Search for the Rare Decays $B_{s}^{0} \rightarrow e^{+}e^{-}$ and $B^{0} \rightarrow e^{+}e^{-}$

R. Aaij et al.
(LHCb Collaboration)

A search for the decays $B_{s}^{0} \rightarrow e^{+}e^{-}$ and $B^{0} \rightarrow e^{+}e^{-}$ is performed using data collected with the LHCb experiment in proton-proton collisions at center-of-mass energies of 7, 8, and 13 TeV, corresponding to integrated luminosities of 1, 2, and 2 fb$^{-1}$, respectively. No signal is observed. Assuming no contribution from $B^{0} \rightarrow e^{+}e^{-}$ decays, an upper limit on the branching fraction $B(B_{s}^{0} \rightarrow e^{+}e^{-}) < 9.4(11.2) \times 10^{-9}$ is obtained at 90(95)% confidence level. If no $B_{s}^{0} \rightarrow e^{+}e^{-}$ contribution is assumed, a limit of $B(B^{0} \rightarrow e^{+}e^{-}) < 2.5(3.0) \times 10^{-9}$ is determined at 90(95)% confidence level. These upper limits are more than one order of magnitude lower than the previous values.

DOI: 10.1103/PhysRevLett.124.211802

Searches for rare particle decays provide ideal probes for contributions from physics processes beyond the standard model (SM). Recent measurements of decays involving $B \rightarrow s\ell^{+}\ell^{-}$ transitions (the inclusion of charge-conjugated processes is implied throughout this Letter) hint at deviations from SM predictions in lepton-flavor universality tests [1–6] and thus motivate measurements of decay rates into final states involving leptons. Following the observation of the decay $B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$ [7,8], the search for $B_{s}^{0} \rightarrow e^{+}e^{-}$ and $B^{0} \rightarrow e^{+}e^{-}$ decays provides an independent test of lepton-flavor universality. According to SM predictions (calculated from Ref. [9], neglecting QED corrections that are expected to be at the percent level), $B_{s}^{0} \rightarrow e^{+}e^{-}$ decays have branching fractions of $B(B_{s}^{0} \rightarrow e^{+}e^{-}) = (8.60 \pm 0.36) \times 10^{-14}$ and $B(B^{0} \rightarrow e^{+}e^{-}) = (2.41 \pm 0.13) \times 10^{-15}$. With contributions beyond the SM, these branching fractions could be significantly larger, reaching values of $O(10^{-8})$ for $B(B_{s}^{0} \rightarrow e^{+}e^{-})$ and $O(10^{-10})$ for $B(B^{0} \rightarrow e^{+}e^{-})$ [10]. These values are close to the current experimental bounds of $B(B_{s}^{0} \rightarrow e^{+}e^{-}) < 2.8 \times 10^{-7}$ and $B(B^{0} \rightarrow e^{+}e^{-}) < 8.3 \times 10^{-8}$ at 90% confidence level (CL) [11], set by the CDF collaboration.

In this Letter, a search for $B_{s}^{0} \rightarrow e^{+}e^{-}$ and $B^{0} \rightarrow e^{+}e^{-}$ decays is presented using data collected with the LHCb experiment in proton-proton collisions at center-of-mass energies of 7 TeV in 2011, 8 TeV in 2012 and 13 TeV in 2015 and 2016, corresponding to integrated luminosities of 1, 2, and 2 fb$^{-1}$, respectively. The signal yields are determined from a fit to the data and normalized to those of the $B^{+} \rightarrow J/\psi K^{+}$ decay, where the J/ψ meson decays to $e^{+}e^{-}$, which has a precisely measured branching fraction [12] and a similar dielectron signature in the detector.

The LHCb detector [13,14] is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, designed for the study of particles containing b or c quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes placed downstream of the magnet. Different types of charged hadrons are distinguished using information from two ring-imaging Cherenkov detectors. Photons, electrons, and hadrons are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers.

The online event selection is performed by a trigger [15], which consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction. At the hardware trigger stage, events are required to have a high-energy deposit in the calorimeters associated with a signal electron candidate, or a muon candidate with high transverse momentum p_{T}, or a photon, electron, or hadron candidate with high transverse energy from the decays of other particles from the pp collision. The software trigger requires a two-track secondary vertex with a significant displacement from any primary pp interaction vertex (PV). At least one charged particle must have high p_{T} and be inconsistent with originating from a PV. A multivariate algorithm [16,17] is used in the trigger for the identification of secondary vertices consistent with the decay of a b...
hadron. Simulated samples are used to optimize the candidate selection, estimate selection efficiencies and describe the expected invariant-mass shapes of the signal candidates and background decays. In the simulation, pp collisions are generated using PYTHIA [18] with a specific LHCb configuration [19]. Decays of unstable particles are described by EVTGEN [20], in which final-state radiation is magnet [26]. Candidates in data and simulation are separated, and isolation criteria [24] using B decay.

A boosted decision tree (BDT) algorithm [27–29] is used to separate $B_{(s)}^{+} \rightarrow e^{+}e^{-}$ signal from random combinations of two electrons (combinatorial background). The BDT is trained separately for data taking periods 2011–2012 (Run 1) and 2015–2016 (Run 2) on simulated $B_{(s)}^{0} \rightarrow e^{+}e^{-}$ decays as signal proxy and dielectron candidates from data with a mass above 5588 MeV/c2 as background proxy. The split between the data taking periods is done to account for changes in the center-of-mass energies and trigger strategies, which significantly impact the data distributions and improve the BDT and the particle identification algorithms in Run 2. It is checked that the data behave consistently across the data-taking periods. The BDT input variables comprise of the following: kinematic information on the electron tracks and B candidate, information on the displacement of the electrons and B candidate from the associated PV, and isolation variables that quantify the compatibility of other tracks in the event with originating from the same decay as the B candidate [24,30]. Candidates with a BDT response compatible with that of the background are discarded, with the threshold chosen by maximizing the figure of merit $e_{signal}/(\sqrt{N_{background}+3/2})$ [31], where e_{signal} is the signal efficiency and the expected background yield in the signal region is $N_{background}$.

The final selected data set is separated by data-taking period and by category of bremsstrahlung correction. The branching fraction $B(B_{(s)}^{0} \rightarrow e^{+}e^{-})$ is measured relative to that of the normalization channel via

$$B(B_{(s)}^{0} \rightarrow e^{+}e^{-}) = N(B_{(s)}^{0} \rightarrow e^{+}e^{-}) \times \alpha \times B(B^{+} \rightarrow J/\psi K^{+}) \times \left(\frac{f_{d(s)}}{f_{u}}\right)^{-1},$$

where

$$\alpha \equiv \frac{e(B^{+} \rightarrow J/\psi K^{+})}{e(B_{(s)}^{0} \rightarrow e^{+}e^{-})} \times \frac{1}{N(B^{+} \rightarrow J/\psi K^{+})},$$

$e(B_{(s)}^{0} \rightarrow e^{+}e^{-})$ and $e(B^{+} \rightarrow J/\psi K^{+})$ denote the efficiencies of the signal and normalization modes, and $N(B_{(s)}^{0} \rightarrow e^{+}e^{-})$ and $N(B^{+} \rightarrow J/\psi K^{+})$ their yields. The normalization mode branching fraction (including that for the decay $J/\psi \rightarrow e^{+}e^{-}$) is $B(B^{+} \rightarrow J/\psi K^{+}) = (6.03 \pm 0.17) \times 10^{-5}$, taken from Ref. [12]. The b-hadron fragmentation fraction ratio f_{d}/f_{u} is assumed to be unity, while $f_{s}/f_{u} = 0.259 \pm 0.015$ [32] is used for the Run 1 data and is scaled by 1.068 ± 0.016 for the Run 2 data, according to Ref. [33], to account for center-of-mass energy differences. A measurement of f_{s}/f_{u} from Run 2 yields a consistent, but less precise, result [34].

The yield of the normalization mode is determined using an unbinned maximum-likelihood fit to the $K^{+} e^{+}e^{-}$ invariant mass separately for each year of data.
taking and bremsstrahlung category. The fit model comprises a Gaussian function with power-law tails [35] for the signal component, where the tail parameters are fixed from simulation, and an exponential function to describe combinatorial background. Summed over the bremsstrahlung categories, the yield of the normalization mode is 20480 ± 140 in the Run 1 data and 33080 ± 180 in the Run 2 data.

The selection efficiencies \(e(B^0_\ell \to e^+e^-) \) and \(e(B^+ \to J/\psi K^+) \) are determined separately for each year of data taking and bremsstrahlung category using simulated decays that are weighted to better represent the data. Calibration data are used to evaluate particle-identification efficiencies [25]. Trigger efficiencies are also estimated from data, using the technique described in Ref. [36]. For simulated \(B^0_\ell \to e^+e^- \) decays, the mean \(B^0_\ell \) lifetime [37] is assumed. The selection efficiency is assumed to be the same for both \(B^0 \to e^+e^- \) and \(B^0 \to e^+e^- \) decays, which is consistent with results from simulation. The normalization factors, \(\alpha \), are combined across the data-taking periods and, given in Table I, split by bremsstrahlung category (for the selection efficiency ratio between normalization and signal mode, see the Supplemental Material [38]).

In addition to the combinatorial background, backgrounds due to misidentification and partial reconstruction are present in the data. These backgrounds differ significantly between the categories of bremsstrahlung correction. Their invariant-mass shapes and relative contributions are evaluated using simulation. In the lower mass region, partially reconstructed backgrounds of the types \(B \to X e^+e^- \) and \(B^+ \to D^0(\to Y^+e^-\bar{\nu}_e)e^+\nu_e \) dominate, where \(X \) and \(Y \) represent hadronic systems. The main source of background in the \(B \)-mass region, however, are misidentified particles in the decays \(B^0 \to \pi^-e^+\nu_e \) and \(B \to h^+h'^- \), where \(h \) and \(h' \) are hadrons. The latter has a peaking structure in the \(B \)-mass region. Backgrounds involving misidentified particles contribute mostly to categories in which at most one of the electrons has a bremsstrahlung correction applied. The contribution from combinatorial background is evaluated from same-sign lepton pairs in data and found to be small. The yields of the backgrounds are Gaussian constrained to their expected values, estimated from simulation using their known branching fractions [12].

Table I. Normalization factors \(\alpha \) for \(B^0_\ell \to e^+e^- \). The bremsstrahlung category denotes whether zero, one or both electrons are corrected for bremsstrahlung losses. The uncertainties include statistical uncertainties and uncertainties due to limited size of the simulated samples.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No correction</td>
<td>2.85 ± 0.24</td>
<td>1.84 ± 0.08</td>
</tr>
<tr>
<td>One electron corrected</td>
<td>1.13 ± 0.08</td>
<td>0.70 ± 0.03</td>
</tr>
<tr>
<td>Both electrons corrected</td>
<td>1.73 ± 0.20</td>
<td>1.04 ± 0.06</td>
</tr>
</tbody>
</table>

The shape of the invariant mass of the \(B^0_\ell \to e^+e^- \) and \(B^0 \to e^+e^- \) components is modeled using a Gaussian function with power-law tails, where the parameters are obtained from simulation and differ between each bremsstrahlung category and year of data taking. The peak values and the widths of the functions are corrected for data-simulation differences by a factor determined from the normalization mode. The parameters of the \(B^0_\ell \to e^+e^- \) and \(B^0 \to e^+e^- \) line shapes are fixed to the same values with the exception of the peak value, which is shifted according to the known \(B^0_\ell-B^0 \) mass difference [12]. Due to the limited mass resolution, arising from imperfect bremsstrahlung recovery, the line shapes from \(B^0_\ell \to e^+e^- \) and \(B^0 \to e^+e^- \) are highly overlapping. Therefore the branching fraction of \(B^0_\ell \to e^+e^- \) is obtained by performing a simultaneous fit to the dielectron invariant-mass distribution of all six data sets while neglecting the contribution from \(B^0 \to e^+e^- \), and vice versa. In these fits, the only shared parameters between categories are the branching fractions \(\mathcal{B}(B^0_\ell \to e^+e^-) \) and \(\mathcal{B}(B^+ \to J/\psi K^+) \), and the ratio of the fragmentation fractions \(f_s/f_b \).

Systematic uncertainties are estimated separately for each data set. Dominant sources of systematic uncertainties in the normalization arise from the uncertainty on the fragmentation fraction ratio, the technique used to evaluate the trigger efficiencies, and the determination of particle-identification efficiencies; the systematic uncertainties from these sources extend to 5.8%, 5.3%, and 5.3% on the branching fractions, respectively. The uncertainty on \(\mathcal{B}(B^+ \to J/\psi K^+) \) of 2.8% [12] is taken into account. A difference of up to 4.1% is found between the efficiency of the BDT selection on simulated \(B^+ \to J/\psi K^+ \) decays and \(B^+ \to J/\psi K^+ \) decays in data, which is assigned as a systematic uncertainty. The fraction of candidates in each bremsstrahlung-correction category of the signal modes is taken from simulation. The difference between simulation and data is investigated using \(B^+ \to J/\psi K^+ \) decays and its effect on the normalization, up to 4.0%, is taken as a systematic uncertainty. Systematic uncertainties on the invariant-mass resolution corrections are determined by repeating the correction procedure with pseudoexperiments obtained with the bootstrapping method [39], yielding up to 1.1%. A difference between the total selection efficiencies in the \(B^0_\ell \to e^+e^- \) and \(B^0 \to e^+e^- \) channels of up to 2.5% is assigned as a systematic uncertainty on the \(B^0 \to e^+e^- \) normalization factor. Due to the presence of an additional kaon in the final state of the normalization mode, the track-reconstruction efficiency is different between the signal and normalization modes. An uncertainty of 1.1% is assigned to the branching fraction as a systematic uncertainty on the kaon reconstruction efficiency arising from the limited knowledge of the interactions in the detector material [40]. Finally, an uncertainty of 1.0% is assigned to account for small differences in detector occupancy between the signal
and normalization mode arising from the trigger selection. The dominant sources of systematic uncertainties on the background composition are due to the imprecise knowledge of the branching fractions of the background components. The largest uncertainty of this type on the expected background yield in the B-mass region is 14%, determined from refitting the mass sidebands while varying the background components according to their uncertainties. Taking all correlations into account, overall single event sensitivities of \([4.71 \pm 0.12(\text{stat}) \pm 0.33(\text{syst})] \times 10^{-10}\) for \(B^0_s \rightarrow e^+e^-\) and \([1.271 \pm 0.034(\text{stat}) \pm 0.063(\text{syst})] \times 10^{-10}\) for \(B^0 \rightarrow e^+e^-\) are obtained.

The dielectron invariant-mass spectrum, summed over bremsstrahlung categories, is shown in Fig. 1, with the result of the \(B^0_s \rightarrow e^+e^-\) fit. The individual categories are shown in the Supplemental Material [38], as well as the distributions with the result of the \(B^0 \rightarrow e^+e^-\) fit. The measured branching fractions are \(B(B^0_s \rightarrow e^+e^-) = (2.4 \pm 4.4) \times 10^{-9}\) and \(B(B^0 \rightarrow e^+e^-) = (0.30 \pm 1.29) \times 10^{-9}\), where the uncertainties include both statistical and systematic components. The results are in agreement with the background-only hypothesis.

Upper limits on the branching fractions are set using the CL\(_s\) method [41], as implemented in the GAMMACOMBO framework [42,43] with a one-sided profile likelihood ratio [44] as test statistic. The likelihoods are computed from fits to the invariant-mass distributions. In the fits, the normalization factor, normalization mode branching fraction, fragmentation fraction ratio, and background yields are Gaussian constrained to their expected values within statistical and systematic uncertainties. Pseudoexperiments, in which the nuisance parameters are set to their fitted values from data, are used for the evaluation of the test statistic.

The expected and observed CL\(_s\) distributions are shown in Fig. 2. The upper observed limits are \(B(B^0_s \rightarrow e^+e^-) < 9.4(11.2) \times 10^{-9}\) and \(B(B^0 \rightarrow e^+e^-) < 2.5(3.0) \times 10^{-9}\) at 90(95)% confidence level. These are consistent with the expected upper limits of \(B(B^0_s \rightarrow e^+e^-) < 7.0(8.6) \times 10^{-9}\) and \(B(B^0 \rightarrow e^+e^-) < 2.0(2.5) \times 10^{-9}\) at 90(95)% confidence level, obtained as the median of limits determined on background-only pseudoexperiments.

In conclusion, a search for the rare decays \(B^0_s \rightarrow e^+e^-\) is performed using data from proton-proton collisions.
recorded with the LHCb experiment, corresponding to a total integrated luminosity of \(5 \, fb^{-1}\). No excess of events is observed over the background. The resulting limits on the branching fractions are \(B(B^0 \to e^+e^-) \leq 9.4(11.2) \times 10^{-9}\) and \(B(B^0 \to e^+e^-) < 2.5(3.0) \times 10^{-9}\) at 90(95)% confidence level, when neglecting the contribution from the other decay. The mean \(B^0\) lifetime is assumed for \(B^0 \to e^+e^-\) decays. Assuming SM-like \(CP\)-odd (\(CP\)-even) \(B^0\) \(\to e^+e^-\) decays, an increase (decrease) of 2.4% with respect to the quoted limit is found. The results improve the limits on these branching fractions [11] by more than one order of magnitude and constrain contributions beyond the SM, for example from scalar and pseudoscalar currents [10].

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ, and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG, and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); INFN (Italy); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); DOE NP and NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany); EPLANET, Marie Sklodowska-Curie Actions and ERC (European Union); ANR, Labex P2IO and OCEVU, and Région Auvergne-Rhône-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, and the Thousand Talents Program (China); RFBR, RSF, and Yandex LLC (Russia); GVA, XuntaGal, and GENCAT (Spain); the Royal Society and the Leverhulme Trust (United Kingdom).

PHYSICAL REVIEW LETTERS 124, 211802 (2020)

53 H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
54 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
55 Department of Physics, University of Warwick, Coventry, United Kingdom
56 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
57 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
58 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
59 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
60 Imperial College London, London, United Kingdom
61 Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
62 Department of Physics, University of Oxford, Oxford, United Kingdom
63 Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
64 University of Cincinnati, Cincinnati, Ohio, USA
65 University of Maryland, College Park, Maryland, USA
66 Los Alamos National Laboratory (LANL), Los Alamos, New Mexico, USA
67 Syracuse University, Syracuse, New York, USA
68 Laboratory of Mathematical and Subatomic Physics, Constantine, Algeria
[associated with Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil]
69 School of Physics and Astronomy, Monash University, Melbourne, Australia
[associated with Department of Physics, University of Warwick, Coventry, United Kingdom]
70 Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
[associated with Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil]
71 Guangdong Provencial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou, China [associated with Center for High Energy Physics, Tsinghua University, Beijing, China]
72 School of Physics and Technology, Wuhan University, Wuhan, China
[associated with Center for High Energy Physics, Tsinghua University, Beijing, China]
73 Departamento de Fisica, Universidad Nacional de Colombia, Bogota, Colombia [associated with LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France]
74 Institut für Physik, Universität Rostock, Rostock, Germany [associated with Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany]
75 Van Swinderen Institute, University of Groningen, Groningen, Netherlands
[associated with Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands]
76 Universiteit Maastricht, Maastricht, Netherlands [associated with Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands]
77 National Research Centre Kurchatov Institute, Moscow, Russia [associated with Institute of Theoretical and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia, Moscow, Russia]
78 National University of Science and Technology "MISIS", Moscow, Russia [associated with Institute of Theoretical and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia, Moscow, Russia]
79 National Research University Higher School of Economics, Moscow, Russia [associated with Yandex School of Data Analysis, Moscow, Russia]
80 National Research Tomsk Polytechnic University, Tomsk, Russia [associated with Institute of Theoretical and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia, Moscow, Russia]
81 University of Michigan, Ann Arbor, USA [associated with Syracuse University, Syracuse, New York, USA]

a Also at Laboratoire Leprince-Ringuet, Palaiseau, France.
b Also at Università di Genova, Genova, Italy.
c Also at Università di Bologna, Bologna, Italy.
d Also at Università di Modena e Reggio Emilia, Modena, Italy.
e Also at Novosibirsk State University, Novosibirsk, Russia.
f Also at Università di Ferrara, Ferrara, Italy.
g Also at Università di Milano Bicocca, Milano, Italy.
h Also at DS4DS, La Salle, Universitat Ramon Llull, Barcelona, Spain.
i Also at Università di Pisa, Pisa, Italy.
j Also at Universidad Nacional Autonoma de Honduras, Tegucigalpa, Honduras.
k Also at Università di Bari, Bari, Italy.
l Also at Università di Cagliari, Cagliari, Italy.
m Also at INFN Sezione di Trieste, Trieste, Italy.
n Also at Università degli Studi di Milano, Milano, Italy.
o Also at Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil.
p Also at AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland.
*Also at Università di Siena, Siena, Italy.
*Also at Università di Padova, Padova, Italy.
*Also at Scuola Normale Superiore, Pisa, Italy.
*Also at MSU - Iligan Institute of Technology (MSU-IIT), Iligan, Philippines.
*Also at Hanoi University of Science, Hanoi, Vietnam.
*Also at P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.
*Also at Università di Roma Tor Vergata, Roma, Italy.
*Also at Università della Basilicata, Potenza, Italy.
*Also at Università di Urbino, Urbino, Italy.
*Also at School of Physics and Information Technology, Shaanxi Normal University (SNNU), Xi’an, China.