The use of next-generation sequencing to unravel new genes
Gannamani, R.; Timmers, E. R.; Tijssen, M. A. J.

Published in:
European Journal of Neurology

DOI:
10.1111/ene.14296

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
The use of next-generation sequencing to unravel new genes: overcoming challenges posed by rare neurological disorders such as myoclonus-dystonia

doi:10.1111/ene.14296

The revolution in next-generation sequencing has brought to light detailed catalogues of genetic variation in both patients with disease and the general population [1]. As such, when patients with rare neurological disorders of genetic origin are identified and put through a meticulous examination, genetic testing can yield a molecular diagnosis in about 40% of cases and, in some instances, 94% of cases [2]. The challenge at hand is to maintain high academic standards in our pursuit of new disease-causing variants and effectively distinguish them from rare, potentially functional variants. Adhering to joint consensus recommendations will help to keep false-positive reports of causality to a minimum and enable us to effectively compare international cohorts for a higher diagnostic yield [1,3].

Recently, Balint et al. performed segregation analysis of a family pedigree comprising eight individuals with a phenotype resembling myoclonus-dystonia (M-D) over three generations and identified a novel missense variant in KCNN2 [NM_021614: c.1112G>A; p.(Gly371Glu)] [5]. M-D is a clinical syndrome characterized by myoclonic jerks and dystonia involving the neck, trunk and upper limbs, with accompanying features such as psychiatric symptoms and alcohol responsiveness [4]. The archetype genetic origin of M-D is a pathogenic variant in the epsilon-sarcoglycan (SGCE) gene [4]. Over the past decade, a number of familial phenotypes resembling M-D associated with distinct clinical features have been described and are collectively being classified as ‘M-D syndromes’. The phenotype of the family with the novel KCNN2 variant is similar to classical M-D due to SGCE mutations, although it is distinct; overlapping features include writer’s cramp, torticollis and dystonic posturing of the hands, and distinct features include myoclonus presenting more distally, balance problems, as well as cerebellar eye signs [5]. As such, KCNN2 has a possible role as a novel M-D syndrome gene.

To investigate causality of a novel variant for diagnosis of a rare disorder, a number of steps need to be undertaken. Firstly, deleterious variants in known genetic causes need to be evaluated. Balint et al. aptly considered SGCE, KCTD17, ANO3, SCN8A, RELN, ADCY5 and TITF1, established genetic causes of M-D syndromes [5]. Second, the variant ought to be rare; the novel KCNN2 variant is rare, as it is yet to be described in population databases (minor allele frequency ≤0.1%). Other favourable arguments include the variant being highly conserved across species and being predicted as deleterious by various \textit{in-silico} prediction models. Moreover, analysis of public RNA-seq databases shows that KCNN2 is highly expressed in the cerebellum (a region implicated in M-D pathophysiology) and gene co-regulation analysis reveals similarity between KCNN2 and other genes implicated in M-D pathophysiology such as ANO3, RELN and TUBB2B [4]. In sum, KCNN2 is a biologically plausible candidate gene for the phenotype in question.

Nonetheless, neurological and movement disorder units worldwide need to come together to translate efforts into maximal clinical impact. In addition to rigorous phenotyping and genotyping, data sharing and analysis of international cohorts are of paramount importance. We need to achieve the above for more timely determination of pathogenicity and to enable a shift in our focus towards development of disease-modifying treatment for our patients.

Disclosures of conflicts of interest

Marina A.J. Tijsen reports grants from the Netherlands Organisation for Health Research and Development ZonMW Topsubsidie (91218013), the European Fund for Regional Development from the European Union (01492947) and the province of Friesland, Dystonia Medical Research Foundation, from Stichting Wetenschapsfonds Dystonie Vereniging, from Fonds Psychische Gezondheid, from Phelps Stichting, and an unrestricted grant from Actelion and AOP Orphan Pharmaceuticals AG.

a,b,cDepartment of Neurology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen; bDepartment of...
References