Utility of Edge-wise Funnel Coupling for Asymptotically Solving Distributed Consensus Optimization
Lee, Jin Gyu; Berger, Thomas; Trenn, Stephan; Shim, Hyungbo

Published in: Proceeding of ECC 2020

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Final author's version (accepted by publisher, after peer review)

Publication date: 2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Utility of Edge-wise Funnel Coupling for Asymptotically Solving Distributed Consensus Optimization

Jin Gyu Lee*, Thomas Berger**, Stephan Trenn***, and Hyungbo Shim****

Abstract—A new approach to distributed consensus optimization is studied in this paper. The cost function to be minimized is a sum of local cost functions which are not necessarily convex as long as their sum is convex. This benefit is obtained from a recent observation that, with a large gain in the diffusive coupling, heterogeneous multi-agent systems behave like a single dynamical system whose vector field is simply the average of all agents’ vector fields. However, design of the large coupling gain requires global information such as network structure and individual agent dynamics. In this paper, we employ a nonlinear time-varying coupling of diffusive type, which we call ‘edge-wise funnel coupling.’ This idea is borrowed from adaptive control, which enables decentralized design of distributed optimizers without knowledge of global information. Remarkably, without a common internal model, each agent achieves asymptotic consensus to the optimal solution of the global cost. We illustrate this result by a network that asymptotically finds the least-squares solution of a linear equation in a distributed manner.

I. INTRODUCTION

Recent developments in the fields such as formation control, smart grid, and resilient state estimation have raised the question of how to design a network so that agents collectively find an optimizer [1]–[5], and consensus optimization is a vast research area which studies a subclass of the aforementioned problem. Let the cost function be given by

\[f : \mathbb{R}^n \rightarrow \mathbb{R}, \quad f(x) = \sum_{i=1}^{N} f_i(x), \tag{1} \]

which is the sum of \(N \) heterogeneous cost functions. The question of how to construct a dynamic system for each node \(i \in \mathcal{N} := \{1, \ldots, N\} \) that finds the minimizer \(x^* \in \mathbb{R}^n \) of \(f(\cdot) \), with each node \(i \) having access to its individual cost function \(f_i(\cdot) \) only, has been tackled in recent years [6]–[12]. However, most of them, e.g., [6]–[11], assume that the individual cost function \(f_i(\cdot) \) is convex. The reason is the need for stability, e.g., passivity, for each node, to achieve consensus.

In this paper, we present a network that finds the minimizer \(x^* \) of \(f(\cdot) \) asymptotically, with the assumption that \(f(\cdot) \) is strictly convex even if each function \(f_i(\cdot) \) is not necessarily convex. This is obtained from the recent observation that, with a large coupling gain in the diffusive coupling, heterogeneous multi-agent systems behave like a single dynamical system whose vector field is simply the average of all agents’ vector fields [13], [14]. By this observation, it is possible to trade stability among agents, and hence, to relax the assumptions on the individual cost functions. However, this approach has some limitations, for instance

1) it only guarantees practical consensus (i.e. for any \(\varepsilon > 0 \) a coupling strength can be chosen so that the agents’ states eventually get \(\varepsilon \)-close), and

2) the design of the coupling gain that is used for each agent requires global information such as the network structure and the individual agent dynamics.

To resolve these issues, we modify the linear diffusive term of the designed network into a nonlinear time-varying coupling, which we call ‘edge-wise funnel coupling.’ This idea is motivated by the funnel control methodology (a particular adaptive control method) which was developed in [15], see also the survey [16].

Let us emphasize that we obtain asymptotic consensus to the unique minimizer \(x^* \) of \(f(\cdot) \) by the proposed funnel coupling. It was first shown in [17] that asymptotic tracking can be achieved via funnel control. In that work a control structure of the form \(u(t) = \nu(||e(t)||/\psi(t)) \theta(e(t)) \), with bounded \(\theta \), was utilized. Recently, unaware of this result, it was observed in [18] that if the feedback is chosen to be of the form \(u(t) = F(e(t)/\psi(t)) \), then asymptotic tracking is possible. In the present paper, we exploit the technique from [18] to achieve asymptotic consensus (without additional dynamics like the PI consensus algorithms or embedding a common internal model).

The paper is organized as follows. In Section II, we give a precise problem formulation and introduce, for a given network graph, agent dynamics that are designed with a constant coupling gain. In order to resolve the above mentioned limitations, the dynamics are modified using the funnel coupling in Section III. In Section IV we illustrate the utility of this design by an example of a distributed least-squares solver. Finally, Section V concludes the paper.

Notation: The Laplacian matrix \(\mathcal{L} = [l_{ij}] \in \mathbb{R}^{N \times N} \) of a graph is defined as \(\mathcal{L} := D - A \), where \(A = [a_{ij}] \) is the adjacency matrix of the graph and \(D \) is the diagonal matrix...
with its i-th diagonal entry being $\sum_{j=1}^{N} a_{ij}$. By construction, the Laplacian matrix contains at least one zero eigenvalue with corresponding eigenvector $1_N := [1, \ldots, 1]^T \in \mathbb{R}^N$, and all other eigenvalues have non-negative real parts. For undirected graphs, the zero eigenvalue is simple if, and only if, the corresponding graph is connected. For vectors or matrices a and b we set $\text{col}(a, b) := [a^T, b^T]^T$. The operation defined by the symbol \otimes is the Kronecker product. The maximum norm of a vector x is defined by $\|x\|_\infty := \max_i |x_i|$, and the Euclidean norm is denoted by $\|x\| := \sqrt{x^T x}$. The induced maximum norm of a matrix A (the maximum absolute row sum) is $\|A\|_\infty$. The gradient of a differentiable function $f : \mathbb{R}^n \to \mathbb{R}$ is denoted by $\partial f := \text{col}(\partial f/\partial x^1, \ldots, \partial f/\partial x^n)$. The identity matrix of size $m \times m$ is denoted by I_m.

II. PROBLEM SETTING AND PRELIMINARIES

Consider a network of N agents, whose structure is defined by a graph.

Assumption 1: The graph is undirected and connected.\hfill \checkmark

In the network, each agent $i \in \mathcal{N} = \{1, \ldots, N\}$ has access to its own cost function $f_i : \mathbb{R}^n \to \mathbb{R}$ but not to the other f_j, $j \neq i$. Here, $f_i(\cdot)$ satisfies the following.

Assumption 2: For each $i \in \mathcal{N}$, $f_i(\cdot)$ is continuously differentiable, and its gradient $\partial f_i(\cdot)$ is globally Lipschitz continuous with Lipschitz constant $L_i > 0$, i.e., $\|\partial f_i(x) - \partial f_i(x')\| \leq L_i \|x - x'\|$ for all $x, x' \in \mathbb{R}^n$.

The objective is to solve, in a distributed way,

$$\min_{x} \quad f(x) = \sum_{i=1}^{N} f_i(x)$$

under the following assumption.

Assumption 3: The sum of the N cost functions,

$$f(x) = \sum_{i=1}^{N} f_i(x)$$

is strictly convex, i.e.,

$$f(tx + (1-t)x') < tf(x) + (1-t)f(x'),$$

for any $t \in (0, 1)$ and $x, x' \in \mathbb{R}^n$ such that $x \neq x'$. Moreover, there exists a point $x^* \in \mathbb{R}^n$ such that $f(x^*) \leq f(x)$ for all $x \in \mathbb{R}^n$.

By Assumption 3 there exists a unique minimizer $x^* \in \mathbb{R}^n$ of $f(\cdot)$, and hence $\partial f(x)$ becomes zero only at x^*. Therefore, the gradient descent algorithm given by

$$\dot{x} = -\partial f(x) = -\sum_{i=1}^{N} \partial f_i(x) \in \mathbb{R}^n \quad (2)$$

solves the optimization problem. In particular, the solution $\dot{x}(\cdot)$ asymptotically converges to the unique minimizer x^*.

Motivated by this, we may design a distributed algorithm, in which the individual dynamics of each agent $i \in \mathcal{N}$ are given by

$$\dot{x}_i = -\partial f_i(x_i) + k \sum_{j \in \mathcal{N}_i} (x_j - x_i) \in \mathbb{R}^n \quad (3)$$

where $k > 0$ is a design parameter, and \mathcal{N}_i is a subset of \mathcal{N} whose elements are the indices of those agents which are connected to agent i within the network graph (the neighbors), and are hence able to share information with it.

Remark 1: Insight into the proposed network (3) comes from the so-called ‘blended dynamics’ approach [13], [14]. In this approach, the behavior of heterogeneous multi-agent systems

$$\dot{x}_i = g_i(t, x_i) + k \sum_{j \in \mathcal{N}_i} (x_j - x_i), \quad i \in \mathcal{N},$$

with large coupling gain k is approximated by the behavior of the blended dynamics defined by

$$\dot{x} = \frac{1}{N} \sum_{i=1}^{N} g_i(t, \hat{x})$$

under the assumption that these dynamics are stable. In our case, the blended dynamics are given by

$$\dot{x} = -\frac{1}{N} \sum_{i=1}^{N} \partial f_i(\hat{x}) = -\frac{1}{N} \partial f(\hat{x})$$

which is the (scaled) gradient descent algorithm (2).\hfill \checkmark

Proposition 2 ([14]): Let Assumptions 1, 2, and 3 hold. Then, for any compact set $K \subseteq \mathbb{R}^n$, and for any $\eta > 0$, there exists $k^* > 0$ such that, for each $k > k^*$ and $\text{col}(x_1(0), \ldots, x_N(0)) \in K$, the solution to (3) exists for all $t \geq 0$, and satisfies

$$\forall i \in \mathcal{N}: \limsup_{t \to \infty} \|x_i(t) - x^*\| \leq \eta. \quad \checkmark$$

Although this result is already quite powerful, a disadvantage is that the optimizer is not found asymptotically but only approximately. Moreover, for computing the threshold k^*, global information such as the network topology and all f_i’s is needed, and so the method is not completely decentralized. These drawbacks will be resolved in the next section by choosing the gain k adaptively based on the idea of funnel control.

III. EDGE-WISE FUNNEL COUPLING

Building on the idea of the edge-wise funnel coupling law [19], we propose to replace the static diffusive coupling term $k \sum_{j \in \mathcal{N}_i} (x_j - x_i)$ in (3) by the coupling law

$$\sum_{j \in \mathcal{N}_i} K \left| \frac{x_j - x_i}{\psi(t)} \right| \cdot \frac{x_j - x_i}{\psi(t)}$$

where $\psi : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is a so-called funnel boundary function (Figure 1), and $K : \mathbb{R}^n \to \mathbb{R}^{n \times n}$ is defined by

$$K(\eta) := \text{diag} \left(\frac{1}{1 - |\eta^1|}, \ldots, \frac{1}{1 - |\eta^n|} \right). \quad (4)$$

By introducing $e_{ij} := x_j - x_i$, the dynamics of agent i become

$$\dot{x}_i = -\partial f_i(x_i) + \sum_{j \in \mathcal{N}_i} \text{col} \left(\frac{e_{ij}}{\psi(\text{col}(x_i^1, \ldots, x_i^n))}, \ldots, \frac{e_{ij}}{\psi(\text{col}(x_i^1, \ldots, x_i^n))} \right) \quad (5)$$

where $x_i = \text{col}(x_i^1, \ldots, x_i^n)$ and $e_{ij}^p := x_j^p - x_i^p = -e_{ij}^p$.

The intuition behind the funnel coupling in (5) is as follows. If the p-th component of the difference between
Moreover, if there exists a unique minimizer \(x^* \), then the state \(x \) is made precise in the following theorem, which is our main result.

Proposition 3: Let Assumptions 1, 2, and 3 hold. Then, any bounded continuously differentiable function \(\psi : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0} \) with bounded derivative, and for any initial conditions \(x_i(0) \in \mathbb{R}^n \) with \(\|x_j(0) - x_i(0)\|_\infty < \psi(0) \) for all \(j \in \mathcal{N}_i, i \in \mathcal{N} \), the solution to (5) exists for all \(t \geq 0 \) and satisfies

\[
\forall i \in \mathcal{N} : \lim_{t \rightarrow \infty} x_i(t) = x^*,
\]

i.e., each agent’s state converges to the global optimizer. Furthermore, there exists \(\varepsilon > 0 \) such that (6) holds, i.e., the coupling gain \(K \) given by (4) remains bounded. \(\diamond \)

Proof: Let, according to Proposition 3, \((x_1, \ldots, x_N)\) be the solution of (5) which exists for all \(t \geq 0 \). Let \(L_i > 0 \) be a Lipschitz constant of \(\partial f_i \) according to Assumption 2, and let \(T \) be an arbitrary spanning tree in the network graph with incidence matrix \(T \in \mathbb{R}^{N \times (N - 1)} \). Let \(t_i \) be the i-th row of \(T(T^\top T)^{-1} \) and define

\[
\begin{aligned}
\left(x_{\text{avg}} \right) := \left[(1/N)I_N^\top i N \otimes I_n \right] \col(x_1, \ldots, x_N).
\end{aligned}
\]

Since \(1/N T = 0 \) we find that

\[
\left[(1/N)I_N^\top \right]^{-1} = [1_N \ T(T^\top T)^{-1}]^\top,
\]

thus it follows that \(x_i = x_{\text{avg}} + (t_i^\top \otimes I_n) \hat{x} \) for all \(i \in \mathcal{N} \), and hence, by (5) and (7),

\[
\hat{x}_{\text{avg}} = -\frac{1}{N} \sum_{i=1}^N \partial f_i(x_{\text{avg}} + (t_i^\top \otimes I_n) \hat{x}).
\]

Note that by Proposition 3, we have that for all \(t \geq 0 \)

\[
\|T \otimes I_n \col(x_1(t), \ldots, x_N(t))\|_\infty = \|\hat{x}(t)\|_\infty < \psi(t).
\]

Now, let \(V(x_{\text{avg}}) := f(x_{\text{avg}}) - f(x^*) = \sum_{i=1}^N (f_i(x_{\text{avg}}) - f_i(x^*)) \). Then, due to Assumption 3, there exist class \(K \)-functions \(\alpha_1(\cdot) \) and \(\alpha_2(\cdot) \) such that

\[
\forall x \in \mathbb{R}^n : \quad \alpha_1(\|x - x^*\|) \leq V(x) \leq \alpha_2(\|x - x^*\|).
\]

Now, the derivative of \(V \) along \(x_{\text{avg}}(\cdot) \) satisfies

\[
\dot{V} = \partial f(x_{\text{avg}})^\top \dot{x}_{\text{avg}}
= -\frac{1}{N} \partial f(x_{\text{avg}})^\top \sum_{i=1}^N \partial f_i(x_{\text{avg}}) + (t_i^\top \otimes I_n) \hat{x}
= -\frac{1}{N} \|\partial f(x_{\text{avg}})\|^2
\]

\[
-\frac{1}{N} \|\partial f(x_{\text{avg}})\|^2 + \frac{1}{N} \|\partial f(x_{\text{avg}})\| \sum_{i=1}^N L_i \|t_i^\top \otimes I_n\| \hat{x}
\]

\[
\leq -\frac{1}{N} \|\partial f(x_{\text{avg}})\| \left(\|\partial f(x_{\text{avg}})\| - L^*_\psi(\psi(t)) \right),
\]

where we have used Assumption 2 and

\[
\|t_i^\top \otimes I_n\| \hat{x} \leq \sqrt{n} \|t_i^\top \otimes I_n\| \hat{x}_\infty \leq \sqrt{n} \|t_i^\top \otimes I_n\| \psi(t),
\]

whence \(L^* := \sqrt{n} \|T(T^\top T)^{-1}\|_\infty \sum_{i=1}^N L_i \).

\(1\) A continuous function \(\alpha : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0} \) is called a class \(K \)-function, if \(\alpha(0) = 0 \) and \(\alpha \) is strictly monotonically increasing.
Seeking a contradiction, assume that $V(x_{avg}(t)) \neq 0$ for $t \to \infty$, then there exists $\varepsilon > 0$ and a sequence $(t_i)_{i \in \mathbb{N}}$ with $t_i \not\to \infty$ such that $V(x_{avg}(t_i)) > \varepsilon$ for all $i \in \mathbb{N}$. Set

$$t_i^0 := \max \{0, \sup \{t \in [0, t_i] \mid V(x_{avg}(t)) \leq \varepsilon\}\}$$

for $i \in \mathbb{N}$, then $\|x_{avg}(t) - x^*\| \geq \alpha_2^{-1}(V(x_{avg}(t))) > \alpha_2^{-1}(\varepsilon)$ for all $t \in (t_i^0, t_i]$; note that α_2 can always be chosen to be unbounded and is hence bijective on $\mathbb{R}_{>0}$. Next, observe that for any $u \in \mathbb{R}^n$ the function $t \mapsto f(x^* + tu)$ is strictly convex, and hence the derivative $t \mapsto \partial f(x^* + tu)u$ is strictly monotonically increasing (and it is zero only for $t = 0$ by Assumption 3), i.e., for any $u \in \mathbb{R}^n$ with $\|u\| = 1$ there exists a class \mathcal{K}-function $\alpha_2(\cdot)$ such that

$$\forall t \in \mathbb{R} : \|\partial f(x^* + tu)\| \geq \|\partial f(x^* + tu)u\| \geq \alpha_2(\|t\|).$$

As a consequence, for any $\delta > 0$,

$$\min \{ \|\partial f(x)\| \mid \|x - x^*\| = \delta \} = \min \{ \|\partial f(x)\| \mid \|x - x^*\| \geq \delta \}.$$

Therefore, it is possible to choose $\eta > 0$ sufficiently small so that $\|\partial f(x_{avg}(t))\| \geq \eta$ for all $t \in [t_i^0, t_i]$ and all $i \in \mathbb{N}$. Then, choose $i \in \mathbb{N}$ large enough so that $\psi(t) < \eta/(2L_*)$ for all $t \in [t_i^0, t_i]$. Now, we obtain

$$\forall t \in [t_i^0, t_i] : \dot{V}(x_{avg}(t)) \leq -\frac{\eta^2}{2N},$$

which implies

$$\varepsilon < V(x_{avg}(t_i)) < V(x_{avg}(t_i^0)) = \varepsilon,$$

a contradiction. Thus we have shown that $\lim_{t \to \infty} V(x_{avg}(t)) = 0$, which yields $\lim_{t \to \infty} \|x_{avg}(t) - x^*\| = 0$.

Since $\|\dot{x}(t)\| < \psi(t)$ and ψ converges to zero we have that $x_i = x_{avg} + (t_i^0 \otimes I_n)\dot{x}$ also converges to x^* and is thus bounded. Then the last statement of the theorem is a consequence of Proposition 3.

Remark 5: Let us stress again that asymptotic tracking via funnel control was first achieved in [17], albeit this result seems to have not received much attention. As mentioned in the introduction, we utilize the alternative method developed in [18]. Indeed, the coupling gain $1/\psi(t) - |x_i^p - x_i^1|)$ grows unbounded when asymptotic consensus is achieved, because $\psi(t) \to 0$ as $t \to \infty$ and this implies that $\psi(t) - |x_i^p - x_i^1|$ also tends to zero. However, simply rewriting the coupling term as

$$\frac{1}{1 - |x_i^p - x_i^1|/\psi(t)} \cdot \frac{x_i^p - x_i^1}{\psi(t)}$$

we see that by Theorem 4 the fraction $|x_i^p - x_i^1|/\psi(t)$ is bounded away from 1, hence the new gain and the total input are bounded even if $1/\psi(t)$ tends to infinity.

We further emphasize that Theorem 4 may seem to violate another presumption in the synchronization research area that heterogeneous multi-agent systems cannot asymptotically synchronize without a common internal model. This issue is resolved by observing that we use a time-varying coupling law, which is not considered in the framework of the internal model principle for multi-agent systems [21].

Finally, we stress that the difference between asymptotic consensus and practical consensus may not seem very important in practical applications, as long as the residual error in practical consensus is sufficiently small. In view of this, our concern on asymptotic convergence is rather of academic interest.

Remark 6: In view of Proposition 3, the convergence rate for the consensus can be made arbitrarily fast by the choice of the funnel boundary, however, there are two limitations:

(i) A steeper funnel usually results in larger input values for each agent. In reality, these inputs have to stay within certain bounds, so that in practice the convergence rate of the funnel cannot be arbitrary high. It is possible to derive a bound for the input based on known bounds for the agents dynamics and the convergence rate of the funnel, but this derivation is out of scope for this paper.

(ii) The convergence to the minimizer is determined by the convergence to the consensus and the convergence of the emergent dynamics (gradient descent) to the optimizer. In particular, if the gradient descent method converges slowly it doesn’t make sense to force a fast consensus by letting the funnel shrink rapidly.

IV. EXAMPLE: DISTRIBUTED LEAST-SQUARES SOLVER

As distributed algorithms have been developed in various fields of study so as to divide a large computational problem into small-scale computations, finding the least-squares solution of a given large linear equation in a distributed manner has been tackled in recent years [22]–[25]. Consider the equation

$$Ax = b \in \mathbb{R}^M,$$

where $A \in \mathbb{R}^{M \times n}$ is a matrix with full column rank and $x \in \mathbb{R}^n$. Throughout this section, we suppose that the M equations in (8) are grouped into N equation banks, and the i-th equation bank consists of m_i lines of equations so that $\sum_{i=1}^N m_i = M$. We write the i-th equation bank as

$$A_i x = b_i \in \mathbb{R}^{m_i}, \quad i = 1, 2, \ldots, N,$$

where $A_i \in \mathbb{R}^{m_i \times n}$ is the i-th block row of the matrix A, and $b_i \in \mathbb{R}^{m_i}$ is the i-th block element of b.

Finding the least-squares solution x^* of (8) even when $b \not\in \text{im}(A)$ can be cast as a simple optimization problem

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \|Ax - b\|^2 = \sum_{i=1}^N \frac{1}{2} \|A_i x - b_i\|^2.$$

With $f_i(x) = \frac{1}{2} \|A_i x - b_i\|^2$ the problem becomes a consensus optimization. Then, according to the recipe in the previous section, we can find the least-squares solution asymptotically by a network with individual agent dynamics

$$\dot{x}_i = -A_i^T (A_i x_i - b_i) + \sum_{j \in N_i} \text{col} \left(\frac{x_j - x_i}{\psi(t) - |x_j - x_i|}, \frac{x_j - x_i}{\psi(t) - |x_j - x_i|} \right),$$

where each agent i uses the information of A_i and b_i only.
Figure 4 shows that, for the case of edge-wise funnel coupling, \(\kappa\) can be verified that their magnitudes do not differ very much. While Figure 5 depicts the constant coupling gain in (10). It results in convergence of its state to the unique minimizer \(x^* = 17\). On the other hand, as guaranteed by Theorem 4, the funnel \(\psi\) is bounded even though the funnel \(\psi\) result when the funnel boundary function is chosen as \(x^*\), which gives

\[
x^* = 17/84.
\]

For comparison, Figure 2(c) shows the trajectory for the network with edge-wise funnel coupling: (a) \(t \in [0,0.2]\) and (b) \(t \in [0.2,6]\)

Now, for a linear equation given by

\[
Ax = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = b
\]

with \(N = 5\) and each equation bank consisting of a single equation, the gradient descent algorithm

\[
\dot{x} = -A^T(A\dot{x} - b), \quad \dot{x}(0) = 0,
\]

results in convergence of its state to the unique minimizer \(x^* = 17\). On the other hand, as discussed in Remark 5, the funnel \(\psi\) that cancels the heterogeneity of the individual vector field such that

\[
-A^T(Ax^* - b_i) + \sum_{j \in N_i} (x_j - x_i), \quad i \in \mathcal{N}, \tag{10}
\]

with the constant coupling gain \(k = 100\). Figures 2(b) and 2(c) clearly show that the network with the constant coupling gain can only achieve practical convergence to the minimizer \(x^* = 17\), while asymptotic convergence is obtained by using edge-wise funnel coupling.

We also inspect the derivative of each \(x_i(\cdot)\), because the right-hand side of \(\dot{x}_i(\cdot)\) can be considered as an input to each agent, and we are interested in the magnitude of their values. Figure 4 shows \(\dot{x}_i(\cdot)\) for the edge-wise funnel coupling in (9), while Figure 5 depicts the constant coupling gain in (10). It can be verified that their magnitudes do not differ very much. Note that, for the case of edge-wise funnel coupling, \(\dot{x}_i(\cdot)\) is bounded even though the funnel \(\psi(\cdot)\) approaches zero. The reason is that, as discussed in Remark 5, the funnel coupling law can be re-written appropriately and the term \(|x_j - x_i|/\psi(t)\) is bounded away from 1 by Theorem 4.

Finally, observe that the diffusive coupling term \((x_j - x_i)/(\psi(t) - |x_j - x_i|)\) converges to a specific constant \(\kappa_{ij}^*\), which gives

\[
-A^T(Ax^* - b_i) + \sum_{j \in N_i} \kappa_{ij}^* = 0, \quad i \in \mathcal{N}.
\]

This is clearly indicated in Figure 4, where we observe that \(\dot{x}_i(\cdot)\) converges to zero. Hence, we may interpret the edge-wise funnel coupling law as an adaptation scheme. Moreover, in this special case, we may even compute \(\kappa_{ij}^*\) as

\[
\kappa_{12}^* = 16, \quad \kappa_{23}^* = 23, \quad \kappa_{34}^* = 51, \quad \kappa_{45}^* = 83.
\]

This is also shown in Figure 6, which depicts the convergence of the fraction \((x_j(t) - x_i(t))/\psi(t)\). In particular, if we denote \(\eta_{ij}^* := \lim_{t \to \infty} (x_j(t) - x_i(t))/\psi(t)\), then we have \(\eta_{ij}^*/(|\eta_{ij}^*|) = \kappa_{ij}^*\) for \(i \in \mathcal{N}\) and \(j \in N_i\), which gives

\[
\eta_{12}^* = \frac{16}{17}, \quad \eta_{23}^* = \frac{23}{24}, \quad \eta_{34}^* = \frac{51}{52}, \quad \eta_{45}^* = \frac{83}{84}.
\]
V. CONCLUSION

Based on the design philosophy of the blended dynamics induced by a large coupling gain, agent dynamics are designed to solve a distributed consensus optimization by a constant coupling gain for any given undirected connected network graph. Then, to overcome the limitation of the constant gain design, the dynamics are modified by introducing the edge-wise funnel coupling, whose intuition is inherited from adaptive control. As a consequence, we obtain a network that achieves asymptotic convergence to the unique minimizer, which does not require any global information. The utility of the proposed network is illustrated by a distributed least-squares optimization. A detailed comparison of the performance compared to other decentralized optimization algorithms is ongoing research.

REFERENCES