Dupuytren disease is an incurable fibromatosis of the hand and fingers, giving rise to the development of skin pitting and subcutaneous nodules in the palm. At a later stage of disease, cords appear that connect the nodules and may contract the fingers into a flexed position. A contracture can occur isolated in a single joint, but may also involve more joints of a single ray or even multiple rays, whereby the metacarpophalangeal joints, proximal interphalangeal joints, and distal interphalangeal joints are affected in decreasing order. The disease is usually located on the ulnar side of the hand, and in particular, the ring finger and the little finger are frequently affected.1–3

Several authors have described the patterns of occurrence of Dupuytren disease in multiple
fingers empirically. Meyerding noticed that the combination of affected ring and little fingers occurred most often, followed by the combination of an affected third, fourth, and fifth digit. In addition, Tubiana et al. have stated that isolated radial side involvement in Dupuytren disease is rare, and that radial involvement in most cases is associated with an affected ulnar side. Milner found that patients with a severely affected thumb that had required surgery were on average 8 years older and had suffered significantly longer from Dupuytren disease than patients with a mildly affected radial side. Furthermore, these patients with severe disease of the thumb suffered from ulnar disease that repeatedly had required surgery, suggesting an intractable form of disease. Orlando et al. reported that, in most hands, two rays are affected by Dupuytren disease, followed by one finger and three fingers. Affection of four or even five fingers was rarely seen. A previous study of ours showed an average of 2.7 affected rays per patient.

In summary, the frequency with which each ray is affected has been described previously, as have intraoperative findings in relatively small samples, but firm statistical substantiation is lacking. The consequence is that certain findings may be spurious and not tested appropriately. For instance, the higher frequency of an affected ring and little finger may well be determined by the higher occurrences in these fingers and may not be more frequent than expected by chance. This may be true also for other pairs, and also for triplets, quadruples, or even for the affection of all rays of one hand.

Furthermore, the existence of specific disease patterns (phenotype) based on location and severity of the disease has never been studied before. Therefore, the aim of this study is, first, to investigate the patterns of occurrence and severity of primary Dupuytren disease in both men and women and, second, to test the earlier suggested correlations in Dupuytren disease occurrence between the little and ring fingers, but more importantly, between the ulnar and radial sides of the hand.

PATIENTS AND METHODS

Participants

To obtain a representative cross-sectional set of patients with Dupuytren disease, we included 105 patients from the general population of the northern Netherlands and 134 patients from the outpatient clinic of the Department of Plastic Surgery of the University Medical Center Groningen. This study was approved by the institutional ethics review board.

Physical Examination

Both hands of all included patients were physically examined by the first author (R.L.) at the outpatient clinic. Signs of Dupuytren disease, including the presence of subcutaneous nodules and fascial cords, with or without finger contractions, were noted for each ray of each hand. The severity of flexion contractures was measured with a goniometer, and the passive extension deficit was noted in degrees for each joint separately. Thereafter, the severity of disease was categorized using the classification of Tubiana et al., in which stage N refers to affection with only a nodus or cord without contracture. (Table 1).

Statistical Analyses

Descriptive statistics of our population were calculated first. Furthermore, the Pearson correlation coefficient between the coexistence of Dupuytren disease among pairs of fingers in each hand separately was calculated and tested for its statistical significance. We performed a post hoc power analysis, to calculate what minimal correlation we could detect with our sample size. To identify the possible occurrence of patterns in fingers with Dupuytren disease, a hierarchical cluster analysis was conducted, assuming that patterns would be similar in both hands. The measure of similarity between fingers was based on Jaccard, and the complete-linkage method was applied to form clusters of fingers. Agglomerative hierarchical clustering (from bottom to top) was used.

To investigate the influence of sex and age on the coexistence of Dupuytren disease, and to evaluate the patterns of severity, a multivariate ordinal logit model was fitted to the Tubiana stage of all five fingers simultaneously (assuming that patterns are similar in both hands again). For this statistical analysis, we collapsed the three most severe categories of the Tubiana classification into one category. This multivariate model is similar to a probit model, but it was altered to be able to fit logits instead of probits, so that the effects of age and sex have interpretations similar to logistic regression. Instead of correlations on the occurrence, this multivariate model provides correlations on the severity between fingers, corrected for covariates. To obtain confidence intervals on the parameter estimates of the multivariate model,
bootstrapping of 1000 samples was applied. Based on the multivariate model, the predicted probabilities of occurrence of Dupuytren disease in multiple fingers simultaneously are presented, and compared with the probabilities based on independence. If fingers are affected completely independent from each other, it can be expected that they co-occur with a frequency that equals the product of the occurrence rates of the individually affected fingers. Independency on severity between the radial side and ulnar side was tested with the likelihood ratio test. (See Appendix, Supplemental Digital Content 1, a glossary in which the statistical terminology is explained, http://links.lww.com/PRS/B66.)

RESULTS

In this study, data of 152 men (63.6 percent) and 87 women (36.4 percent) were used. The mean age of the patients was 65.4 ± 9.8 years, and 344 hands were affected. The ulnar side of the hand was predominantly affected; the most frequently affected ray was the ring finger, followed by the little finger and the middle finger (Fig. 1).

The Pearson correlation coefficient for the coexistence of Dupuytren disease between fingers of both hands separately is provided in Table 2. We found that the thumb and index finger are significantly positively correlated in both hands (left, 0.149; right, 0.205), as are the middle finger and the little finger of the left hand (0.262). Besides this, no high correlations were observed. Note that a correlation of 0.15 or higher could be detected with at least 80 percent power with the sample size of our cohort.11

Assuming that the patterns would be the same across hands (which seems plausible considering the results from Fig. 1 and Table 2), the dendrogram of the hierarchical clustering demonstrates that the middle finger and the ring finger should form the first cluster (Fig. 2). This cluster was thereafter sequentially enlarged with the little finger, the thumb, and the index finger. However, the short length(s) of the arms in the dendrogram suggest that the middle, ring, and little fingers together form one cluster, whereas based on the longer length(s) of the arms, the thumb and the index finger should be seen as separate clusters. Thus, three clusters were formed by the hierarchical clustering, where the ulnar side seems separate from the radial side.

Table 3 shows the distribution of the severity of Dupuytren disease based on Tubiana stages. In most affected rays, only nodules and cords were found, without an extension deficit. Contractures were seen in 15.1 percent of the affected rays.

None of the identified patterns so far used information on the Tubiana stage, and the results were not adjusted for covariates such as sex and

<table>
<thead>
<tr>
<th>Stage</th>
<th>Total Passive Extension Deficit (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No lesion</td>
</tr>
<tr>
<td>N*</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1–45</td>
</tr>
<tr>
<td>2</td>
<td>46–90</td>
</tr>
<tr>
<td>3</td>
<td>91–135</td>
</tr>
<tr>
<td>4</td>
<td>>135</td>
</tr>
</tbody>
</table>

*Stage N refers to affection with only a nodule or cord without contracture.

Fig. 1. Occurrence of rays affected with Dupuytren disease per hand.
age. Therefore, a multivariate logit model on severity—which takes age and sex into account—was fitted to the data. No effect of age (OR, 1.06; 95 percent CI, 0.95 to 1.24) and sex (OR, 1.27; 95 percent CI, 0.98 to 1.64) on the severity of Dupuytren disease could be demonstrated. The correlation coefficients with 95 percent confidence intervals for severity of Dupuytren disease between pairs of fingers are presented in Table 4. There was a significant correlation between thumb and index finger, the middle and ring fingers, and the middle and little fingers. The significant positive correlations imply that those pairs occur more frequently than can be expected based on independence, and that a more severe disease of, for example, the middle finger is accompanied by more severe disease of the ring finger. The radial side (thumb and index finger) and the ring finger, and the ring finger and the little finger, seem to be negatively correlated, although this was not statistically significant.

The multivariate logit model makes it also possible to predict the occurrences of Dupuytren disease in single, pairs, triplets, quadruples, and quintets of rays for both sexes at different ages. Because age had only a minor effect on the severity of Dupuytren disease in fingers, we report only the results at age 65 years (the average age of the sample). In Table 5, the highest predicted occurrence of Dupuytren disease in pairs of fingers was observed in the middle and ring fingers at 46.2 percent (95 percent CI, 39.7 to 53.0 percent) for men and 39.7 percent (95 percent CI, 32.8 to 46.7 percent) for women. Dupuytren disease in any pair of fingers seems to occur least frequently in the thumb and index finger at 5.4 percent (95 percent CI, 3.0 to 8.3 percent) for men and 3.7 percent (95 percent CI, 1.9 to 6.3 percent) for women. Dupuytren disease in any pair of fingers seems to occur least frequently in the thumb and index finger at 5.4 percent (95 percent CI, 3.0 to 8.3 percent) for men and 3.7 percent (95 percent CI, 1.9 to 6.3 percent) for women. The highest predicted occurrence of all triplet combinations is a combination of the middle, ring, and little fingers, with an occurrence of 29.5 percent (95 percent CI, 23.4 to 35.4 percent)

<table>
<thead>
<tr>
<th></th>
<th>Thumb</th>
<th>Index Finger</th>
<th>Middle Finger</th>
<th>Ring Finger</th>
<th>Little Finger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thumb</td>
<td>NA</td>
<td>0.205†</td>
<td>0.084</td>
<td>0.028</td>
<td>0.079</td>
</tr>
<tr>
<td>Index finger</td>
<td>0.149*</td>
<td>NA</td>
<td>0.090</td>
<td>−0.019</td>
<td>0.141</td>
</tr>
<tr>
<td>Middle finger</td>
<td>0.135</td>
<td>0.054</td>
<td>NA</td>
<td>0.019</td>
<td>0.127</td>
</tr>
<tr>
<td>Ring finger</td>
<td>0.002</td>
<td>−0.134</td>
<td>0.099</td>
<td>NA</td>
<td>−0.035</td>
</tr>
<tr>
<td>Little finger</td>
<td>0.026</td>
<td>0.025</td>
<td>0.262†</td>
<td>0.002</td>
<td>NA</td>
</tr>
</tbody>
</table>

NA, not applicable.
*Significant correlation at 0.05.
†Significant correlation at 0.01.

Fig. 2. Dendrogram of the hierarchical clustering of the occurrence of fingers using the Jaccard distance and complete linkage.
Volume 134, Number 3 • Patterns of Dupuytren Disease in Fingers

Table 3. Frequency of Severity of Dupuytren Disease per Finger

<table>
<thead>
<tr>
<th>Tubiana Stage</th>
<th>Unaffected (%)</th>
<th>N* (%)</th>
<th>1 (%)</th>
<th>≥2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thumb</td>
<td>240 (69.8)</td>
<td>103 (29.9)</td>
<td>1 (0.3)</td>
<td>—</td>
</tr>
<tr>
<td>Index finger</td>
<td>309 (89.8)</td>
<td>26 (7.6)</td>
<td>8 (2.3)</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td>Middle finger</td>
<td>165 (48.0)</td>
<td>159 (46.2)</td>
<td>16 (4.6)</td>
<td>4 (1.2)</td>
</tr>
<tr>
<td>Ring finger</td>
<td>65 (18.9)</td>
<td>233 (67.7)</td>
<td>44 (12.8)</td>
<td>2 (0.6)</td>
</tr>
<tr>
<td>Little finger</td>
<td>159 (46.2)</td>
<td>143 (41.6)</td>
<td>32 (9.3)</td>
<td>10 (2.9)</td>
</tr>
</tbody>
</table>

*Stage N refers to affection with only a nodus or cord without contracture.

Table 4. Correlation Coefficients with 95 Percent Confidence Intervals for Severity of Dupuytren Disease between Pairs of Fingers Based on the Multivariate Logit Model

<table>
<thead>
<tr>
<th>Index Finger</th>
<th>Middle Finger</th>
<th>Ring Finger</th>
<th>Little Finger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thumb</td>
<td>0.22† (0.01–0.42)</td>
<td>0.16 (–0.04–0.34)</td>
<td>–0.009 (–0.24–0.21)</td>
</tr>
<tr>
<td>Index finger</td>
<td>NA</td>
<td>0.12 (–0.12–0.35)</td>
<td>–0.17 (–0.39–0.06)</td>
</tr>
<tr>
<td>Middle finger</td>
<td>NA</td>
<td>0.29* (0.10–0.47)</td>
<td>NA</td>
</tr>
<tr>
<td>Ring finger</td>
<td>NA</td>
<td>NA</td>
<td>–0.12 (–0.30–0.05)</td>
</tr>
</tbody>
</table>

NA, not applicable.

*Significant correlation at 0.01.
†Significant correlation at 0.05.

Table 5. Predicted Occurrences of Dupuytren Disease with 95% Confidence Intervals in Single and Combinations of Fingers for Men and Women Separately at Age 65 Years

<table>
<thead>
<tr>
<th>Fingers*</th>
<th>Occurrence, % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One or two fingers</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>30.9 (25.6–36.4)</td>
</tr>
<tr>
<td>2</td>
<td>12.8 (8.8–17.4)</td>
</tr>
<tr>
<td>3</td>
<td>53.8 (47.8–60.1)</td>
</tr>
<tr>
<td>4</td>
<td>77.3 (79.9–81.1)</td>
</tr>
<tr>
<td>1, 2</td>
<td>5.4 (3.0–8.3)</td>
</tr>
<tr>
<td>1, 3</td>
<td>19.4 (14.8–24.1)</td>
</tr>
<tr>
<td>1, 4</td>
<td>24.5 (19.4–29.6)</td>
</tr>
<tr>
<td>1, 5</td>
<td>20.2 (15.6–25.1)</td>
</tr>
<tr>
<td>2, 3</td>
<td>7.4 (4.3–11.0)</td>
</tr>
<tr>
<td>2, 4</td>
<td>8.3 (5.1–12.0)</td>
</tr>
<tr>
<td>2, 5</td>
<td>8.2 (5.0–12.0)</td>
</tr>
<tr>
<td>3, 4</td>
<td>46.2 (39.7–53.0)</td>
</tr>
<tr>
<td>3, 5</td>
<td>35.5 (29.4–41.5)</td>
</tr>
<tr>
<td>4, 5</td>
<td>45.9 (39.5–51.8)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Three or more fingers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3</td>
</tr>
<tr>
<td>1, 2, 4</td>
</tr>
<tr>
<td>1, 2, 5</td>
</tr>
<tr>
<td>1, 3, 4</td>
</tr>
<tr>
<td>1, 3, 5</td>
</tr>
<tr>
<td>1, 4, 5</td>
</tr>
<tr>
<td>2, 3, 4</td>
</tr>
<tr>
<td>2, 3, 5</td>
</tr>
<tr>
<td>2, 4, 5</td>
</tr>
<tr>
<td>3, 4, 5</td>
</tr>
<tr>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td>1, 2, 3, 5</td>
</tr>
<tr>
<td>1, 2, 4, 5</td>
</tr>
<tr>
<td>1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>2, 3, 4, 5</td>
</tr>
<tr>
<td>1, 2, 3, 4, 5</td>
</tr>
</tbody>
</table>

*1, thumb; 2, index; 3, middle; 4, ring; 5, little.

for men and 23.2 percent (95 percent CI, 17.3 to 29.5 percent) for women. For quintets, the occurrence decreases to 2.1 percent (95 percent CI, 1.0 to 3.5 percent) for men and 1.2 percent (95 percent CI, 0.4 to 2.3 percent) for women. As expected from the occurrences of individual fingers and pairs, the triplet and quadruple combinations that include fingers from the ulnar side are more prevalent.

The correlations in occurrence (Table 2) and severity (Table 4) in Dupuytren disease between the little finger and the ring finger were not strong. We tested the hypothesis of independence by comparing the predicted occurrence of Dupuytren disease in these fingers with the product of the predicted occurrences of the single fingers. The significance was determined at $p = 0.491$ for men and $p = 0.376$ for women, which suggests that we cannot demonstrate a correlation between the little and ring fingers. We also tested, in a similar fashion, whether the ulnar and radial sides are independent. The predicted occurrence of the quintet is quite close to the product of the predicted occurrence of the triplet “little, ring, and middle fingers” and the pair “thumb and index finger” (men, $p = 0.202$; women, $p = 0.218$). However, because the predicted occurrences are quite small, we also tested this hypothesis with the likelihood ratio test, by comparing our multivariate logit model with a similar multivariate logit model where all of the correlations on severity between fingers on the radial side and fingers on the ulnar side were set equal to 0. Again, independence between the
DISCUSSION

The aim of this study was to scrutinize the phenotype (i.e., disease patterns) of primary Dupuytren disease in men and women. When studying the phenotype of Dupuytren disease, it is important to realize that supposed patterns are dependent on the number of times the individual rays are affected. For example, the ring and little fingers are most frequently affected. As a consequence, these fingers will often be seen affected with Dupuytren disease in combination with other affected rays, and one could therefore inadvertently conclude that there is a disease pattern. However, true patterns exist only when they appear more often than is expected based on the individual frequencies. In our study, we have investigated this, in particular, on patterns that were recognized in the past.

Several aspects should be noted regarding the cause of the phenotype. The anatomy of the hand is very complex and has been the subject of numerous publications. In addition, several authors have attempted to elucidate which anatomical structures are affected in Dupuytren disease. Tubiana et al. have written about Dupuytren disease on the radial side of the hand, where a close relation exists between the thumb and index finger through the distal and proximal transverse commissural ligaments. Based on this anatomical finding, it is conceivable that thumb and index finger affection is correlated. This correlation could be proven both in the occurrence and with respect to the severity of Dupuytren disease. Tubiana et al. also suggested that isolated Dupuytren disease of the radial side is rare; however, we could not demonstrate that the radial and ulnar sides were correlated. Thus, we conclude that the frequently observed occurrence of an affected radial side in combination with a single ray or multiple rays from the ulnar side in past literature is explained by the high occurrences of Dupuytren disease in fingers on the ulnar side and low frequency on the radial side. Indeed, our results show that the ring finger ray is frequently affected, whereas the disease in the radial rays of the hand, especially the index finger, is relatively rare. Furthermore, in our sample with only primary affected hands, the minority of rays had a passive extension deficit. These findings on occurrence are in agreement with the results of previous research. In our analyses, we assumed that severity of disease does not affect the correlations between fingers. This assumption implies that late-stage disease would show similar disease patterns as early-stage disease but with higher levels of severity. This is difficult to test, but the goodness-of-fit test of our statistical model did not show a lack of fit, which we interpreted as evidence for our assumptions. Therefore, we expect that a higher prevalence of contractures in our sample would not have changed the conclusions.

McGrath has described different layers of longitudinal fibers in the distal palm, from which the most superficial fibers insert into the dermis of the distal palm and proximal phalanx. These fibers are especially prominent in the middle and ring fingers, and this might be an explanation for the correlation between these two fingers. Besides, these fibers are also seen in the little finger, and this supports the correlation between the middle and little fingers, and the high predicted occurrences of the triplet combination of the middle, ring, and little fingers.

Besides anatomical variations, presently unknown molecular abnormalities of the extracellular matrix as well as cytokines and growth factors that are associated with the pathogenesis of Dupuytren disease may play a role in the phenotype. Although results of different studies are not unambiguous, it has been suggested that extracellular matrix proteins such as collagen, periostin, and β-catenin stimulate the proliferation, differentiation, and invasiveness of fibroblasts. Furthermore, oxidative stress is thought to be involved in the pathogenesis of Dupuytren disease. Hypoxia activates the xanthine oxidase pathway, eventually resulting in formation of oxygen free radicals, which are thought to stimulate myofibroblast proliferation. Based on these pathogenic processes, it is possible that areas in the hand that contain more extracellular matrix proteins or are exposed to hypoxia will be more affected with Dupuytren disease. In this respect, environmental risk factors that are thought to be associated with Dupuytren disease, such as heavy manual work and exposure to vibration, may also affect the phenotype. It is conceivable that Dupuytren disease will be more present in areas in the hand where the largest forces are applied. Because the little and ring fingers are the fingers that are predominantly used to grip and hold objects, this might explain their more frequent affection, although we could not demonstrate a correlation between this pair of fingers. However, more fundamental research is needed to elucidate the effect of these external forces on
various tissues. Furthermore, attention should be paid to the effect of the amount of force, the duration of exposure, and the recovery time between exposure.

Dolmans et al. identified genetic risk factors that contribute to Dupuytren disease. The presence of nine specific single-nucleotide polymorphisms can be used to calculate a genetic risk score for each patient. Patients with certain clinical findings, such as a positive family history or ectopic lesions, had a higher genetic risk score. It would be interesting to study whether this genetic risk score is associated with certain disease patterns (e.g., whether patients that carry more risk alleles have a more extensive phenotype).

One of the strengths of this cross-sectional study is the large number of primary affected hands that were included. Furthermore, the severity of disease in all cases was measured by only one observer and categorized using the well-known classification of Tubiana. However, our sample represents patients from the northern Netherlands alone, and the findings of our study may not necessarily be transferable to other parts of the world. Indeed, it has been suggested that race and geographic location might play a role in the onset of the disease and will therefore influence the prevalence of Dupuytren disease. In contrast, there is no clear influence of race and geographic location on prevalence, which makes understanding the potential influence of geography on disease patterns and correlations even more difficult. Previous publications from Europe and Japan showed a comparable distribution of occurrence of Dupuytren disease among fingers. Thus, we expect that our results will also be applicable to patients with Dupuytren disease from other countries, but this needs to be confirmed with other studies.

Previous studies on the phenotype of Dupuytren disease were most often observational studies without firm statistical analyses. Therefore, our study with agglomerative hierarchical clustering and a multivariate ordinal logit model adds great value to the existing literature.

In articles studying disease patterns or clusters of disease, hierarchical clustering is a frequently used method. However, it is an explorative analysis, and there are several disadvantages to this method. First, errors in clustering methods for binary data may be quite substantial, although an evaluation revealed that our method, using the Jaccard distance and complete linkage, is one of the best methods to choose. Second, this analysis will forcedly create clusters, even when in the data no natural clusters exist. A third drawback is the inability to address risk factors with this explorative analysis.

In our multivariate model, these disadvantages do not apply, and we included age and sex as covariates. Therefore, our results are applicable to a broad population. Although there was no statistically significant relation between severity of Dupuytren disease and sex and age, the results suggest that men and older patients have more severe disease. It has been stated that younger patients have a more aggressive form of the disease with a higher recurrence rate; consequently, these patients will have a more severe disease already at younger ages, reducing the overall effect of age on severity. It might have been interesting to include age of onset or duration of disease as well. However, we noticed that patients have difficulty remembering the exact age of onset of the disease, which makes use of this information unreliable.

CONCLUSIONS

Our study substantiates that the ulnar side of the hand is predominantly affected in Dupuytren disease. In addition, regarding severity of Dupuytren disease, we found a significant correlation between the thumb and the index finger, the middle and ring fingers, and the middle and little fingers. The ulnar and radial sides of the hand do not seem to be significantly correlated in any way, nor could we demonstrate a correlation between the little and ring fingers. Knowledge of these phenotypes is a first step toward further analysis of the role of the genotype in causing the various forms of Dupuytren disease.

Rosanne Lanting, M.D.
Department of Plastic Surgery
HPC BB81
Hanzeplein 1
P.O. Box 30.001
9700 RB Groningen, The Netherlands
r.lanting@umcg.nl

ACKNOWLEDGMENT

This research was funded by the University Medical Center Groningen.

REFERENCES