Fenestrated endografting of juxtarenal aneurysms after open aortic surgery

Oikonomou, Kyriakos; Katsargyris, Athanasios; Bekkema, Foppe; Tielliu, Ignace; Verhoeven, Eric L. G.

Published in:
Journal of Vascular Surgery

DOI:
10.1016/j.jvs.2013.07.118

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2014

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 30-05-2021
Fenestrated endografting of juxtarenal aneurysms after open aortic surgery

Kyriakos Oikonomou, MD, PhD; Athanasios Katsargyris, MD, PhD; Foppe Bekkema, MANP; Ignace Tielliu, MD, PhD; and Eric L. G. Verhoeven, MD, PhD, Nürnberg, Germany; Groningen, The Netherlands; and Leuven, Belgium

Introduction: Juxtarenal aneurysms after previous surgical aortic reconstruction constitute a complex clinical scenario. Open redo surgery is technically demanding and usually requires suprarenal or supraceliac clamping. Standard endovascular repair is prohibited due to the lack of a proximal landing zone. We present our experience with fenestrated endovascular aneurysm repair (F-EVAR) in the treatment of juxtarenal aneurysms after previous open surgery.

Methods: A prospectively maintained database including all patients with juxtarenal abdominal aortic aneurysm after previous surgical reconstruction that underwent F-EVAR within the period from November 2003 to February 2013 under the instruction of the senior author. Evaluated outcomes included initial technical success and operative mortality and morbidity as well as late survival, target vessel patency, aneurysm diameter regression, renal function, and reintervention.

Results: A total of 35 patients (33 male; mean age, 71.5 ± 6.2 years) were treated. Median interval from the primary surgical reconstruction was 126 months (range, 48-223 months). All patients had proximal anatomies precluding standard endovascular techniques and were considered high risk for open repair due to their comorbidities and redo nature of the operation. In total, 111 vessels were targeted: 77 with small fenestrations, 33 with scallops, and 1 vessel with a downward branch. The operation was completed by totally endovascular means in 34 patients (97.1%). In one patient, a retroperitoneal approach was needed to gain retrograde access to a renal artery. Operative target vessel perfusion success rate was 100%. Operative mortality was 0% and median hospital stay 6 days (range, 2-40 days). Mean follow-up (FU) was 37.5 ± 25 months. Mean aneurysm maximal diameter decreased from 60 ± 4 mm to 47 ± 8 mm (P < .05). No type I endoleak was diagnosed, and no reintervention was required during FU. There were eight late deaths, all unrelated to the aneurysm. Estimated survival rates at 1, 2, and 4 years were 92.0% ± 5.5%, 82.8% ± 7.9% and 76.9% ± 9.3%, respectively. Three target vessel occlusions occurred during FU. One patient suffered a bilateral renal artery occlusion resulting in dialysis. In a second patient, one renal artery occluded without clinical symptoms. No other cases of renal function deterioration were observed.

Conclusions: F-EVAR is a valid treatment option for juxtarenal aneurysms after previous surgical reconstruction. F-EVAR represents a less morbid alternative to redo open surgery, has a high technical success rate, and shows durability in midterm FU. (J Vasc Surg 2014;59:307-14.)

Open infrarenal aortic reconstruction can be complicated by proximal paraanastomotic aneurysms (PAAs) or progressive aneurysmal degeneration of the native aorta. These complications are uncommon and usually appear years after the initial operation but constitute a challenging clinical scenario.

Open repair is technically demanding and often requires suprarenal or supraceliac clamping, which has been associated with considerable mortality, morbidity, and deterioration of renal function.1-3 The redo nature of the operation poses additional problems and further increases postoperative complication rates.1 Use of an infrarenal proximal stent graft (ie, a cuff) can be a viable alternative to open redo surgery in selected patients who still have a suitable proximal landing zone.5 However, in most patients, a suitable proximal neck is lacking, therefore prohibiting standard endovascular aneurysm repair (EVAR).

Fenestrated EVAR (F-EVAR) is, meanwhile, an established method in the treatment of short-necked and juxta-renal aneurysms. Reported studies show favorable early and midterm outcomes.6-9 F-EVAR can be a viable alternative in the treatment of juxtarenal aneurysms after previous standard EVAR.10 F-EVAR has also been used to treat patients with proximal aortic pathology after surgical reconstruction, although reported data are sparse.11,12 We have previously published our initial experience and now report our midterm outcomes in 35 consecutive patients 10 years after introduction of the method for patients after failing open repair.13,14

METHODS

All patients with juxtarenal abdominal aortic aneurysms (AAAs) after surgical aortic repair treated with F-EVAR

From the Department of Vascular and Endovascular Surgery, Klinikum Nürnberg, Nürnberg; the Division of Vascular Surgery, Department of Surgery, University Medical Center Groningen, Groningen; and the Department of Vascular Surgery, University Hospital Leuven, Leuven.

Author conflict of interest: Dr Verhoeven is a consultant for Cook, W. L. Gore & Associates, Siemens, and Atrium.

Reprint requests: Eric L. G. Verhoeven, MD, PhD, Chief, Department of Vascular and Endovascular Surgery, Klinikum Nürnberg Süd, Breslauer Strasse 201, Nürnberg, Germany (e-mail: eric.verhoeven@klinikum-nuernberg.de).

The editors and reviewers of this article have no relevant financial relationships to disclose per the JVS policy that requires reviewers to decline review of any manuscript for which they may have a conflict of interest.

0741-5214/$36.00
Copyright © 2014 by the Society for Vascular Surgery.
http://dx.doi.org/10.1016/j.jvs.2013.07.118
from November 2003 to February 2013 under the instruction of the senior author (E.V.) were included in this study. Data were collected prospectively. All patients had an infrarenal neck length of ≤10 mm, precluding treatment with a standard infrarenal device. The diameter of fenestrated grafts ranged from 22 to 36 mm to accommodate proximal aortic diameters ranging from 20 to 32 mm. Patients with insufficient paravisceral fixation or a thoracic component to the aneurysmal degeneration were excluded from the study. This is because of significant differences in stent graft design associated with the use of composite thoracoabdominal, predominantly branched, stent grafts in the latter category. Open redo surgery with renal artery reimplantation was carried out in three patients with a juxtarenal aneurysm in the early study interval. From 2006, all patients with juxtarenal aneurysms after surgical reconstruction have been treated with F-EVAR. Preoperative planning was carried out using thin cut (≤1.5 mm) spiral computerized tomography angiography (CTA) with axial, coronal, and three-dimensional reconstructions. Additional digital subtraction angiography (DSA) was performed when there was indication that target or access vessel catheterization could present difficulties. The physical status of all patients was assessed preoperatively with the American Society of Anesthesiologists (ASA) score.

All patients were treated with custom-made fenestrated Cook endografts (William A. Cook Australia, Ltd, Brisbane, Australia) based on the Zenith system. A variety of endograft configurations was used, to accommodate individual patient anatomy. In the presence of adequate working length of more than 5 cm from the lowest renal artery to the aortic (neo-) bifurcation, a composite system was preferably applied. In patients with too-short working length, either a fenestrated cuff was used when adequate sealing could be achieved within the previous graft or a bifurcated fenestrated system (with a contralateral limb) when distal landing in the iliac arteries was deemed necessary.

Proximal graft scallops were 10 mm in width and 6 to 12 mm in depth. Since 2004, all scallops were reinforced with nitinol around the perimeter. In the case of accessory renal arteries, the decision to revascularize was determined by the diameter of the artery and the amount of renal volume depending on the vessel. Accessory renal arteries with a diameter <3 mm were overstented. Fenestrations were either 6 mm × 6 mm or 6 mm × 8 mm in size. Initially, fenestrations were stented either with covered or bare metal stents depending on whether the endograft was in apposition to the aortic wall around the vessel orifice. Since 2007, all fenestrations were stented with covered balloon-expandable stents. A variety of bare metal and covered stents was applied for target vessels, re-covered balloon-expandable stents. A variety of bare metal was in apposition to the aortic wall around the vessel.

Initially, fenestrations were stented either with covered or uncovered stents. A variety of bare metal or covered stents or stent grafts. Finally, iCAST stent grafts were either 22 or 38 mm for renal arteries and 38 mm for the SMA. JOMED stent grafts were 26 mm in length. Covered stents were deployed aiming for protrusion of the stent graft of 3 to 4 mm into the body of the aortic graft. The portion within the aortic graft was flared using a 12-mm balloon to achieve better sealing and to allow easier access to the visceral vessel if future intervention were to be required. In cases of severe angulation of the target vessel, an additional SMART (Cordis, Warren, NJ) or EVERFLEX (ev3 Inc, Plymouth, Minn) self-expandable bare-metal stent was deployed inside the balloon-expandable covered stent to prevent kinking.

Procedures were performed either in the operating theater using a mobile C-arm (OEM 9800; General Electric Medical Systems, Salt Lake City, Utah, and Arcadis Avantic; Siemens AG, Forchheim, Germany) or (later) in a hybrid operating room with a fixed C-arm system (Arts Zeego; Siemens AG, Forchheim, Germany). The operative technique has been described in detail previously. In brief, femoral artery exposure is performed on both sides. The fenestrated graft is introduced via the femoral artery and unsheathed, leaving it partially constrained by its top cap and diameter-reducing ties. Catheterization of the fenestrations or branches is carried out through the contralateral femoral artery. After wire access in all fenestrations has been achieved, the graft is fully deployed. The fenestrations are thereafter fitted with stents or stent grafts. Finally, in case of a composite fenestrated system, the distal bifurcated body is introduced and deployed.

Technical success was defined as an endovascularly completed procedure with absence of type I or III endoleak and patent target vessels.

Follow-up (FU). Postoperatively, patients were evaluated with clinical and laboratory examination prior to discharge. FU consisted of CTA at 1 month, duplex ultrasound (DUS) at 6 months, and CTA at 12 months postoperatively. Thereafter, patients were monitored with yearly CTA or solely with DUS and abdominal X-rays in case of complete thrombosis of the aneurysm sack and absence of endoleak. Renal size measurements were carried out on CTA three-dimensional reconstruction images as well as DUS examinations. Renal vessels were investigated for stenosis by means of CTA with planar reconstruction as well as DUS with peak systolic velocity and renal aortic ratio measurements. Upon suspicion of a new endoleak or target vessel malperfusion, DSA was carried out. Serum creatinine and glomerular filtration rate (GFR) levels were monitored at each visit.

Data analysis. Data analysis was performed with SPSS for Windows (version 20.0; SPSS Inc, Chicago, Ill). Variables are presented as mean ± standard deviation in case.
of normal distribution, and median plus range if data had a skewed distribution. Statistical significance was set at P < .05. Patient survival and target vessel patency was analyzed using Kaplan-Meier methodology.

RESULTS

Patient characteristics. A total of 35 patients (33 male, 2 female; mean age, 71.5 ± 6.2 years) underwent elective F-EVAR for juxtarenal AAA after previous infrarenal surgical reconstruction. Twenty-two (62.9%) patients were classified as ASA III, 12 (34.3%) patients as ASA II, and 1 (2.9%) patient was classified as ASA IV. Mean preoperative GFR was 52.6 ± 15.7 mL/min/1.73 m². Thirteen (37.1%) patients had a GFR <60 mL/min/1.73 m². Other pre-existing comorbidities included coronary artery disease in 25 (71.4%) patients, congestive heart failure in 8 (22.8%) patients, obstructive pulmonary disease in 10 (28.5%) patients, and peripheral arterial occlusive disease in 4 (11.4%) patients.

Median interval from the primary surgical reconstruction was 126 months (range, 48-223 months). Twenty-three (65.7%) patients had been treated with a tube graft and eight (22.8%) patients had previously been treated with an aortobifemoral (ABF) graft. Four of the patients had two previous operations. These included a tube graft followed by another tube graft for progressive disease of the right common iliac artery. In total, 111 visceral vessels were targeted, 77 with fenestrations, 33 with scallops, and 1 vessel with a downward branch. The target vessel revascularization method in these patients is demonstrated in Table I.

Table I. Target vessel revascularization method

<table>
<thead>
<tr>
<th>Target vessel</th>
<th>Fenestration</th>
<th>Scallop</th>
<th>Branch</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRA</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>SMA</td>
<td>14</td>
<td>19</td>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td>CA</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>77</td>
<td>33</td>
<td>1</td>
<td>111</td>
</tr>
</tbody>
</table>

CA, Celiac artery; LRA, left renal artery; RRA, right renal artery; SMA, superior mesenteric artery.

Operative planning and details. A fenestrated cuff was used in 9 (25.7%) patients, a bifurcated fenestrated graft in 2 (5.7%) patients, and a composite fenestrated system in 24 (68.6%) patients. Mean proximal diameter of the fenestrated graft was 30 ± 4 mm, and mean limb diameter was 16 ± 4 mm. In one case, the composite system included a Zenith (William A. Cook Australia, Ltd) iliac branched endograft to accommodate an aneurysm of the right common iliac artery. In total, 111 visceral vessels were targeted, 77 with fenestrations, 33 with scallops, and 1 vessel with a downward branch. The target vessel revascularization method is demonstrated in Table I. In 21 (60%) patients, the stent graft was designed to reach the level of the SMA, with the most commonly used configuration in 18 patients including two fenestrations for the renal arteries and a scallop for the SMA. A stent graft including a scallop for the celiac artery was designed in 12 (34.3%) patients. In two (5.7%) patients, the fenestrations targeted solely the renal orifices. The graft fenestration configurations used are listed in Table II.

Table II. Stent graft configuration with fenestration specification for each vessel

<table>
<thead>
<tr>
<th>Patients, No. (%)</th>
<th>RRA</th>
<th>LRA</th>
<th>SMA</th>
<th>CA</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 (51.4)</td>
<td>Fen</td>
<td>Fen</td>
<td>Scallop</td>
<td>0</td>
</tr>
<tr>
<td>10 (28.5)</td>
<td>Fen</td>
<td>Fen</td>
<td>Fen</td>
<td>Scallop</td>
</tr>
<tr>
<td>1 (2.9)</td>
<td>Fen</td>
<td>Ocl</td>
<td>Fen</td>
<td>Scallop</td>
</tr>
<tr>
<td>1 (2.9)</td>
<td>Fen</td>
<td>Branch</td>
<td>Fen</td>
<td>Scallop</td>
</tr>
<tr>
<td>1 (2.9)</td>
<td>Fen</td>
<td>Fen</td>
<td>Fen</td>
<td>0</td>
</tr>
<tr>
<td>1 (2.9)</td>
<td>Scallop</td>
<td>Fen</td>
<td>Scallop</td>
<td>0</td>
</tr>
<tr>
<td>1 (2.9)*</td>
<td>0</td>
<td>0</td>
<td>Fen</td>
<td>Ocl</td>
</tr>
<tr>
<td>1 (2.9)</td>
<td>Fen</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 (2.9)</td>
<td>Scallop</td>
<td>Fen</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

CA, Celiac artery; Fen, fenestration; LRA, left renal artery; Ocl, chronically occluded; RRA, right renal artery; SMA, superior mesenteric artery.

*Patient with bilateral nephrectomy and CA occlusion.

Scalops were routinely left unstented, with the exception of one patient where deployment of a bare stent was required due to partial coverage of the renal orifice. Fenestrations were secured with balloon-expandable covered stents in 62/77 (80.5%) cases and with balloon-expandable bare-metal stents in 11/77 (14.3%) cases. In the remaining four (5.1%) cases, a combination of a balloon-expandable covered and a self-expandable bare-metal stent was applied. The one vessel targeted with a branch was secured with a self-expandable covered and a self-expandable bare-metal stent.

The procedure was carried out under general anesthesia in 29 (82.9%) patients and under epidural anesthesia in six (17.1%) patients. Median operative time was 210 minutes (range, 110-420 minutes), and median estimated blood loss was 265 mL (range, 100-1500 mL). Median fluoroscopy time was 41 minutes (range, 8-140 minutes), and mean iodinated contrast volume used was 180 ± 54 mL.

Technical success. All patients underwent a successful endovascular repair. In 33 patients (94.2%), F-EVAR was completed solely via a transfemoral approach. In one patient (2.9%), a planned retroperitoneal incision was
carried out in order to achieve catheterization of a stenotic, angulated, and tortuous left renal artery with an anterior take-off (Fig 1). This patient had undergone additional preoperative DSA via a transfemoral and a transbrachial approach, which demonstrated that the left renal artery was not susceptible to antegrade catheterization. Following exposure of the distal portion of the left renal artery, a 5F sheath was introduced into the vessel. The fenestration was catheterized in a retrograde manner, and the wire was snared to create a through-and-through wire, to allow for safe stenting. In the second patient, a transbrachial approach was necessary to achieve catheterization of a caudally oriented branch for a severely tortuous left renal artery with aneurysmal, caudally oriented take-off. Intraoperative technical problems were encountered in nine (25.7%) patients. In one (2.9%) patient, a dense peri-prosthetic scar led to a difficult exposure of the ABF limb, and direct access through the Dacron graft limb was poorly hemostatic, leading to a large amount of intraoperative blood loss (1500 mL). In another patient, high deployment of the stent graft resulted in malalignment of the fenestrations with the target vessels. During attempts to pull the endograft downward, the bottom stent was deformed, which required placement of a distal aortic cuff. In the remaining seven (14.2%) patients, renal artery catheterization and stent graft deployment were problematic due to severe stenosis and angulation. In two of these cases, passage of a JOMED stent graft into the right renal artery resulted in the stent graft being pushed off of the balloon. Both stents were successfully retrieved and replaced. In the third patient with a severely angulated right renal artery originating from the PAA, catheterization proved extremely tedious and was ultimately achieved with a 0.018" Terumo wire (Terumo Medical Corporation, Somerset, NJ). After introduction of a 7F sheath, the fenestrated graft was deployed completely to create more working room, and the orifice of the renal artery was predilated with a STERLING balloon (Boston Scientific PI, Natick, Mass). The vessel was secured with a balloon-expandable covered iCAST stent and additional deployment of a self-expandable SMART stent to prevent kinking. The same stent combination was applied in two more patients with angulated renal arteries and in the sixth patient with problematic target vessel anatomy due to a short dissection of the left renal artery during catheterization. Finally, the seventh case involved the patient treated with a caudally oriented branch. The left renal artery was severely tortuous, had to be revascularised from a left axillary access, and was secured with a Wallgraft (Boston Scientific PI) and an Everflex bare-metal stent (EV3 Endovascular, Inc).

Operative outcome, mortality, and morbidity. Surgical mortality at 30 days was null. No case of renal function deterioration >30% was witnessed in the early postoperative period. Mean postoperative GFR was $51.7 \pm 15.7 \text{ mL/min/1.73} \text{ m}^2$. Major complications occurred in three (8.6%) patients. The patient who underwent retroperitoneal approach suffered a decompensation of his congestive heart failure with a subsequent myocardial infarction and a prolonged hospital stay of 23 days. A second patient suffered a non-ST segment elevation myocardial infarction on the second postoperative day. Coronary angiography demonstrated no relevant coronary artery stenosis, and the incident was attributed to vasospasm. The patient had a 17-day hospital stay. Both patients were discharged in good condition. The third
patient suffered a wound dehiscence leading to a prolonged hospital stay of 40 days for wound care, due to the existence of an ABF graft in the groin.

Median hospital stay was 6 days (range, 2-40 days). Treatment in the intensive care unit was necessary solely in the two patients with MI for 9 and 2 days, respectively.

FU. Mean FU was 37.5 ± 25 months. Two patients who were referred from abroad were lost to FU after their 1-year FU. Estimated survival rates were 92.0% ± 5.5%, 82.8% ± 7.9%, and 76.9% ± 9.3% at 1, 2, and 4 years, respectively. Fig 2 demonstrates the cumulative survival curve as estimated by Kaplan-Meier analysis. All-cause late mortality was eight patients, all of them aneurysm unrelated.

During FU, three cases of renal artery occlusion occurred. One patient presented with an asymptomatic right renal artery occlusion at 6 months. This vessel had been targeted with an unsupported scallop and left unstented. No graft migration or kinking that could explain the occlusion was detected on CTA. A second patient presented at 8 months with bilateral occlusion of the renal arteries, originally secured with JOMED covered stents. The patient had unremarkable CTAs at 1 and 6 months and suffered the occlusion after traveling abroad and suffering severe gastroenteritis with volume depletion. This patient presented for FU after dialysis had been initiated in an external hospital. In the remaining 34 (97.1%) patients, renal function and kidney size remained unchanged during FU. No hemodynamically significant visceral branch stenosis was visualized in DUS. Mean GFR during FU was 52.8 ± 12.8 mL/min/1.73 m². Estimated target vessel patency according to Kaplan-Meier analysis is demonstrated in Fig 3.

No limb occlusion or stent graft migration was witnessed during FU. No reinterventions were required. Mean maximal aneurysm diameter decreased from 60.1 ± 4 mm to 47.3 ± 8 mm (P < .05).

DISCUSSION

Open infrarenal repair of AAAs is generally associated with a lower need for reinterventions than EVAR. Although proximal aneurysm formation has been reported in only 3% of patients, it nevertheless poses significant technical problems when considering renewed open repair. The challenges associated with conventional abdominal aortic redo surgery are considerable and related to increased mortality and morbidity rates, especially when the pararenal segment is involved. Suprarenal aortic clamping has been shown to significantly increase postoperative renal morbidity. Treatment with standard infrarenal devices can offer an attractive and potentially durable alternative in selected patients, although literature up to now contains relatively few and limited reports. A recent study from Ten Bosch et al demonstrated a considerable rate of proximal type I endoleaks and need for reinterventions in patients with proximal PAAs treated with
EVAR, concluding that endovascular repair is only safe and durable in the presence of suitable anatomy.\(^5\)

The present series suggests that F-EVAR can offer a safe and effective alternative in patients with proximal neck anatomy precluding treatment with standard endovascular means. Operative mortality was null, and perioperative morbidity was low in this patient cohort. Hospital stay was lower compared with reported data regarding redo-open surgery.\(^2,3\) Target vessel patency remained high during FU, and no reinterventions were needed during midterm FU. F-EVAR led to a significant decrease in maximal aneurysm diameter. To our knowledge, this is the largest study in the literature, with the longest FU on F-EVAR after previous infrarenal surgical reconstruction. Apart from previous reports by the same main author, there are only two papers

Fig 4. Angiographic images depicting partial deployment of the fenestrated graft (a and b) to facilitate cannulation of the renal arteries and the fully deployed graft (c and d) with deployed renal stents.
early days of fenestrated endografting and was later
lished experience and expert consensus meetings in the
stenosis. This association was based upon previous unpub-
stenests for fenestrations has been abandoned due to an asso-
stenes (unpublished data). Similarly, the use of uncovered
have been reinforced with nitinol around the perimeter,
introduction of this technique. Since 2004, all scallops
place in the design of fenestrated endografts since the
sion, the conduit is sewn closed. Upon comple-
through a conduit sewn on the ABF limb. Upon comple-
removal of its restraining ties.
Fig 4 demonstrates a fenestrated graft prior to and following
by incorporated diameter reducing ties, which are removed
accommodate catheterization maneuvers in cases of small
after successful catheterization of the visceral branches. To
prevent migration. This con
configuration is, however, often
small luminal diameter of the preexisting graft, double preplaced
ter of the surgical prosthesis and the frictional forces
liminal diameter-reducing restraining ties can be applied. Fig 4
describes a similar endovascular approach in nine and
three patients, respectively.13-14

Despite the high technical success in this series, additional
difficulties in planning and execution of the procedure have to be expected when attempting F-EVAR after
previous open surgery. Primary F-EVAR nowadays routinely utilizes composite systems consisting of a fenes-
trated proximal tube graft, which can be freely repositioned
facilitating target vessel catheterization, followed by a bifur-
cated stent graft, and a contralateral limb. This configur-
provides additional graft stability and is effective in
preventing migration. This configuration is, however, often
not applicable in patients previously treated with ABI grafts
or ABF grafts due to the usual practice of implanting a short
graft body. In cases with a working length too short for
a composite system, sealing is achieved solely with a fenes-
trated proximal cuff. No case of stent graft migration
during FU was noticed in the nine (25.7%) patients treated
soley with proximal cuffs, but additional surveillance is
required to prove the durability of this configuration.

Furthermore, the presence of a previous surgical graft
clearly limits maneuverability during deployment of the
fenestrated device, due to the relatively small luminal diam-
eter of the surgical prosthesis and the frictional forces
between the endovascular and surgical graft. Catheteriza-
tion of target vessels can be problematic under these
circumstances and may require the use of multiple types
of catheters and sheaths, or even a retrograde puncture in
rare cases. It is furthermore imperative to avoid deploying
the fenestrated tube too high, as pulling down the graft
in an existing surgical graft is tedious and sometimes not
possible. To facilitate repositioning, fenestrated devices
are designed to only partially deploy upon retraction of
the delivery sheath. The fenestrated tube graft is restrained
by incorporated diameter reducing ties, which are removed
after successful catheterization of the visceral branches. To
accommodate catheterization maneuvers in cases of small
luminal diameter of the preexisting graft, double preplaced
diameter-reducing restraining ties can be applied. Fig 4

Finally, arterial access issues are often encountered in
patients with a previous ABI graft. Direct puncture of
the ABF limb can result in increased blood loss around the
sheaths. Our current practice is to introduce the device
through a conduit sewn on the ABF limb. Upon comple-
tion of the intervention, the conduit is sewn closed.

This series reflects some of the changes that have taken
place in the design of fenestrated endografts since the
introduction of this technique. Since 2004, all scallops
have been reinforced with nitinol around the perimeter,
due to an association of unsupported scallops with vessel
stenosis (unpublished data). Similarly, the use of uncovered
stents for fenestrations has been abandoned due to an asso-
ciation of uncovered stents with higher rates of stent
stenosis. This association was based upon previous unpub-
lished experience and expert consensus meetings in the
early days of fenestrated endografting and was later
confirmed by Mohabbat et al.24 Finally, this series features
one patient treated with a single fenestration for a renal
artery and one patient with a fenestration for one renal
artery and a scallop for the second. These patients were
treated early in the series and had one renal artery that
was significantly higher than the other. Nowadays, the
use of scallops for renal arteries is not advocated. Two
fenestrations is the preferable way of treatment to ensure
better graft stability.

This study has some limitations. The number of
patients is limited. This is a selected patient population,
and a certain referral bias has to be acknowledged. Finally,
this study reflects the outcomes of two high-volume
centers for F-EVAR.

CONCLUSIONS

F-EVAR is a valid treatment method in cases of PAAs
or progressive juxtarenal aneurysmal degeneration after
open repair. Although additional technical difficulties in
comparison to primary F-EVAR in the native aorta should
be acknowledged, it clearly represents a less morbid alter-
native to open conversion, has a high technical success
rate, and has durability in midterm FU.

AUTHOR CONTRIBUTIONS

Conception and design: KO, EV, IT
Analysis and interpretation: KO, AK, FB, EV
Data collection: KO, AK, FB, EV
Writing the article: KO, AK, FB, EV
Critical revision of the article: KO, AK, IT, EV
Final approval of the article: KO, AK, FB, IT, EV
Statistical analysis: KO, AK
Obtained funding: Not applicable
Overall responsibility: EV

REFERENCES

1. Jongkind V, Yeung KK, Akkersdijk GJ, Heidsieck D, Reitsma JB,
2. Chiesa R, Tshomba Y, Mascia D, Rinaldi E, Logaldo D, Civilini E.
Open repair for juxtarenal aortic aneurysms. J Cardiovasc Surg (Torin-
o) 2013;54:35-45.
1999;29:902-12.
4. Locati P, Socrate AM, Costantini E. Paraanastomotic aneurysms of the
abdominal aorta: a 15-year experience review. Cardiovasc Surg 2000;8:
274-9.
5. Ten Bosch JA, Waasdorp EJ, de Vries JP, Moll FL, Teijink JA, van
Herwaarden JA. The durability of endovascular repair of para-
anastomotic aneurysms after previous open aortic reconstruction.
6. Verhoeven EL, Vourliotakis G, Bos WT, Tieliu IF, Zeebregts CJ,
Prins TR, et al. Fenestrated stent grafting for short-necked and jux-
7. Verhoeven EL, Prins TR, Tieliu IF, van den Dungen JJ, Zeebregts CJ,
Hulsebos RG, et al. Treatment of short-necked infrarenal aortic

Submitted May 7, 2013; accepted Jul 30, 2013.