>
<tr>
<td>C3</td>
<td>0.5758 (4)</td>
<td>0.7908 (5)</td>
<td>0.5244 (5)</td>
<td>0.023 (3)</td>
</tr>
<tr>
<td>C4</td>
<td>0.4736 (4)</td>
<td>0.7884 (6)</td>
<td>0.6465 (5)</td>
<td>0.034 (3)</td>
</tr>
<tr>
<td>C5</td>
<td>0.5867 (5)</td>
<td>0.6692 (7)</td>
<td>0.6479 (6)</td>
<td>0.030 (3)</td>
</tr>
<tr>
<td>Element</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>U^2</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>C6</td>
<td>0.6392 (5)</td>
<td>0.5957 (6)</td>
<td>0.5938 (6)</td>
<td>0.027 (3)</td>
</tr>
<tr>
<td>C7</td>
<td>0.5891 (4)</td>
<td>0.4283 (5)</td>
<td>0.5652 (5)</td>
<td>0.032 (3)</td>
</tr>
<tr>
<td>C8</td>
<td>0.6227 (5)</td>
<td>0.5317 (6)</td>
<td>0.4373 (6)</td>
<td>0.028 (3)</td>
</tr>
<tr>
<td>C9</td>
<td>0.6199 (5)</td>
<td>0.6331 (7)</td>
<td>0.3894 (6)</td>
<td>0.027 (3)</td>
</tr>
<tr>
<td>C10</td>
<td>0.3210 (4)</td>
<td>0.7356 (5)</td>
<td>0.4818 (5)</td>
<td>0.030 (3)</td>
</tr>
<tr>
<td>C11</td>
<td>0.2747 (4)</td>
<td>0.6733 (6)</td>
<td>0.4198 (5)</td>
<td>0.026 (3)</td>
</tr>
<tr>
<td>C12</td>
<td>0.2381 (4)</td>
<td>0.5834 (5)</td>
<td>0.4513 (5)</td>
<td>0.023 (2)</td>
</tr>
<tr>
<td>C13</td>
<td>0.1999 (4)</td>
<td>0.5183 (6)</td>
<td>0.3904 (6)</td>
<td>0.032 (3)</td>
</tr>
<tr>
<td>C14</td>
<td>0.1981 (6)</td>
<td>0.5344 (8)</td>
<td>0.2965 (7)</td>
<td>0.032 (3)</td>
</tr>
<tr>
<td>C15</td>
<td>0.2339 (5)</td>
<td>0.6229 (7)</td>
<td>0.2639 (5)</td>
<td>0.032 (3)</td>
</tr>
<tr>
<td>C16</td>
<td>0.2709 (4)</td>
<td>0.6885 (6)</td>
<td>0.3221 (5)</td>
<td>0.031 (3)</td>
</tr>
<tr>
<td>C17</td>
<td>0.1569 (5)</td>
<td>0.4621 (8)</td>
<td>0.2326 (6)</td>
<td>0.055 (4)</td>
</tr>
<tr>
<td>C18</td>
<td>0.4079 (4)</td>
<td>0.5330 (7)</td>
<td>0.6762 (6)</td>
<td>0.039 (3)</td>
</tr>
<tr>
<td>C19</td>
<td>0.3228 (4)</td>
<td>0.4991 (6)</td>
<td>0.6723 (5)</td>
<td>0.030 (3)</td>
</tr>
<tr>
<td>C20</td>
<td>0.2566 (5)</td>
<td>0.5528 (7)</td>
<td>0.7110 (5)</td>
<td>0.033 (3)</td>
</tr>
<tr>
<td>C21</td>
<td>0.1759 (6)</td>
<td>0.5205 (9)</td>
<td>0.7018 (7)</td>
<td>0.037 (3)</td>
</tr>
<tr>
<td>C22</td>
<td>0.1554 (5)</td>
<td>0.4338 (7)</td>
<td>0.6528 (6)</td>
<td>0.040 (3)</td>
</tr>
<tr>
<td>C23</td>
<td>0.2200 (6)</td>
<td>0.3807 (7)</td>
<td>0.6145 (6)</td>
<td>0.046 (3)</td>
</tr>
<tr>
<td>C24</td>
<td>0.3022 (5)</td>
<td>0.4114 (6)</td>
<td>0.6238 (5)</td>
<td>0.036 (3)</td>
</tr>
<tr>
<td>C25</td>
<td>0.0657 (6)</td>
<td>0.4015 (9)</td>
<td>0.6432 (8)</td>
<td>0.072 (4)</td>
</tr>
<tr>
<td>C26</td>
<td>0.4194 (4)</td>
<td>0.4447 (5)</td>
<td>0.3766 (5)</td>
<td>0.026 (2)</td>
</tr>
<tr>
<td>C27</td>
<td>0.4138 (4)</td>
<td>0.3371 (5)</td>
<td>0.3910 (5)</td>
<td>0.021 (2)</td>
</tr>
<tr>
<td>C28</td>
<td>0.4841 (5)</td>
<td>0.2750 (6)</td>
<td>0.3899 (5)</td>
<td>0.031 (3)</td>
</tr>
<tr>
<td>C29</td>
<td>0.4791 (5)</td>
<td>0.1733 (6)</td>
<td>0.4079 (5)</td>
<td>0.034 (3)</td>
</tr>
<tr>
<td>C30</td>
<td>0.4029 (5)</td>
<td>0.1277 (7)</td>
<td>0.4265 (6)</td>
<td>0.038 (3)</td>
</tr>
<tr>
<td>C31</td>
<td>0.3335 (5)</td>
<td>0.1875 (6)</td>
<td>0.4267 (5)</td>
<td>0.035 (3)</td>
</tr>
<tr>
<td>C32</td>
<td>0.3384 (4)</td>
<td>0.2881 (6)</td>
<td>0.4098 (5)</td>
<td>0.029 (3)</td>
</tr>
<tr>
<td>C33</td>
<td>0.3974 (6)</td>
<td>0.0178 (6)</td>
<td>0.4438 (7)</td>
<td>0.055 (4)</td>
</tr>
<tr>
<td>H1</td>
<td>0.53078</td>
<td>0.72056</td>
<td>0.25841</td>
<td>0.0434*</td>
</tr>
<tr>
<td>H1'</td>
<td>0.44138</td>
<td>0.71308</td>
<td>0.30625</td>
<td>0.0434*</td>
</tr>
<tr>
<td>H1''</td>
<td>0.49031</td>
<td>0.61416</td>
<td>0.27820</td>
<td>0.0434*</td>
</tr>
<tr>
<td>H2</td>
<td>0.48600</td>
<td>0.81541</td>
<td>0.42505</td>
<td>0.0293*</td>
</tr>
<tr>
<td>H2'</td>
<td>0.57850</td>
<td>0.82323</td>
<td>0.38504</td>
<td>0.0293*</td>
</tr>
<tr>
<td>H3</td>
<td>0.63494</td>
<td>0.77068</td>
<td>0.52416</td>
<td>0.0279*</td>
</tr>
<tr>
<td>H3'</td>
<td>0.57277</td>
<td>0.86035</td>
<td>0.54611</td>
<td>0.0279*</td>
</tr>
<tr>
<td>H3''</td>
<td>0.43657</td>
<td>0.74540</td>
<td>0.68233</td>
<td>0.0510*</td>
</tr>
<tr>
<td>H4</td>
<td>0.44036</td>
<td>0.83164</td>
<td>0.60649</td>
<td>0.0510*</td>
</tr>
<tr>
<td>H4'</td>
<td>0.50685</td>
<td>0.82916</td>
<td>0.68859</td>
<td>0.0510*</td>
</tr>
<tr>
<td>H4''</td>
<td>0.55402</td>
<td>0.63267</td>
<td>0.69473</td>
<td>0.0359*</td>
</tr>
<tr>
<td>H5</td>
<td>0.62387</td>
<td>0.71578</td>
<td>0.68081</td>
<td>0.0359*</td>
</tr>
<tr>
<td>H5'</td>
<td>0.68080</td>
<td>0.63280</td>
<td>0.55709</td>
<td>0.0319*</td>
</tr>
<tr>
<td>H6</td>
<td>0.66970</td>
<td>0.55285</td>
<td>0.63775</td>
<td>0.0319*</td>
</tr>
<tr>
<td>H6'</td>
<td>0.55386</td>
<td>0.38668</td>
<td>0.52597</td>
<td>0.0471*</td>
</tr>
<tr>
<td>H7</td>
<td>0.56762</td>
<td>0.42763</td>
<td>0.62852</td>
<td>0.0471*</td>
</tr>
<tr>
<td>H7'</td>
<td>0.64602</td>
<td>0.40238</td>
<td>0.56477</td>
<td>0.0471*</td>
</tr>
<tr>
<td>H8</td>
<td>0.59143</td>
<td>0.48335</td>
<td>0.39933</td>
<td>0.0336*</td>
</tr>
<tr>
<td>H8'</td>
<td>0.68119</td>
<td>0.50912</td>
<td>0.43990</td>
<td>0.0336*</td>
</tr>
<tr>
<td>H9</td>
<td>0.66090</td>
<td>0.67770</td>
<td>0.41886</td>
<td>0.0327*</td>
</tr>
<tr>
<td>H9'</td>
<td>0.63612</td>
<td>0.62481</td>
<td>0.32392</td>
<td>0.0327*</td>
</tr>
<tr>
<td></td>
<td>U_{11}</td>
<td>U_{22}</td>
<td>U_{33}</td>
<td>U_{12}</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>La</td>
<td>0.0182 (1)</td>
<td>0.0200 (2)</td>
<td>0.0252 (2)</td>
<td>0.0003 (2)</td>
</tr>
<tr>
<td>N1</td>
<td>0.024 (4)</td>
<td>0.022 (4)</td>
<td>0.031 (4)</td>
<td>−0.004 (3)</td>
</tr>
<tr>
<td>N2</td>
<td>0.025 (4)</td>
<td>0.033 (5)</td>
<td>0.022 (4)</td>
<td>−0.003 (4)</td>
</tr>
<tr>
<td>N3</td>
<td>0.025 (3)</td>
<td>0.024 (4)</td>
<td>0.025 (5)</td>
<td>0.001 (2)</td>
</tr>
<tr>
<td>C1</td>
<td>0.036 (4)</td>
<td>0.026 (5)</td>
<td>0.025 (4)</td>
<td>−0.005 (3)</td>
</tr>
<tr>
<td>C2</td>
<td>0.029 (4)</td>
<td>0.014 (5)</td>
<td>0.030 (5)</td>
<td>−0.002 (3)</td>
</tr>
<tr>
<td>C3</td>
<td>0.023 (3)</td>
<td>0.016 (3)</td>
<td>0.030 (8)</td>
<td>−0.001 (3)</td>
</tr>
<tr>
<td>C4</td>
<td>0.030 (4)</td>
<td>0.034 (5)</td>
<td>0.038 (5)</td>
<td>0.005 (4)</td>
</tr>
<tr>
<td>C5</td>
<td>0.024 (5)</td>
<td>0.039 (6)</td>
<td>0.027 (5)</td>
<td>−0.011 (4)</td>
</tr>
<tr>
<td>C6</td>
<td>0.018 (4)</td>
<td>0.031 (6)</td>
<td>0.031 (5)</td>
<td>0.001 (4)</td>
</tr>
<tr>
<td>C7</td>
<td>0.037 (4)</td>
<td>0.026 (5)</td>
<td>0.032 (5)</td>
<td>0.004 (3)</td>
</tr>
<tr>
<td>C8</td>
<td>0.020 (4)</td>
<td>0.022 (5)</td>
<td>0.042 (6)</td>
<td>−0.003 (4)</td>
</tr>
<tr>
<td>C9</td>
<td>0.028 (5)</td>
<td>0.028 (6)</td>
<td>0.026 (5)</td>
<td>−0.001 (4)</td>
</tr>
<tr>
<td>C10</td>
<td>0.018 (3)</td>
<td>0.024 (4)</td>
<td>0.048 (8)</td>
<td>0.005 (3)</td>
</tr>
<tr>
<td>C11</td>
<td>0.018 (3)</td>
<td>0.026 (5)</td>
<td>0.034 (5)</td>
<td>0.008 (3)</td>
</tr>
<tr>
<td>C12</td>
<td>0.017 (3)</td>
<td>0.028 (4)</td>
<td>0.023 (4)</td>
<td>0.005 (3)</td>
</tr>
<tr>
<td>C13</td>
<td>0.020 (4)</td>
<td>0.027 (5)</td>
<td>0.049 (6)</td>
<td>0.002 (3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>C14</td>
<td>0.027</td>
<td>(5)</td>
<td>0.043</td>
<td>(7)</td>
</tr>
<tr>
<td>C15</td>
<td>0.032</td>
<td>(4)</td>
<td>0.050</td>
<td>(6)</td>
</tr>
<tr>
<td>C16</td>
<td>0.016</td>
<td>(4)</td>
<td>0.036</td>
<td>(5)</td>
</tr>
<tr>
<td>C17</td>
<td>0.031</td>
<td>(5)</td>
<td>0.082</td>
<td>(8)</td>
</tr>
<tr>
<td>C18</td>
<td>0.035</td>
<td>(5)</td>
<td>0.056</td>
<td>(5)</td>
</tr>
<tr>
<td>C19</td>
<td>0.034</td>
<td>(4)</td>
<td>0.038</td>
<td>(5)</td>
</tr>
<tr>
<td>C20</td>
<td>0.039</td>
<td>(5)</td>
<td>0.041</td>
<td>(6)</td>
</tr>
<tr>
<td>C21</td>
<td>0.029</td>
<td>(5)</td>
<td>0.053</td>
<td>(7)</td>
</tr>
<tr>
<td>C22</td>
<td>0.043</td>
<td>(5)</td>
<td>0.045</td>
<td>(6)</td>
</tr>
<tr>
<td>C23</td>
<td>0.075</td>
<td>(7)</td>
<td>0.034</td>
<td>(6)</td>
</tr>
<tr>
<td>C24</td>
<td>0.051</td>
<td>(5)</td>
<td>0.035</td>
<td>(5)</td>
</tr>
<tr>
<td>C25</td>
<td>0.055</td>
<td>(6)</td>
<td>0.090</td>
<td>(9)</td>
</tr>
<tr>
<td>C26</td>
<td>0.027</td>
<td>(4)</td>
<td>0.016</td>
<td>(4)</td>
</tr>
<tr>
<td>C27</td>
<td>0.028</td>
<td>(4)</td>
<td>0.019</td>
<td>(4)</td>
</tr>
<tr>
<td>C28</td>
<td>0.037</td>
<td>(4)</td>
<td>0.028</td>
<td>(5)</td>
</tr>
<tr>
<td>C29</td>
<td>0.050</td>
<td>(5)</td>
<td>0.025</td>
<td>(5)</td>
</tr>
<tr>
<td>C30</td>
<td>0.059</td>
<td>(6)</td>
<td>0.025</td>
<td>(5)</td>
</tr>
<tr>
<td>C31</td>
<td>0.039</td>
<td>(5)</td>
<td>0.028</td>
<td>(5)</td>
</tr>
<tr>
<td>C32</td>
<td>0.026</td>
<td>(4)</td>
<td>0.025</td>
<td>(5)</td>
</tr>
<tr>
<td>C33</td>
<td>0.087</td>
<td>(7)</td>
<td>0.032</td>
<td>(6)</td>
</tr>
</tbody>
</table>

Geometric parameters (Å, °)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>La—N1</td>
<td>2.717</td>
<td>(7)</td>
<td>C1—H1"</td>
<td>0.9800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La—N2</td>
<td>2.806</td>
<td>(7)</td>
<td>C1—H1"</td>
<td>0.9800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La—N3</td>
<td>2.761</td>
<td>(6)</td>
<td>C2—H2</td>
<td>0.9900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La—C10</td>
<td>2.641</td>
<td>(7)</td>
<td>C2—H2</td>
<td>0.9900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La—C11</td>
<td>2.959</td>
<td>(7)</td>
<td>C3—H3</td>
<td>0.9900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La—C12</td>
<td>3.111</td>
<td>(7)</td>
<td>C3—H3</td>
<td>0.9900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La—C18</td>
<td>2.605</td>
<td>(9)</td>
<td>C4—H4</td>
<td>0.9800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La—C19</td>
<td>3.165</td>
<td>(7)</td>
<td>C4—H4</td>
<td>0.9800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La—C26</td>
<td>2.662</td>
<td>(7)</td>
<td>C4—H4"</td>
<td>0.9800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La—C27</td>
<td>3.744</td>
<td>(7)</td>
<td>C5—H5</td>
<td>0.9900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1—C1</td>
<td>1.485</td>
<td>(10)</td>
<td>C5—H5"</td>
<td>0.9900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1—C2</td>
<td>1.494</td>
<td>(11)</td>
<td>C6—H6</td>
<td>0.9900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1—C9</td>
<td>1.486</td>
<td>(11)</td>
<td>C6—H6"</td>
<td>0.9900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2—C3</td>
<td>1.478</td>
<td>(10)</td>
<td>C7—H7</td>
<td>0.9800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2—C4</td>
<td>1.480</td>
<td>(10)</td>
<td>C7—H7"</td>
<td>0.9800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2—C5</td>
<td>1.475</td>
<td>(11)</td>
<td>C7—H7"</td>
<td>0.9800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3—C6</td>
<td>1.507</td>
<td>(10)</td>
<td>C8—H8</td>
<td>0.9900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3—C7</td>
<td>1.476</td>
<td>(9)</td>
<td>C8—H8"</td>
<td>0.9900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3—C8</td>
<td>1.446</td>
<td>(10)</td>
<td>C9—H9</td>
<td>0.9900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2—C3</td>
<td>1.516</td>
<td>(11)</td>
<td>C9—H9"</td>
<td>0.9900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5—C6</td>
<td>1.520</td>
<td>(12)</td>
<td>C10—H10</td>
<td>0.9900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8—C9</td>
<td>1.533</td>
<td>(12)</td>
<td>C10—H10"</td>
<td>0.9900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10—C11</td>
<td>1.438</td>
<td>(10)</td>
<td>C12—H12</td>
<td>0.9500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11—C12</td>
<td>1.422</td>
<td>(10)</td>
<td>C13—H13</td>
<td>0.9500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11—C16</td>
<td>1.432</td>
<td>(10)</td>
<td>C15—H15</td>
<td>0.9500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12—C13</td>
<td>1.388</td>
<td>(11)</td>
<td>C16—H16</td>
<td>0.9500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bond</td>
<td>Length (Å)</td>
<td>Bond</td>
<td>Length (Å)</td>
<td>Value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td>---------------</td>
<td>------------</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C13—C14</td>
<td>1.378 (13)</td>
<td>C17—H17</td>
<td>0.9800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14—C15</td>
<td>1.406 (14)</td>
<td>C17—H17'</td>
<td>0.9800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14—C17</td>
<td>1.499 (14)</td>
<td>C17—H17''</td>
<td>0.9800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15—C16</td>
<td>1.359 (11)</td>
<td>C18—H18</td>
<td>0.9900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C18—C19</td>
<td>1.445 (9)</td>
<td>C18—H18'</td>
<td>0.9900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C19—C20</td>
<td>1.405 (11)</td>
<td>C20—H20</td>
<td>0.9500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C19—C24</td>
<td>1.414 (11)</td>
<td>C21—H21</td>
<td>0.9500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C20—C21</td>
<td>1.376 (13)</td>
<td>C23—H23</td>
<td>0.9500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C21—C22</td>
<td>1.406 (15)</td>
<td>C24—H24</td>
<td>0.9500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C22—C23</td>
<td>1.379 (13)</td>
<td>C25—H25</td>
<td>0.9800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C22—C25</td>
<td>1.514 (13)</td>
<td>C25—H25'</td>
<td>0.9800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C23—C24</td>
<td>1.393 (13)</td>
<td>C25—H25''</td>
<td>0.9800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C26—C27</td>
<td>1.467 (10)</td>
<td>C26—H26</td>
<td>0.9900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C27—C28</td>
<td>1.407 (10)</td>
<td>C26—H26'</td>
<td>0.9900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C27—C32</td>
<td>1.408 (9)</td>
<td>C28—H28</td>
<td>0.9500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C28—C29</td>
<td>1.397 (11)</td>
<td>C29—H29</td>
<td>0.9500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C29—C30</td>
<td>1.398 (12)</td>
<td>C31—H31</td>
<td>0.9500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C30—C31</td>
<td>1.377 (12)</td>
<td>C32—H32</td>
<td>0.9500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C30—C33</td>
<td>1.504 (12)</td>
<td>C33—H33</td>
<td>0.9800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C31—C32</td>
<td>1.380 (11)</td>
<td>C33—H33'</td>
<td>0.9800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1—H1</td>
<td>0.9800</td>
<td>C33—H33''</td>
<td>0.9800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La···H24</td>
<td>3.4300</td>
<td>H3···C12<sup>i</sup></td>
<td>2.7800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1···N2</td>
<td>2.904 (10)</td>
<td>H3···H10<sup>i</sup></td>
<td>2.5300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1···N3</td>
<td>2.942 (9)</td>
<td>H3<sup>i</sup>···H4<sup>i</sup></td>
<td>2.3400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1···C3</td>
<td>2.493 (10)</td>
<td>H3<sup>i</sup>···H4<sup>ii</sup></td>
<td>2.3600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1···C8</td>
<td>2.516 (11)</td>
<td>H3<sup>i</sup>···C12<sup>i</sup></td>
<td>3.0900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2···N1</td>
<td>2.904 (10)</td>
<td>H4···C18</td>
<td>2.9000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2···N3</td>
<td>2.933 (10)</td>
<td>H4···H5</td>
<td>2.4300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2···C2</td>
<td>2.486 (11)</td>
<td>H4···H18<sup>i</sup></td>
<td>2.1900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2···C6</td>
<td>2.497 (11)</td>
<td>H4<sup>i</sup>···C10</td>
<td>2.9400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3···N1</td>
<td>2.942 (9)</td>
<td>H4<sup>i</sup>···H3<sup)i</sup></td>
<td>2.3400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3···N2</td>
<td>2.933 (10)</td>
<td>H4<sup>i</sup>···C17<sup>ii</sup></td>
<td>2.9800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3···C5</td>
<td>2.529 (11)</td>
<td>H4<sup>ii</sup>···H3<sup>i</sup></td>
<td>2.3600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3···C9</td>
<td>2.505 (11)</td>
<td>H4<sup>ii</sup>···H5<sup>i</sup></td>
<td>2.4300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3···C12<sup>i</sup></td>
<td>3.289 (9)</td>
<td>H4<sup>ii</sup>···H17<sup>ii</sup></td>
<td>2.5600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3···C11<sup>i</sup></td>
<td>3.575 (9)</td>
<td>H4<sup>ii</sup>···H21<sup>i</sup></td>
<td>2.6000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4···C17<sup>ii</sup></td>
<td>3.383 (12)</td>
<td>H5···C18</td>
<td>2.7200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5···C27<sup>iii</sup></td>
<td>3.523 (11)</td>
<td>H5···H4</td>
<td>2.4300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9···C16<sup>i</sup></td>
<td>3.554 (11)</td>
<td>H5···H18<sup>i</sup></td>
<td>2.3400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10···C12</td>
<td>2.486 (9)</td>
<td>H5···C26<sup>iii</sup></td>
<td>2.8700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10···C4</td>
<td>3.497 (10)</td>
<td>H5···C27<sup>iii</sup></td>
<td>2.9200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10···C16</td>
<td>2.531 (10)</td>
<td>H5···H26<sup>iii</sup></td>
<td>2.4200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11···C3<sup>iv</sup></td>
<td>3.575 (9)</td>
<td>H5···H3</td>
<td>2.3900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12···C24</td>
<td>3.561 (10)</td>
<td>H5···H4<sup>ii</sup></td>
<td>2.4300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12···C3<sup>iv</sup></td>
<td>3.289 (9)</td>
<td>H6···C3</td>
<td>2.7600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C16···C9<sup>iv</sup></td>
<td>3.554 (11)</td>
<td>H6···C9</td>
<td>2.6200</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
supplementary materials

C17···C4v
\quad 3.383 (12)
\quad H6···H3
\quad 2.0500

C18···C5
\quad 3.437 (11)
\quad H6···H8i
\quad 2.3800

C24···C32
\quad 3.565 (11)
\quad H6···H9
\quad 2.1200

C24···C12
\quad 3.561 (10)
\quad H6···C10i
\quad 3.0700

C26···C1
\quad 3.600 (10)
\quad H6···H10i
\quad 2.3400

C26···C8
\quad 3.585 (10)
\quad H6'···H7'
\quad 2.3600

C27···C5vi
\quad 3.523 (11)
\quad H6'···H7''
\quad 2.3200

C32···C24
\quad 3.565 (11)
\quad H7···C27
\quad 3.0600

C1···H18vi
\quad 2.8300
\quad H7···C28
\quad 2.7200

C1···H7vii
\quad 3.0800
\quad H7···H8
\quad 2.3300

C2···H33vii
\quad 2.9400
\quad H7'···C18
\quad 3.0300

C3···H6
\quad 2.7600
\quad H7'···H6'
\quad 2.3600

C4···H17vii
\quad 2.9400
\quad H7'···H18
\quad 2.2700

C4···H18'
\quad 3.0300
\quad H7'···C1iii
\quad 3.0800

C6···H3
\quad 2.5700
\quad H7'···H1iii
\quad 2.4300

C6···H9
\quad 2.7900
\quad H7''···H6'
\quad 2.3200

C7···H18
\quad 3.0300
\quad H7''···H8'
\quad 2.3800

C8···H26v
\quad 3.0400
\quad H8···C26
\quad 2.8400

C9···H6
\quad 2.6200
\quad H8···H7
\quad 2.3300

C9···H3
\quad 2.7000
\quad H8···H26'
\quad 2.1900

C10···H4vii
\quad 2.9400
\quad H8···H6
\quad 2.3800

C10···H2
\quad 2.9800
\quad H8···H7''
\quad 2.3800

C10···H3v
\quad 3.0600
\quad H9···C3
\quad 2.5600

C10···H9v
\quad 2.9700
\quad H9···C6
\quad 2.7900

C10···H6v
\quad 3.0700
\quad H9···H2'
\quad 2.4200

C11···H10v
\quad 2.0500
\quad H9···H3
\quad 2.0200

C11···H10
\quad 2.0500
\quad H9···H6
\quad 2.1200

C11···H9v
\quad 2.7200
\quad H9···C10i
\quad 2.9700

C11···H3v
\quad 2.8100
\quad H9···C11i
\quad 2.7200

C12···H3v
\quad 2.7800
\quad H9···C16i
\quad 2.3900

C12···H2v
\quad 3.0200
\quad H9'···H1
\quad 2.3300

C12···H3v
\quad 3.0900
\quad H9'···H1''
\quad 2.4400

C13···H32
\quad 2.9700
\quad H9'···C18vi
\quad 3.1000

C13···H26
\quad 2.9700
\quad H9'···C19vi
\quad 2.8400

C13···H2v
\quad 2.9000
\quad H10···H3iv
\quad 2.5300

C14···H2v
\quad 3.0000
\quad H10···H6iv
\quad 2.3400

C14···H26
\quad 3.0100
\quad H10'···H2
\quad 2.3000

C16···H1v
\quad 2.7700
\quad H10'···H16
\quad 2.4800

C16···H9v
\quad 2.8900
\quad H12···C19
\quad 2.8000

C17···H4v
\quad 2.9800
\quad H12···C20
\quad 2.8600

C18··H26iii
\quad 3.0700
\quad H12···C21
\quad 2.9600

C18···H1iii
\quad 2.9700
\quad H12···C22
\quad 3.0100
C18···H9ii 3.1000 H12···C23 2.9200
C18···H5 2.7200 H12···C24 2.8100
C18···H7a 3.0200 H13···H32 2.5900
C18···H4 2.9000 H15···H17a 2.3700
C19···H12 2.8000 H16···H1' 2.4000
C19···H9ii 2.8400 H16···H10' 2.4800
C20···H12 2.8600 H17···H15 2.3700
C21···H12 2.9600 H17···H33ix 2.4500
C21···H33ii 2.9700 H17''···C4v 2.9400
C22···H12 3.0100 H17''···H4v 2.5600
C23···H12 2.9200 H18···C7 3.0300
C24···H12 2.8100 H18···H7a 2.2700
C26···H11v 2.9200 H18···H24 2.5800
C26···H5vi 2.8700 H18···C1iii 2.8300
C26···H8 2.8400 H18···H1iii 2.0300
C27···H7 3.0600 H18'···C4 3.0300
C27···H5vi 2.9200 H18'···H4 2.1900
C28···H7 2.7200 H18'···H5 2.3400
C30···H21v 3.0600 H18'···H20 2.4100
C32···H24 2.9400 H20···H18' 2.4100
C33···H2iiii 3.0900 H21···H25v 2.5400
H1···H2' 2.4200 H21···C30ii 3.0600
H1···H9a 2.3300 H21···H4iv 2.6000
H1'···C16 2.7700 H23···H25 2.4200
H1'···H2 2.3200 H24···La 3.4300
H1'···H16 2.4000 H24···C32 2.9400
H1'···C26 2.9200 H24···H18 2.5800
H1'···H9a 2.4400 H25···H23 2.4200
H1'···H26 2.3400 H25''···H21 2.5400
H1''···C18vi 2.9700 H26···C13 2.9700
H1''···H7a 2.4300 H26···C14 3.0100
H1''···H18vi 2.0300 H26···H32 2.5000
H2···C10 2.9800 H26'···C8 3.0400
H2···C33ii 3.0900 H26'···H1'' 2.3400
H2···H1' 2.3200 H26'···H8 2.1900
H2···H10a 2.3000 H26'···H28 2.3800
H2···H33vii 2.3900 H26'···C18vi 3.0700
H2'···H1 2.4200 H26'···H5vi 2.4200
H2'···H9 2.4200 H28···H7 2.4600
H2'···C12i 3.0200 H28···H26' 2.3800
H2'···C13i 2.9000 H29···H33v 2.3600
H2'···C14i 3.0000 H32···C13 2.9700
H3···C6 2.5700 H32···H13 2.5900
H3···C9 2.7000 H32···H26 2.5000
H3···H5' 2.3900 H33'···C21vii 2.9700
H3···H6 2.0500 H33'···H17viii 2.4500
H3···H9 2.0200 H33'···C2viii 3.0900
H3···C10i 3.0600 H33''···H2viii 2.3900
H3···C11i 2.8100 H33''···H9 2.3600
N1—La—N2 63.4 (2) N2—C3—H3' 109.00
N1—La—N3 64.94 (19) C2—C3—H3 109.00
N1—La—C10 89.5 (2) C2—C3—H3' 109.00
N1—La—C11 96.3 (2) H3—C3—H3' 108.00
N1—La—C18 139.9 (2) N2—C4—H4 110.00
N1—La—C26 86.9 (2) N2—C4—H4' 109.00
N2—La—N3 63.6 (2) N2—C4—H4'' 109.00
N2—La—C10 85.5 (2) H4—C4—H4' 109.00
N2—La—C11 113.8 (2) H4—C4—H4'' 110.00
N2—La—C18 80.4 (2) H4'—C4—H4'' 109.00
N2—La—C26 143.9 (2) N2—C5—H5 109.00
N3—La—C10 146.0 (2) N2—C5—H5' 109.00
N3—La—C11 160.62 (19) C6—C5—H5 109.00
N3—La—C18 84.36 (19) C6—C5—H5' 109.00
N3—La—C26 86.17 (19) H5—C5—H5' 108.00
C10—La—C11 29.0 (2) N3—C6—H6 109.00
C10—La—C18 105.1 (2) N3—C6—H6' 109.00
C10—La—C26 115.9 (2) C5—C6—H6 109.00
C11—La—C18 114.6 (2) C5—C6—H6' 109.00
C11—La—C26 88.0 (2) H6—C6—H6' 108.00
C18—La—C26 117.6 (3) N3—C7—H7 110.00
La—N1—C1 104.7 (4) N3—C7—H7' 109.00
La—N1—C2 106.6 (5) N3—C7—H7'' 109.00
La—N1—C9 114.8 (5) H7—C7—H7'' 109.00
C1—N1—C2 107.4 (6) H7—C7—H7'' 109.00
C1—N1—C9 111.4 (6) H7—C7—H7'' 109.00
C2—N1—C9 111.3 (6) N3—C8—H8 109.00
La—N2—C3 114.7 (5) N3—C8—H8' 109.00
La—N2—C4 105.2 (4) C9—C8—H8 109.00
La—N2—C5 105.8 (5) C9—C8—H8' 109.00
C3—N2—C4 109.5 (6) H8—C8—H8' 108.00
C3—N2—C5 110.9 (6) N1—C9—H9 109.00
C4—N2—C5 110.5 (6) N1—C9—H9' 109.00
La—N3—C6 115.9 (5) C8—C9—H9 109.00
La—N3—C7 107.5 (4) C8—C9—H9' 109.00
La—N3—C8 103.5 (4) H9—C9—H9' 108.00
C6—N3—C7 109.1 (6) La—C10—H10 114.00
C6—N3—C8 111.4 (6) La—C10—H10' 114.00
C7—N3—C8 109.1 (6) C11—C10—H10 114.00
N1—C2—C3 111.9 (6) C11—C10—H10' 114.00
N2—C3—C2 112.2 (6) H10—C10—H10' 111.00
N2—C5—C6 113.1 (7) C11—C12—H12 119.00
N3—C6—C5 113.3 (6) C13—C12—H12 119.00
supplementary materials

N3—C8—C9 114.5 (7) C12—C13—H13 119.00
N1—C9—C8 112.9 (7) C14—C13—H13 119.00
La—C10—C11 87.9 (4) C14—C15—H15 110.00
La—C11—C10 63.1 (4) C16—C15—H15 119.00
La—C11—C12 82.5 (4) C11—C16—H16 119.00
La—C11—C16 120.1 (4) C15—C16—H16 119.00
C10—C11—C12 120.8 (6) C14—C17—H17 110.00
C10—C11—C16 123.8 (7) C14—C17—H17" 109.00
C12—C11—C16 114.9 (7) C14—C17—H17"" 110.00
C11—C12—C13 121.2 (7) H17—C17—H17" 109.00
C12—C13—C14 122.5 (8) H17—C17—H17"" 110.00
C13—C14—C15 117.2 (8) H17—C17—H17""" 109.00
C13—C14—C17 121.1 (9) La—C18—H18 112.00
C15—C14—C17 121.7 (8) La—C18—H18' 112.00
C14—C15—C16 121.5 (7) C19—C18—H18 112.00
C11—C16—C15 122.6 (7) C19—C18—H18' 112.00
La—C18—C19 98.8 (5) H18—C18—H18' 110.00
C18—C19—C20 122.7 (7) C19—C20—H20 120.00
C18—C19—C24 120.4 (7) C21—C20—H20 120.00
C20—C19—C24 116.8 (7) C20—C21—H21 119.00
C19—C20—C21 121.0 (8) C22—C21—H21 119.00
C20—C21—C22 122.2 (9) C22—C23—H23 119.00
C21—C22—C23 117.2 (8) C24—C23—H23 119.00
C21—C22—C25 120.6 (8) C19—C24—H24 119.00
C23—C22—C25 122.2 (9) C23—C24—H24 119.00
C22—C23—C24 121.6 (8) C22—C25—H25 109.00
C19—C24—C23 121.3 (7) C22—C25—H25" 109.00
La—C26—C27 127.7 (5) C22—C25—H25"" 109.00
C26—C27—C28 122.4 (6) H25—C25—H25" 109.00
C26—C27—C32 122.9 (6) H25—C25—H25"" 109.00
C28—C27—C32 114.6 (6) H25—C25—H25""" 110.00
C27—C28—C29 122.3 (7) La—C26—H26 105.00
C28—C29—C30 121.2 (8) La—C26—H26' 105.00
C29—C30—C31 117.1 (8) C27—C26—H26 105.00
C29—C30—C33 121.1 (8) C27—C26—H26' 105.00
C31—C30—C33 121.9 (8) H26—C26—H26' 106.00
C30—C31—C32 121.9 (7) C27—C28—H28 119.00
C27—C32—C31 123.0 (7) C29—C28—H28 119.00
N1—C1—H1 109.00 C28—C29—H29 119.00
N1—C1—H1' 110.00 C30—C29—H29 119.00
N1—C1—H1" 109.00 C30—C31—H31 119.00
H1—C1—H1' 109.00 C32—C31—H31 119.00
H1—C1—H1" 109.00 C27—C32—H32 118.00
H1'—C1—H1" 109.00 C31—C32—H32 119.00
N1—C2—H2 109.00 C30—C33—H33 109.00
N1—C2—H2' 109.00 C30—C33—H33' 109.00
C3—C2—H2' 109.00 C30—C33—H33" 109.00
C3—C2—H2' 109.00 H33—C33—H33' 110.00
H2—C2—H2' 108.00 H33—C33—H33" 109.00
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2—C3—H3</td>
<td>109.00</td>
<td>H33′—C33—H33″</td>
<td>109.00</td>
</tr>
<tr>
<td>N2—La—N1—C1</td>
<td>−150.7 (5)</td>
<td>N2—La—C18—C19</td>
<td>147.4 (5)</td>
</tr>
<tr>
<td>N2—La—N1—C2</td>
<td>−37.0 (5)</td>
<td>N3—La—C18—C19</td>
<td>−148.5 (5)</td>
</tr>
<tr>
<td>N2—La—N1—C9</td>
<td>86.7 (6)</td>
<td>C10—La—C18—C19</td>
<td>64.8 (6)</td>
</tr>
<tr>
<td>N3—La—N1—C1</td>
<td>137.7 (5)</td>
<td>C11—La—C18—C19</td>
<td>35.5 (6)</td>
</tr>
<tr>
<td>N3—La—N1—C2</td>
<td>−108.7 (5)</td>
<td>C26—La—C18—C19</td>
<td>−65.8 (6)</td>
</tr>
<tr>
<td>N3—La—N1—C9</td>
<td>15.1 (5)</td>
<td>N1—La—C26—C27</td>
<td>141.4 (6)</td>
</tr>
<tr>
<td>C10—La—N1—C1</td>
<td>−65.5 (5)</td>
<td>N2—La—C26—C27</td>
<td>108.2 (6)</td>
</tr>
<tr>
<td>C10—La—N1—C2</td>
<td>48.2 (5)</td>
<td>N3—La—C26—C27</td>
<td>76.4 (5)</td>
</tr>
<tr>
<td>C10—La—N1—C9</td>
<td>172.0 (5)</td>
<td>C10—La—C26—C27</td>
<td>−130.7 (5)</td>
</tr>
<tr>
<td>C11—La—N1—C1</td>
<td>−37.2 (5)</td>
<td>C11—La—C26—C27</td>
<td>−122.2 (6)</td>
</tr>
<tr>
<td>C11—La—N1—C2</td>
<td>76.5 (5)</td>
<td>C18—La—C26—C27</td>
<td>−5.2 (6)</td>
</tr>
<tr>
<td>C11—La—N1—C9</td>
<td>−159.8 (5)</td>
<td>La—N1—C2—C3</td>
<td>63.5 (6)</td>
</tr>
<tr>
<td>C18—La—N1—C1</td>
<td>−178.7 (5)</td>
<td>C1—N1—C2—C3</td>
<td>175.3 (6)</td>
</tr>
<tr>
<td>C18—La—N1—C2</td>
<td>−65.0 (6)</td>
<td>C9—N1—C2—C3</td>
<td>−62.4 (8)</td>
</tr>
<tr>
<td>C18—La—N1—C9</td>
<td>58.8 (7)</td>
<td>La—N1—C9—C8</td>
<td>8.8 (8)</td>
</tr>
<tr>
<td>C26—La—N1—C1</td>
<td>50.4 (5)</td>
<td>C1—N1—C9—C8</td>
<td>−110.1 (8)</td>
</tr>
<tr>
<td>C26—La—N1—C2</td>
<td>164.1 (5)</td>
<td>C2—N1—C9—C8</td>
<td>130.0 (7)</td>
</tr>
<tr>
<td>C26—La—N1—C9</td>
<td>−72.1 (5)</td>
<td>La—N2—C3—C2</td>
<td>14.2 (7)</td>
</tr>
<tr>
<td>N1—La—N2—C3</td>
<td>12.5 (4)</td>
<td>C4—N2—C3—C2</td>
<td>−103.8 (7)</td>
</tr>
<tr>
<td>N1—La—N2—C4</td>
<td>132.9 (5)</td>
<td>C5—N2—C3—C2</td>
<td>134.0 (7)</td>
</tr>
<tr>
<td>N1—La—N2—C5</td>
<td>−110.1 (5)</td>
<td>La—N2—C5—C6</td>
<td>60.3 (7)</td>
</tr>
<tr>
<td>N3—La—N2—C3</td>
<td>86.2 (5)</td>
<td>C3—N2—C5—C6</td>
<td>−64.7 (9)</td>
</tr>
<tr>
<td>N3—La—N2—C4</td>
<td>−153.4 (5)</td>
<td>C4—N2—C5—C6</td>
<td>173.6 (7)</td>
</tr>
<tr>
<td>N3—La—N2—C5</td>
<td>−36.4 (5)</td>
<td>La—N3—C6—C5</td>
<td>11.0 (8)</td>
</tr>
<tr>
<td>C10—La—N2—C3</td>
<td>−79.2 (5)</td>
<td>C7—N3—C6—C5</td>
<td>−110.4 (7)</td>
</tr>
<tr>
<td>C10—La—N2—C4</td>
<td>41.2 (5)</td>
<td>C8—N3—C6—C5</td>
<td>129.0 (7)</td>
</tr>
<tr>
<td>C10—La—N2—C5</td>
<td>158.2 (5)</td>
<td>La—N3—C8—C9</td>
<td>61.3 (7)</td>
</tr>
<tr>
<td>C11—La—N2—C3</td>
<td>−72.5 (5)</td>
<td>C6—N3—C8—C9</td>
<td>−63.9 (8)</td>
</tr>
<tr>
<td>C11—La—N2—C4</td>
<td>47.9 (5)</td>
<td>C7—N3—C8—C9</td>
<td>175.5 (6)</td>
</tr>
<tr>
<td>C11—La—N2—C5</td>
<td>164.8 (5)</td>
<td>N1—C2—C3—N2</td>
<td>−53.0 (8)</td>
</tr>
<tr>
<td>C18—La—N2—C3</td>
<td>174.7 (5)</td>
<td>N2—C5—C6—N3</td>
<td>−50.1 (9)</td>
</tr>
<tr>
<td>C18—La—N2—C4</td>
<td>−64.9 (5)</td>
<td>N3—C8—C9—N1</td>
<td>−50.4 (9)</td>
</tr>
<tr>
<td>C18—La—N2—C5</td>
<td>52.0 (5)</td>
<td>La—C10—C11—C12</td>
<td>61.8 (6)</td>
</tr>
<tr>
<td>C26—La—N2—C3</td>
<td>50.2 (7)</td>
<td>La—C10—C11—C16</td>
<td>−109.7 (7)</td>
</tr>
<tr>
<td>C26—La—N2—C4</td>
<td>170.6 (4)</td>
<td>La—C11—C12—C13</td>
<td>−121.6 (6)</td>
</tr>
<tr>
<td>C26—La—N2—C5</td>
<td>−72.4 (6)</td>
<td>C10—C11—C12—C13</td>
<td>−174.0 (6)</td>
</tr>
<tr>
<td>N1—La—N3—C6</td>
<td>84.9 (5)</td>
<td>C16—C11—C12—C13</td>
<td>−1.8 (10)</td>
</tr>
<tr>
<td>N1—La—N3—C7</td>
<td>−152.8 (5)</td>
<td>La—C11—C16—C15</td>
<td>97.0 (7)</td>
</tr>
<tr>
<td>N1—La—N3—C8</td>
<td>−37.4 (4)</td>
<td>C10—C11—C16—C15</td>
<td>173.0 (7)</td>
</tr>
<tr>
<td>N2—La—N3—C6</td>
<td>13.5 (5)</td>
<td>C12—C11—C16—C15</td>
<td>1.1 (10)</td>
</tr>
<tr>
<td>N2—La—N3—C7</td>
<td>135.8 (5)</td>
<td>C11—C12—C13—C14</td>
<td>2.8 (11)</td>
</tr>
<tr>
<td>N2—La—N3—C8</td>
<td>−108.8 (5)</td>
<td>C12—C13—C14—C15</td>
<td>−2.7 (13)</td>
</tr>
<tr>
<td>C10—La—N3—C6</td>
<td>40.2 (7)</td>
<td>C12—C13—C14—C17</td>
<td>179.5 (8)</td>
</tr>
<tr>
<td>C10—La—N3—C7</td>
<td>162.5 (4)</td>
<td>C13—C14—C15—C16</td>
<td>1.9 (13)</td>
</tr>
<tr>
<td>C10—La—N3—C8</td>
<td>−82.1 (6)</td>
<td>C17—C14—C15—C16</td>
<td>179.7 (8)</td>
</tr>
<tr>
<td>C18—La—N3—C6</td>
<td>−68.6 (5)</td>
<td>C14—C15—C16—C11</td>
<td>−1.2 (12)</td>
</tr>
<tr>
<td>C18—La—N3—C7</td>
<td>53.8 (4)</td>
<td>La—C18—C19—C20</td>
<td>−106.7 (7)</td>
</tr>
<tr>
<td>C18—La—N3—C8</td>
<td>169.2 (5)</td>
<td>La—C18—C19—C24</td>
<td>69.7 (8)</td>
</tr>
</tbody>
</table>
C26—La—N3—C6 173.2 (5) C18—C19—C20—C21 176.7 (8)
C26—La—N3—C7 −64.5 (4) C24—C19—C20—C21 0.2 (12)
C26—La—N3—C8 50.9 (5) C18—C19—C24—C23 −176.1 (8)
N1—La—C10—C11 104.1 (4) C20—C19—C24—C23 0.5 (11)
N2—La—C10—C11 167.4 (4) C24—C19—C20—C21 −0.8 (14)
N3—La—C10—C11 143.6 (4) C20—C21—C22—C23 0.7 (14)
C18—La—C10—C11 −113.8 (4) C20—C21—C22—C25 −179.2 (9)
C26—La—C10—C11 17.8 (5) C21—C22—C23—C24 0.0 (13)
N1—La—C11—C10 −77.4 (4) C25—C22—C23—C24 179.9 (9)
N1—La—C11—C12 152.4 (4) C22—C23—C24—C19 −0.6 (13)
N1—La—C11—C16 37.9 (6) La—C26—C27—C28 −96.6 (8)
N2—La—C11—C10 −13.7 (5) La—C26—C27—C32 81.4 (8)
N2—La—C11—C12 −143.9 (4) C26—C27—C28—C29 176.9 (7)
N2—La—C11—C16 101.6 (6) C32—C27—C28—C29 −1.2 (11)
C10—La—C11—C12 −130.2 (6) C26—C27—C32—C31 −177.5 (7)
C10—La—C11—C16 115.3 (8) C28—C27—C32—C31 0.6 (11)
C18—La—C11—C10 76.4 (5) C27—C28—C29—C30 1.1 (12)
C18—La—C11—C12 −53.8 (5) C28—C29—C30—C31 −0.3 (12)
C18—La—C11—C16 −168.4 (6) C28—C29—C30—C33 178.6 (8)
C26—La—C11—C10 −164.0 (4) C29—C30—C31—C32 −0.3 (12)
C26—La—C11—C12 65.8 (4) C33—C30—C31—C32 −179.3 (8)
C26—La—C11—C16 −48.8 (6) C30—C31—C32—C27 0.2 (12)
N1—La—C18—C19 172.5 (4)

Symmetry codes: (i) x+1/2, −y+3/2, z; (ii) −x+1/2, y+1/2, z+1/2; (iii) −x+1, −y+1, z+1/2; (iv) x−1/2, −y+3/2, z; (v) −x+1/2, y−1/2, z−1/2; (vi) −x+1, −y+1, z−1/2; (vii) x, y+1, z; (viii) x, y−1, z; (ix) −x+1/2, y+1/2, z−1/2; (x) −x+1/2, y−1/2, z+1/2.