P.505 The potential role of BDNF and prolactin genotypes on antidepressant response in depressive patients

Published in:
European Neuropsychopharmacology

DOI:
10.1016/j.euroneuro.2019.09.511

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
volved in the precipitation of suicidal behaviour. Recently variation in GABRA6 gene in interaction with stress showed an association with a constellation of phenotypes significantly increasing risk of suicide [1]. The CB1 endocannabinoid receptor, encoded by the CNR1 gene involved in mediating the effects of stress has been a promising obesity drug target, however, rimonabant, a molecule acting on this receptor significantly increased suicide risk. While suicide is a complex phenomenon with distinct risk factors appearing in constellation patterns, different neurotransmitter systems and neural elements may contribute to the modulation of suicide risk via influencing distinct related phenotypes. In our study we compared effects of two genetic variants in distinct neurochemical systems in interaction with recent stress on suicide-related risk phenotypes.

Methods: Two-thousand-and-six subjects in a large general population sample participated in the study. The Brief Symptom Inventory [2] was used to evaluate symptoms related to suicide risk. Life events occurring in the past one year were measured by the List of Threatening Experiences [3]. Participants provided buccal mucosa cells and were genotyped for GABRA6 rs3219151 and CNR1 rs776602 by Sequenom’s MassARRAY technology with IplexTM assay. Data were analysed using linear regression models testing gene-by-environment effects on each depression and anxiety symptom as the outcome variable with age and gender as covariates. FDR Q values were calculated to correct for multiple testing.

Results: In interaction with recent stress, GABRA6 rs3219151 significantly influenced several depression-related suicide risk items in contrast to CNR1 rs7766029 (e.g. thoughts of ending life q=0.008 vs q=0.08; feeling hopeless about the future q=0.024 vs q=0.08; feelings of worthlessness q=0.008 vs q=0.08; feelings of guilt q=0.007 vs q=0.683, p values shown for GABRA6 rs3219151 and CNR1 rs7766029 respectively). In case of thoughts of death or dying, however, CNR1 rs7766029 had a more pronounced effect (q=0.007 vs q<0.001 for GABRA6 rs3219151 and CNR1 rs7766029 respectively). Only GABRA6 rs3219151 had an effect on anxiety-related suicide risk factors including spells of panic (q<0.0001), extreme restlessness (q<0.001), or feeling tense or keyed up (q=0.024).

Discussion: Both GABRA6 rs3219151 and CNR1 rs7766029 had a strong effect on suicide risk-related phenotypes in interaction with recent stress, however with different symptom profiles. While GABRA6 rs3219151 increased risk of several phenotypes including on thoughts of ending life, feelings of worthlessness, hopelessness and guilt, and, unlike CNR1 rs7766029, also had a strong effect on intense restlessness and drive to act immediately, thoughts directly related to death or dying had a more marked association with CNR1 rs7766029. Thus both GABRA6 and CNR1 are potential targets for pharmacological intervention in suicide risk. Future studies should focus on distinct suicide risk profiles which may be decreased by intervention via distinct neural targets.

References

P.505 The potential role of BDNF and prolactin genotypes on antidepressant response in depressive patients

1 Mental Health Research Institute- Tomsk National Research Medical Center- Russian Academy of Sciences, laboratory of molecular genetics and biochemistry, Tomsk, Russia

2 University of Groningen- Groningen Research Institute of Pharmacy, Unit of Pharmacotherapy- Epidemiology & Economics, Groningen, The Netherlands

3 Mental Health Research Institute- Tomsk National Research Medical Center- Russian Academy of Sciences, department of addictive disorders, Tomsk, Russia

4 University of Groningen- University Medical Centre Groningen, University Centre for Psychiatry, Groningen, The Netherlands

5 Mental Health Research Institute- Tomsk National Research Medical Center- Russian Academy of Sciences, department of addictive states, Tomsk, Russia

Background: Two-thirds of patients with major depressive disorder (MDD) do not respond optimally to the antidepressant medication [1]. To improve the current situation it is necessary to identify the pathological mechanisms underlying the symptoms of a depressive episode [2,3], enabling tailored forms of antidepressant treatment. Brain-derived neurotrophic factor (BDNF) has been associated with the response to antidepressant drugs in mood and anxiety disorders. Prolactin (PRL) is a pituitary hormone with behavioural effects which may be involved in the antidepressant pharmacological response acting as a neurotrophic fac-
tor within the brain. With multiple factors associated with efficacy of antidepressants, investigation of the effect of genetic factors promises to limit sub-optimal treatments [4].

Aim: The aim of the study was to investigate the relationship of BDNF and PRL genotypes with short-term antidepressant drug response, comparing the first two weeks to the second two weeks of treatment in drug-naive patients with a major depressive disorder.

Methods: In a prospective inception cohort design, we included 186 Russian participants (28 men and 158 women) of 18-70 years clinically diagnosed with depressive disorder who initiated antidepressant medication, including SSRIs and TCAs. These patients had not been treated with antidepressant drugs in the preceding three months with 54.5% never been treated with antidepressant drugs. DNA polymorphisms were genotyped for PRL rs1341239, BDNF rs6265 and rs7124442 in the Laboratory of Genetics of the University of Groningen with the MassARRAY® System (Agena Bioscience) and in the Laboratory of Molecular Genetics and Biochemistry of the Mental Health Research Institute with “StepOnePlus” (Applied Biosystems).

We measured the primary clinical outcome by differences in scores using the Hamilton Depression Rating Scale (ΔHAMD) between baseline and week two, and week two and week four for non-specific and specific antidepressant effects. Higher ΔHAMD score denotes better clinical outcome.

Paired-sample t-tests determined the statistical significance between ΔHAMD between the two time points. Independent T-Test determined the statistical significance between polymorphisms and ΔHAMD in baseline and week two, and week two and week four.

Results: Comparisons between genotypes did not reveal any significant differences in scores during the first two weeks of treatment (all p-values > 0.05). For the latter two weeks, homozygous C BDNF rs7124442 responded significantly worse (5.60 ± 3.64) in comparison to homozygous T during this period (8.51 ± 4.26).

Further analysis of homozygous C BDNF rs7124442 revealed significance in all women (5.57 ± 3.77) and post-menopausal (> 50 years of age) women (4.90 ± 4.06) but not in pre-menopausal (< 50 years of age) women (7.00 ± 2.34) in comparison to homozygous T. With respect to PRL rs1341239, no association between antidepressant response and genotypes was established within the patients, including within pre-menopausal and post-menopausal women.

Conclusions: PRL rs1341239 genotype did not affect HAMD score differences in patients. Difference in HAMD scores for BDNF rs6265 genotypes were not found to be significant in most patients. Homozygous C BDNF rs712442 patients were found to respond significantly worse in the last two weeks of treatment, with the exception of pre-menopausal women.

Disclosure statement: This work was in part supported by the Russian Foundation for Basic Research, grant №17-29-02205 «Development of a molecular-genetic panel of depressive disorders based on polymorphisms of the genes of neuronal kinases, neurotrophic proteins and genes of the serotonergic system»

References

P.506 Effects of N-acetylcysteine in autistic disorders: a systematic review and a meta-analysis

R. Lowenthal 1,*, I.T. Taia 2, J.F. Belisario Filho 3, R. Uchida 4, P. Shiozawa 5

1Faculdade de Ciencias Medicas da Santa Casa SP, Mental Health, Sao Paulo, Brazil
2Faculdade de Ciencias Medicas Santa Casa de Sao Paulo, Mental Health, Sao Paulo, Brazil
3Institute Qualia, Psychiatry, Belo Horizonte, Brazil
4Faculdade de Ciencias Medicas da Santa Casa SP, Mental Health, Sao Paulo, Brazil
5Faculdade de Ciencias Medicas da Santa Casa de SP, Mental Health, Sao Paulo, Brazil

Background: Autism Spectrum disorder isa neurodevelopmental disorder characterized mainly by deficits in communication, social interaction and repetitive behavior patterns, as well as stereotypic patterns. Recent publications have been highlighted clinical benefits of oral N-acetylcysteine in psychiatric and neurological disorders. through mechanisms such as oxidative stress and glutamate and dopamine neurotransmitter systems. Therefore, N-acetylcysteine has been used in autistic symptoms, such as repetitive and ritualized behaviors, hyperactivity, irritability and stereotypy. Although the mechanisms the efficacy of the drug in ameliorate these symptoms are not totally established, it can be explained by two pathways, glutamatergic modulation and antioxidative action.

Objective: The aim of the present study was to realize a systematic review followed by meta analyses of all available controlled clinical trials of studies assessing the effects of N-acetylcysteine over autistic symptoms following recommendations Cochrane group.

We included randomized controlled trials assessing the efficacy of N-acetylcysteine for autistic symptoms. It was included 4 eligible randomized clinical trials (n = 131) in the final analysis [1,2,3,4] and one study was excluded due to not contemplating a common scale [5]. Each study was imputed five times each one, once we assessed the follow-