Polarized protein trafficking and disease
Overeem, Arend Wouter

DOI:
10.33612/diss.112660241

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Chapter 6

A molecular mechanism underlying genotype-specific intrahepatic cholestasis resulting from MYO5B mutations

Hepatology, 21st of November 2019. (Note: Published manuscript is a revised version of this chapter)

Arend W. Overeem¹, Qinghong Li¹, Fernando Carton-García², Changsen Leng¹, Karin Klappe¹, Just Dronkers¹, Nai-Hua Hsiao¹, Diego Arango², Sven C. D. van IJzendoorn¹,*

¹Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. ²Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain.
Abstract

background and rationale for the study: Missense MYO5B mutations have been associated with familial progressive intrahepatic cholestasis (PFIC)-type 6 and the mislocalization of bile canalicular proteins. Whether patient-specific MYO5B mutations are causally related to defects in canalicular protein localization and, if so, via which mechanism is not known.

Main results: We demonstrate that the cholestasis-associated P660L mutation in MyoVb caused the intracellular accumulation of bile canalicular proteins in vesicular compartments. Remarkably, the knockout of MYO5B in vitro and in vivo produced no canalicular localization defects. In contrast, the expression of myoVb mutants consisting of only the tail domain phenocopied the effects of the Myo5b-P660L mutation. Using additional myoVb and rab11a mutants, we demonstrate that motor domain-deficient myoVb inhibited the formation of specialized apical recycling endosomes, and that its disrupting effect on the localization of canalicular proteins was dependent on its interaction with active rab11a and occurred at the trans-Golgi Network/recycling endosome interface.

Conclusions: Our results reveal a mechanism via which MYO5B motor domain mutations cause the mislocalization of canalicular proteins in hepatocytes which, unexpectedly, does not involve myoVb loss-of-function but, as we propose, a rab11a-mediated gain-of-toxic function. The results explain why biallelic MYO5B mutations that affect the motor domain but not those that eliminate myoVb expression are associated with PFIC-type 6.
Introduction

Hepatocytes are polarized epithelial cells with basolateral/ sinusoidal plasma membrane domains that face the blood circulation and apical/ canalicular plasma membranes that form the bile canaliculi via which bile is safely moved out of the liver. Tight junctions separate the sinusoidal and canalicular domains and prevent the mixing of bile and blood. Defects in the polarized distribution or function of cell surface proteins can cause severe liver diseases (1). Of these, progressive familial intrahepatic cholestasis (PFIC) is characterized by the inability of hepatocytes to secrete bile into the canaliculi resulting in the buildup of bile components and liver failure. PFIC can be caused by mutations in different genes (2,3), including \textit{ATP8B1} (PFIC-1), \textit{ABCB11} (PFIC-2), \textit{ABCB4} (PFIC-3), \textit{TJP2} (PFIC-4) and \textit{NR1H4} (PFIC-5). \textit{ATP8B1}, \textit{ABCB11} and \textit{ABCB4} encode bile acid transporters. Mutations in these proteins affect their expression, canalicular localization or function and consequently impair bile salt secretion (\textit{ATP8B1}, \textit{ABCB11/BSEP}) or biliary phospholipid secretion (MDR3). \textit{NR1H4} encodes the Farnesoid X receptor, a transcription factor that regulates the expression of \textit{ABCB11/BSEP}. \textit{TJP2} encodes the tight junction protein zona occludens (ZO)-2 and mutations in these presumably leads to the leaking of bile out of the canaliculi.

Recently, mutations in the \textit{MYO5B} gene were reported in a group of PFIC patients who presented elevated bilirubin and bile acid levels with normal gamma-glutamyl transpeptidase (GGT) levels and did not have mutations in any of the other PFIC genes (4,5). \textit{MYO5B} encodes the actin-filament based motor protein myoVb. MyoVb binds selected small GTPase rab proteins including the \textit{trans}-Golgi Network (TGN)- and/ or recycling endosome-associated rab8 and rab11a, and has been implicated in apical plasma membrane protein trafficking. Mutations in \textit{MYO5B} can also cause microvillus inclusion disease (MVID) (6–9), a congenital enteropathy characterized by intractable diarrhea and malabsorption and, at the cellular level, by the mislocalization of apical brush border proteins. Notably, approximately half of all MVID patients also develop cholestasis leading to liver failure (10,11). Inspection of liver biopsies from some but not all (12) cholestatic MVID patients carrying \textit{MYO5B} mutations revealed the mislocalization of \textit{ABCB11/BSEP} and of \textit{ABCC2/MRP2}, a canalicular bilirubin transporter mutated in Dubin-Johnson syn-
drome, to intracellular compartments (11,13). Further, the ectopic expression of a myoVb tail fragment, presumed to compete with the endogenous myoVb protein for binding to rab proteins and thereby exert a dominant-negative effect, impaired canalicular protein trafficking in the hepatic WIF-B9 cell line (14). These observations together have led to suggest that myoVb is needed for the localization of bile canalicular proteins and can causes cholestasis when mutated.

However, because MVID patients typically receive total parenteral nutrition (TPN) which is known to induce cholestasis and liver failure (15–17), it is difficult to determine whether the liver symptoms in these patients are MYO5B mutation- or TPN-induced. Indeed, while mislocalization of bile canalicular proteins has been demonstrated in patient liver biopsies, there are no functional studies to support the hypothesis that patient-specific MYO5B mutation perturb the correct localization of canalicular proteins in hepatocytes. Further, while missense, nonsense and frameshift MYO5B mutations all have been associated with MVID (reviewed in (8,9)), biallelic mutations predicted to eliminate myoVb expression (i.e., nonsense and frameshift MYO5B mutations) are noticeably absent in non-MVID cholestasis patients (4,18). This apparent genotype-phenotype relationship with regard to MYO5B mutations and cholestasis is not understood. Clearly, these observations raise outstanding questions as to whether myoVb plays a role in the localization of bile canalicular proteins in hepatocytes and via which mechanisms MYO5B mutations can give rise to PFIC.

In this study we have addressed these questions and demonstrate that myoVb is dispensable for the correct localization of bile canalicular proteins yet can cause cholestasis-associated defects in their localization when mutated via an unexpected mechanism involving the small GTPase rab11a.
Experimental Procedures

Cell culture

HepG2 cells (ATCC HB8065) were maintained in high-glucose DMEM supplemented with 10% heat-inactivated fetal calf serum (FCS), 2mM l-glutamine, 100IU/ml penicillin, and 100μg/ml streptomycin in a humidified atmosphere. For experiments, cells were plated on poly-L-lysine-coated coverslips and used 3d later. HUES9 cells were maintained on vitronectin in E8 medium (Thermo-Fisher). Cells were passaged every 4-5 days with accutase, with 1% RevitaCell Supplement added to the cells overnight on the day of passage. For hepatocyte differentiation, 50,000 cells pluripotent human HUES9 cells were plated on vitronectin in E8 medium with RevitaCell supplement, and the next day differentiated to definitive endoderm using the PSC Definitive Endoderm Induction Kit (Thermo-Fisher). Two days later cells were incubated in RPMI1640 containing 20ng/ml BMP4 (R&D), 10ng/ml FGF2 (Peprotech), 0.5% DMSO (Sigma) and B27-supplement (Thermo-Fisher). Five days later hepatic progenitor cells were transferred to ESC-qualified Matrigel-coated wells or coverslips in RPMI1640 with 20ng/ml HGF (Peprotech), 0.5% DMSO and B27-supplement, and with 1% RevitaCell supplement on the first day only. The next day, cells were overlaid with a ESC-qualified Matrigel and further incubated for another 4d. Finally, cells were incubated in Lonza HCM Bulletkit medium with 20ng/ml Oncostatin-M (R&D) for 7d.

Viral transduction

Lentiviral particles were produced using a second-generation system based on pCMVdR8.1 and pVSV-G. 1×10^6 HEK293T cells were transferred to a poly-L-lysine coated 9cm² plates in 1.3 ml culture medium. 1200ng of lentiviral vector, 1000ng pCMVdR8.1 and 400ng pVSV-G were mixed with 7.8 μl Fugene/HD in 200μl Opti-MEM, and added to HEK293T in suspension. After overnight incubation, medium was refreshed, and after 48 hours viral particles were harvested and filtered through a 0.45μm PVDF membrane filter. 1d after plating, cells were incubated...
with viral particles for 16h (supplemented with 8μg/mL polybrene). Antibiotics (2.5μg/ml puromycin, 4μg/ml blasticidin) were added 24h after viral incubation.

CRISPR knockout

A lentiviral CRISPR construct targeting exon 3 of MYO5B was generated using the plentiCRISPR-V2 vector (Addgene#52961) following provided protocols (gRNA target sequence: tcttacggaatccagatatc). Cells were transduced and selected with puromycin as described. Cells were plated on poly-L-lysine coating at 18 cells/cm² with 5300 untreated cells/cm² as feeder layer. After 4d cells were selected with puromycin (2.5μg/ml) to kill feeder cells, and remaining colonies were isolated as separate lines. To deplete MyoVb in HUES9 cells, the cells were incubated with MYO5B-targeting lentiCRISPR viral supernatant for 5h (in E8 medium supplemented with 8μg/mL polybrene). After 48h, cells were selected with puromycin (1μg/ml). Selected cells were then plated at 28 cells/cm², and the resulting colonies were mechanically passaged after 3 weeks. Clones were checked for myoVb knockout via Western blot.

Plasmids

Full-length human myoVb-coding sequence was amplified from HepG2 cDNA through PCR, including a myc-encoding ‘5 overhang in the forward primer sequence. Amplified myc-myovb was inserted into pENTR1a vectors. All described myoVb mutants were generated by modification of this construct using the Q5® Site-Directed Mutagenesis Kit (NEB), with primers designed in the NEBaseChanger™ tool. MyoVb and thereof derived mutant constructs were transferred to lentiviral vectors for mammalian expression through Gateway™ cloning, using LR Clonase™ II (Thermo-Scientific) as per manufacturer’s instruction. Full-length myc-myovb constructs were transferred to pLenti-CMV-Blast-DEST (706-1) (Addgene#17451), and myc-myovb tail domain constructs to pLenti-CMV-Puro-DEST (w118-1) (Addgene#17452). EGFP-rab11aWT and EGFP-rab11aS25N (19) were gifts from R.E. Pagano (Mayo Clinic, USA).
Western blotting

Cells were resuspended in RIPA buffer (150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris pH 8.0) containing protease inhibitors. Lysates were mixed 1:1 with sample buffer (2% SDS, 5% β-mercaptoethanol, 0.125 M Tris–HCl, pH 6.8, 40% glycerol, 0.01% bromophenolblue) and incubated at 70°C for 10 min. Samples were resolved on SDS-PAGE (10%) mini/gels and electrotransferred onto PVDF membranes. Membranes were blocked with Odyssey-blocking buffer and incubated overnight at 4°C with primary antibodies (supplemental Table T1). After incubation with appropriate secondary antibodies, immunoblots were scanned with the Odyssey (LI-COR Biosciences). Relative quantification was performed using the Odyssey software.

Microscopy

Immunolabeling of fixed cells and tissues and fluorescence microscopy was performed essentially as described previously (9). Antibodies used are listed in supplemental Table T2). Fluorescent images were captured on a Leica DMI 6000 fluorescent microscope and analyzed using a combination of ImageJ and Adobe Photoshop. For electron microscopy, cells were fixed by adding dropwise an equal volume fixative (2% glutaraldehyde and 2% paraformaldehyde in 0.1 M sodium-cacodylate buffer). After 10 min this mixture was replaced by pure fixative at room temperature for 30 min. After post-fixation in 1% osmiumtetroxide/1.5% potassium-ferrocyanide (4°C; 30 min) cells were dehydrated using ethanol and embedded in EPON epoxy resin. 60 nm sections were cut and contrasted using 2% uranylacetate followed by Reynolds lead citrate. Images were captured with a Zeiss Supra55 in STEM mode at 26 KV.

qPCR

RNA was harvested using TRI reagent (Sigma). RNA was reverse transcribed in the presence of oligo(dT)12–18 (Invitrogen) and dNTPs (Invitrogen) with M-MLV reverse transcriptase (Invitrogen). Gene expression levels were measured by real-time quantitative RT-PCR using ABsolute QPCR SYBR Green Master Mix
(Westburg) in a Step-One Plus Real-Time PCR machine (Applied Biosystems), and resulting data analyzed using the LinRegPCR method. Primers are listed in supplemental Table T3.

Statistics

Statistical significance of differences between triplicate experiments was determined using Student’s t-test (two-tailed, unpaired, with equal variance).
Results

MyoVb deficiency does not disrupt canalicular protein localization

The mislocalization of bile canaliculi (BC) transporters in hepatocytes, including that of ABCC2/MRP2, has been observed in liver biopsies of some, but not all, patients with MYO5B mutations (12, 13). For example, no mislocalization of canalicular transporters was observed in a cholestatic patient with only nonsense MYO5B mutations (12). To address the role of MYO5B in the localization of bile canalicular transporters in hepatocytes, we examined the *in vivo* distribution of the Abcc2/Mrp2 and the structural BC protein radixin in the liver of whole-body *Myo5b* knockout mice (21). We observed their exclusive localization at bile canaliculi, indistinguishable from wild-type control mouse livers (Figure 1A-B). Human HepG2 cells (HepG2Par) develop apical-basolateral polarity and bile canaliculus lumens (BC) between adjacent cells (20). In agreement with the observations in *Myo5b* KO mouse hepatocytes, HepG2 cells in which endogenous myoVb had been knocked out by CRISPR/Cas9 (Figure 1C; supplemental Figure S1A) (HepG2KO cells) showed no defect in the canalicular localization of ABCC2/MRP2, which was indistinguishable from that in HepG2Par cells (Figure 1D). We also generated a myoVb-deficient HUES9 human pluripotent stem cell line via CRISPR/Cas9 mediated gene knockout (HUES9KO) (Figure 1E) and differentiated these to polarized hepatocyte-like cells (hiHeps). These hiHeps form *in vivo*-like multicellular bile canaliculi (Figure 1F). Similar to the results in HepG2KO cells, hiHeps derived from HUES9KO cells formed multicellular bile canaliculi to which ABCC2/MRP2 exclusively localized, similar to HUES9Par-derived hiHeps (Figure 1F).

These data show that myoVb is dispensable for the correct localization of ABCC2/ MR2 at the canalicular membrane.
The MVID-associated myoVb-P660L mutation causes the intracellular accumulation of canalicular proteins

Liver biopsies of Navajo MVID patients carrying a homozygous mutation in the MYO5B gene (c.1979C>T) that leads to a P660L substitution in the myoVb protein showed mislocalization of bile canalicular proteins such as ABCC2/MRP2 and signs of perturbed polarity (13). In order to determine whether this MYO5B mutation could be causally linked to canalicular protein localization defects, a full-length human myc-tagged MYO5B gene with the c.1979C>T mutation was constructed via site-directed mutagenesis, and either the myc-tagged wild-type myoVb or myc-myoVb-P660L protein was expressed in HepG2KO cells. The expression of myoVb-P660L in HepG2KO cells caused the intracellular accumulation of the bile canalicular proteins ABCC2/MRP2 and anoctamin (ANO)6, when compared to HepG2KO cells expressing the wild-type MYO5B gene (Figure 2A-C). This was accompanied by a reduction in the amount of BC (supplemental Figure S1D). Notably, HepG2par cells that expressed myoVb-P660L showed a less severe phenotype (more BCs with subapical localization of the mutant protein and less intracellular accumulation of the mutant protein and canalicular proteins) when compared to HepG2KO cells that expressed myoVb-P660L (Figure S1E-H, c.f., Figure 2). These data demonstrate that in the absence of wildtype myoVb, mutant myoVb-P660L caused the intracellular accumulation of BC-resident proteins, and provide evidence that this mutation is causally linked to the hepatic canalicular defects as observed in liver biopsies of the patients. Moreover, given the absence of a localization defect in myoVb-depleted cells, the results also indicate that the disruptive effect of myoVb-P660L on the localization of canalicular proteins in hepatocytes cannot be explained by the mere loss of myoVb function.

The tail domain of myoVb is sufficient to cause the intracellular accumulation of vesicles and bile canalicular proteins

Because the mutated motor domain but not the absence of the myoVb protein produced a disease phenotype, we hypothesized that regions distal to the motor domain (that is, IQ domains, coiled coil domains and/or the globular tail domain) may have been instrumental for the disruptive effects on the localization of can-
A mechanism underlying cholestasis resulting from MYO5B mutations

Figure 1. (A-B) Immunofluorescence microscopy images of ABCC2 and radixin in wildtype and Myo5b KO mouse liver sections. HNF4α co-staining marks hepatocytes. (C) Western blot for myoVb in HepG2PAR and HepG2KO cells (treated with MYO5B-targeting pLentiCRISPR V2). (D) Immunofluorescent microscopy images of ABCC2 and F-actin in HepG2PAR and HepG2KO cells. Yellow arrowheads indicate BCs. (E) Western blot for myoVb in HUES9PAR and HUES9KO cells. (F) Immunofluorescence microscopy images of ABCC2 in hiHeps generated from HUES9PAR and HUES9KO cells. Scale bars: 10µm.
alicular proteins. Therefore, we generated a human myoVb mutant that lacked the motor domain, IQ domains and part of the coiled-coil domain (Figure 3A), which is similar to conventionally used dominant-negative myoVb tail domain constructs (hereafter referred to as MyoVb/Δ1-1195). Similar to myoVb-P660L, the expression of MyoVb/Δ1-1195 in HepG2KO cells resulted in the intracellular accumulation of ABCC2/MRP2 and ANO6 and a reduction in the number of BCs (Supplemental Figure S2A-E). Notably, the effect of myoVb/Δ1-1195 was more severe when compared to myoVb-P660L and was also observed when expressed in HepG2Par cells (Figure 3B-E, supplemental Figure S3A). Also, the canalicular protein dipeptidyl peptidase (DPP)IV accumulated inside the cells (supplemental Figure S3B-C). The myoVb/Δ1-1195 mutant itself colocalized with the intracellular clusters (Figure 3B). Electron microscopy of HepG2 cells expressing the myoVb mutant revealed the presence of large clusters of vesicles which were not observed in control HepG2 cells (Figure 3F). Finally, the expression of myoVb/Δ1-1195 in pluripotent HUESPar stem cell-derived hepatocytes also caused the intracellular accumulation of ABCC2/MRP2 and ANO6 (supplemental Figure S3D), which indicated that the effects caused by this mutant are not specific for the HepG2 cell line. Together, these results indicate that in contrast to the loss of myoVb, the expression of the tail domain of myoVb mimicked the myoVb-P660L-induced intracellular accumulation of BC proteins.

Motor-less myoVb induces the accumulation of apical and basolateral proteins in clustered compartments with mixed recycling endosome and trans-Golgi Network identity

The intracellular clusters of BC proteins and the appearance of clusters of vesicles in myoVb mutant-expressing cells suggested that these clusters represented intracellular organelles. In order to determine the identity of the mutant myoVb-induced ABCC2/MRP2- and ANO6-containing intracellular clusters, we performed immunofluorescence microscopy in cells co-labeled with markers for different organelles. Proteins that make up BC microvilli, such as F-actin, the ABCC2/MRP2- and F-actin-binding protein radixin or other phosphorylated ERM proteins, did not co-localize with the BC protein-containing intracellular cluster in cells expressing myoVb/Δ1-1195 (Figure 4A, supplemental Figure S4A), indicating that these
Figure 2. (A,B): Immunofluorescent microscopy images of myc-tagged myoVb proteins, ABCC2 and ANO6 in HepG2KO expressing myc-myoVb and -myoVb-P660L. White arrows indicate intracellular co-localization of the proteins. Yellow arrowheads indicate BCs. Scale bars: 10µm. (C). Quantification of the percentage of myc-positive cells that show intracellular clusters/accumulations of myc localized with ANO6. (D) Quantification of the percentage of myc-positive cells that show subapical localization of myc-tagged myoVb proteins.
clusters did not represent microvillus inclusions, which represent a hallmark of enterocytes in MVID patients (22).

By contrast, intracellular clusters containing BC proteins co-localized with the apical recycling endosome markers rab11a and its interacting protein rab11a-FIP5/rab-interacting protein (rip11) (Figure 5B-C). This subcellular distribution of rab11a and its interacting partners was markedly distinct from their exclusive subapical distribution in HepG2 cells that did not express the mutant protein. However, the subcellular distribution of rab11a and its interacting partners in HepG2KO cells and HepG2Par cells was indistinguishable, supporting that myoVb expression is dispensable for canalicular polarity (supplemental Figure 4B-C). Also, the recycling endosome marker rab8, which in control HepG2 cells showed a relatively dispersed staining pattern throughout the cell, colocalized with the clusters in cells expressing the myoVb mutants (Figures 4D). LAMP1, a marker for late endosomes/lysosomes, did not co-localize with the canalicular protein-containing clusters and its normal subcellular distribution pattern was not visibly altered (supplemental Figure S4D). In addition to BC proteins, also the sinusoidal transferrin receptor and its ligand transferrin, which upon its endocytosis is recycled to the sinusoidal surface via recycling endosomes was found to co-localize with the BC protein-containing clusters (Figure 4E, supplemental Figure S4E). Moreover, when fluorescently-labeled transferrin was allowed to be endocytosed in control HepG2 cells or HepG2 cells expressing mutant myoVb, its subsequent recycling to the cell surface was inhibited in cells expressing the myoVb mutant as evidenced by its persistent accumulation in the ANO6- and transferrin receptor-containing

Figure 3. (A) Schematic depiction of myoVb constructs. (B) Labeling of ANO6 and myc in HepG2Par cells expressing myoVb/Δ1-1195 (white arrows indicates intracellular colocalization of both markers). (C) Quantification of the percentage of HepG2Par cells showing accumulation of ABCC2 (as shown in figure 4C) upon expression of myoVb/Δ1-1195 compared to untreated cells, and cells transduced with an empty pLenti-Puro construct (control). (D,E) Labeling of ABCC2 and F-actin or ANO6 in HepG2Par cells expressing myoVb/Δ1-1195, compared to untreated control. White arrows indicate intracellular accumulation of ABCC2 (and ANO6 in figure D). Scale bars: 10µm unless labeled otherwise. Yellow arrowheads indicate BC. (F) Electron microscopy images of HepG2Par cells expressing myoVb/Δ1-1195. Cells displayed large collections of vesicles (enlarged areas) which were not observed in control cells.
clusters (Figure 4E).

While the cis-Golgi protein giantin did not co-localize with the BC protein-containing clusters (Figure 5A), we found that three markers of the trans-Golgi Network (TGN) partly colocalized with the BC protein-containing clusters (Figure 5B-D). These included the integral membrane protein TGN46 and the peripheral membrane proteins Golgin-97 (which was reported to regulate the tethering of recycling endosome-derived transport vesicles to the TGN (23) and AP1y (the gamma-1 subunit of adaptor protein complex AP1 which sorts proteins in clathrin-coated transport vesicles at the TGN and recycling endosomes). With the exception of AP1y, which in addition to its typical TGN-like distribution pattern was also observed in the subapical region of control HepG2 cells, TGN46 and golgin-97 did not show a subapical localization in control HepG2 cells (Figure 5B-D). Together, these results indicate that the BC protein-containing clusters in cells expressing the myoVb mutant represented trafficking-incompetent compartments with a mixed apical recycling endosome and TGN identity.

The disrupting effect of motor-less myoVb on canaliculare protein localization requires active rab11a

We hypothesized that the myoVb tail domain induced canaliculare defects through rab8 or rab11a function rather than via competition with endogenous myoVb. To test whether the observed defects are mediated through rab8 or rab11a, we generated a myovb mutant which comprised only the globular tail domain (the last 383 amino acids) and did not contain the binding site for rab8 in ExonC/Exon 30 (hereafter referred to as myoVb/Δ1-1460) (Figure 6A). Like myoVb/Δ1-1195, myoVb/Δ1-1460 mutant led to the intracellular accumulation of BC proteins and a reduction in the number of BCs albeit to a lesser extent than the myoVb/Δ1-1195 mutant, suggesting that rab8 binding may contribute but is not essential to induce the effect (Figure 6B-C, supplemental Figure S4A). Indeed, substitution of glycine at position 1300 in myoVb/Δ1-1195 to a leucine, a mutation known to abolish the interaction between myoVb and rab8 (24), partially ameliorated its disrupting effects to the levels seen with the myoVb/Δ1-1460 mutant (Figure 6B, D). By contrast, when tyrosine at position 1714 in myoVb/Δ1-1460 was mutated to glutamic acid
Figure 4. Labeling of phospho-ERM proteins in HepG2 cells expressing myoVb/Δ1-1195 (white arrows), compared to control. Yellow arrowheads indicate BCs. (B-D) Labeling of rip11, rab11a and rab8 with ANO6 or ABCC2 in HepG2 expressing myoVb/Δ1-1195 (white arrows), compared to control. White arrows indicate colocalization of endosomal proteins with BC-resident protein. Yellow arrowhead indicates juxta-nuclear staining of rip11 in non-polarized control cells. (E) Labeling of myc in control and myoVb/Δ1-1195 expressing HepG2, fixed after 30 min incubation (t=0h) with fluorescently labeled transferrin (388Tf), and after a 2h chase period. Scale bars: 10µm.
Figure 5. (A) Giantin labeling in HepG2 cells expressing myoVb/Δ1-1195 compared to control. White arrows indicate lack of colocalization. (B,C) Golgin-97 and TGN46 showed colocalization with intracellular cluster of ANO6 in HepG2 expressing myc-myoVb/Δ1-1195 (white arrows). (D) AP1y localized with ANO6 in intracellular clusters in HepG2 expressing myc-myoVb/Δ1-1195 (white arrows). Scale bars: 10µm.
A mechanism underlying cholestasis resulting from MYO5B mutations

(Y1741E) (Figure 6E-G), a mutation that has been shown to abolish myoVb binding to rab11a (24), the intracellular accumulation of the canalicular proteins was completely abolished. Similarly, the introduction of this Y1714E mutation in the patient myoVb-P660L mutant reduced the intracellular accumulation of the canalicular proteins (Figure 7A-C). Notably, the introduction of Y1714E in myoVb/Δ1-1460 or myoVb-P660L did not lead to an increase in the number of BC.

Moreover, the myoVb/Δ1-1195 mutant, as well as the patient myoVb-P660L mutant, failed to cause the intracellular clustering of ABCC2/MRP2 when expressed in HepG2 cells that also expressed the EGFP-tagged mutant rab11aS25N (Figure 7D), which is expected to shift the equilibrium of rab11a towards the GDP/nucleotide free state and exert dominant-negative effects on endogenous rab11a by occupying the endogenous guanine nucleotide exchange factors (GEFs). Consistent with reports in other cells (25) and the previously reported location of two rab11 GEFS, REI-1 and Crag at the TGN (26,27), EGFP-rab11aS25N colocalized with the TGN in HepG2 cells (Figure 7E). While the expression of EGFP-tagged mutant rab11a-S25N in HepG2 cells, as such, inhibited polarity development, it did not cause the intracellular clustering of BC proteins (Figure 7F-H). Cells expressing wildtype EGFP-rab11a showed normal BC formation and a subapical distribution of the EGFP-rab11a, similar as wild type cells (Figure 7F-G). Thus, the intracellular clustering of BC proteins in cells expressing myoVb-P660L or the myoVb tail domain is not phenocopied by loss of rab11a function. Together, we conclude that the interaction of the myoVb-P660L or myoVb/Δ1-1195 mutant with active rab11a is required for the myoVb-P660L- or myoVb/Δ1-1195-induced intracellular accumulation of BC proteins but not inhibition of polarity development, and that loss of rab11a function inhibited polarity development independent of myoVb.

MVID-associated nonsense MYO5B mutations producing truncated myoVb mutants do not disrupt hepatocyte polarity and canalicular protein localization

We reasoned that if the disrupting effect of motor-deficient myoVb mutants on the localization of canalicular proteins required their interaction with rab11a via the distal C-terminal binding Y1714 residue, most nonsense MYO5B mutations that cause a premature translation termination codon and the resultant synthe-
A mechanism underlying cholestasis resulting from MYO5B mutations

Figure 6. (A) Schematic depiction of the amino acid sequences of myoVb mutants. (B) Quantification of the percentage of cells showing intracellular accumulation of ABCC2 upon expression of myoVb tail domain mutants. (C) HepG2 expressing myc-myoVb/Δ1-1460 showed intracellular ABCC2 accumulation (white arrows). Myc labeling showed myc-myoVb/Δ1-1460 localized diffusely in the cytoplasm. (D) Labeling of ABCC2, F-actin and myc in HepG2 expressing myc-myoVb/Δ1-1195-Q1300L and untreated control. White arrows indicate intracellular ABCC2 accumulation. (E) In HepG2 cells expressing myc-myoVb/Δ1-1460-Y1714E ABCC2 localized at the BC with F-actin (yellow arrowheads). Labeling for myc confirmed expression of the construct. (F) Quantification of the percentage of cells with intracellular MDR1-GFP accumulations (depicted in Figure 8G), upon expression of myc-myoVb/Δ1-1460 or its Y1714E mutant variant. (G) HepG2 cells expressing myc-myoVb/Δ1-1460 showed intracellular accumulation of the co-expressed BC marker MDR1-GFP (white arrows), but not when the Y1714E mutation was introduced in myc-myoVb/Δ1-1460.

ysis of truncated myoVb proteins should not lead to polarity defects. We therefore generated different MYO5B nonsense mutation previously reported in MVID patients and listed in the MVID registry (www.mvid-central.org): myoVb-R363X (c.1087C>T), myoVb-R1016X (c.5382C>T) and myoVb-R1795X (c.5383C>T) (Figure 8A) and expressed these in HepG2KO cells. Note that in contrast to the myoVb-R363X and myoVb-R1016X mutants the myoVb-R1795X mutant contains the rab11a-biding site. Western blot analyses confirmed that these mutants led to the expression of truncated myoVb proteins at their predicted molecular weights (Figure 8B). Fluorescence microscopy showed that the mutants failed to cause the intracellular accumulation of ABCC2/MRP2 and ANO6 (Figure 8C and Supplemental Figure S6). These results demonstrate that nonsense MVID-associated MYO5B mutations and the expression of resultant truncated myoVb mutants that lack the globular tail domain do not cause defects in BC formation and canalicular protein localization, and support our observations that the C-terminal region and a conserved interaction with rab11a is required for myoVb mutants to disrupt the localization of canalicular proteins.

Discussion

In this study we demonstrated that the founding Navajo myoVb-P660L mutant (7) when expressed in hepatic HepG2 cells caused the aberrant localization of canalicular proteins as well as the sinusoidal transferrin receptor to intracellular clusters.
Figure 7. (A) ANO6 and myc labeling in HepG2KO expressing myc-myoVb-P660L or myc-myoVb-P660L-Y1714E. Myc-myoVb-P660L frequently accumulated intracellularly with ANO6 (white arrows), whereas myc-myoVb-P660L-Y1714E appeared diffuse in the cytoplasm or subapical (yellow arrowheads). (B) Quantification of the percentage of myc-positive cells that show intracellular clusters/accumulations of myc localized with ANO6, in HepG2KO cells expressing myc-myoVb-P660L or myc-myoVb-P660L-Y1714E. (C) Quantification of the percentage of myc-positive cells that show subapical localization of myc in HepG2KO cells expressing myc-myoVb-P660L or myc-myoVb-P660L-Y1714E. (D) HepG2 co-expressing EGFP-rab11aS25N and myc-myoVb/Δ1-1195 in HepG2Par cells (left side), EGFP-rab11aS25N and myc-myoVb-P660L in HepG2Par cells (middle), and EGFP-rab11aS25N and myc-myoVb-P660L in HepG2KO HepG2 (right side). (E) EGFP-rab11aS25N colocalized with golgin-97 in HepG2 cells. (F) ABCC2 labeling in HepG2 overexpressing wildtype EGFP-rab11a or EGFP-rab11aS25N. In EGFP-rab11aS25N transduced cells, BC formation was only seen in cells with no or very low expression of the construct (right side, box). (G) Quantification of BC formation (expressed as BC/100 cells) in HepG2 cells expressing wildtype EGFP-rab11a or EGFP-rab11aS25N. (H) Quantification of the percentage of HepG2 cells showing accumulation of ABCC2 upon expression of wildtype EGFP-rab11a or EGFP-rab11aS25N.
These data are consistent with observations in hepatocytes in liver biopsies of patients with this mutation and, therefore, show that the liver symptoms and hepatocyte defects observed in Navajo MVID patients (13) are likely a direct consequence of their MYO5B mutation rather than a sole consequence of intestinal failure- or TPN-induced liver damage.

We demonstrated that the loss of myoVb in human or mouse hepatocytes did not cause the aberrant localization of canalicular proteins, indicating that myoVb function as such is not required for the correct localization of bile canalicular proteins. Instead, the hepatocyte polarity phenotype as observed in myoVb-P660L expressing cells was faithfully phenocopied by the expression of myoVb mutants that lacked the entire motor domain and consisted of only the tail domains of the myoVb protein.

These results indicated that the effects of myoVb-P660L on the localization of canalicular proteins could not be explained by a mere loss of myoVb motor function. Indeed, additional mutagenesis experiments showed that the disrupting effect of myoVb motor domain mutants on the localization of canalicular proteins was critically dependent on their ability to interact with active rab11a. Further, the absence of intracellular clusters of BC proteins upon inhibition of rab11a activation indicated that the mechanism via which myoVb mutants exerted their effects on the distribution of canalicular proteins involved active rather than inhibited rab11a function.

A recent study demonstrated that the globular tail domain of myoVb induced the clustering of rab11a-decorated lipid vesicles (liposomes) in a chemically defined in vitro reconstitution system by stimulating homotypic rab11-rab11 interactions (28). While this effect has thus far not been demonstrated in living cells, it would fit with the myoVb-Y1714- and rab11a-dependent clustering of rab11a and associated cargo and the appearance of clusters of vesicles that we observed in cells expressing myoVb-P660L or only the myoVb tail domain. Conceivably, the C-terminal tail domain of mutant myoVb, upon its displacement from its normal subapical location, in this way induced the ectopic clustering of TGN- and/ or recycling endosomes-derived transport vesicles via rab11a and thereby perturbed the correct
Notably, PFIC in non-MVID patients has been associated with only biallelic missense mutations and, in contrast to the enteropathy in MVID, has not been associated with biallelic \textit{MYO5B} mutations that are predicted to result in the loss of myoVb protein expression, such as nonsense or frame-shift mutations (5,18,29). In agreement with these clinical findings, we found that the expression of truncated myoVb resulting from MVID-associated nonsense \textit{MYO5B} mutations did not cause a canalicular protein localization defect. Together with the findings that myoVb as such is not required for the correct localization of canalicular proteins \textit{in vitro} and \textit{in vivo}, and that myoVb mutants required active rab11a for their disruptive
A mechanism underlying cholestasis resulting from MYO5B mutations

effect on canalicular protein localization, this study thus provides a direct and simple explanation for this genotype-phenotype correlation in non-MVID PFIC-6 patients. It may also lead us to speculate that intrahepatic cholestasis in patients with MVID (10,11,17) is less likely to be caused by their MYO5B mutations when these involve nonsense mutations than when these involve missense mutations. In support of this, a MVID patient was reported with only nonsense MYO5B mutations including R1795X who presented with cholestasis with normal CGT levels for 9 months but liver biopsies showed normal canalicular protein localization. Cholestasis in this patient later spontaneously resolved (12).

Our results suggest that the specific inhibition of the interaction between mutant myoVb and rab11a in the patients’ hepatocytes may ameliorate the harmful effects of the myoVb mutant on canalicular protein localization and thereby the PFIC in patients. This study thus paves the way for the discovery of small molecule inhibitors of this interaction and the exploration of their potential beneficial effects.

Finally, the ectopic expression of the globular tail domain of myoVb has been widely used to implicate the involvement of myoVb in intracellular trafficking of a variety of proteins in a variety of cell types (14,30–33). The results from our study, demonstrating that the effects of the myoVb tail domain are not necessarily mimicked by the loss of myoVb expression or loss of rab11a activity, yet depend on their interaction with active rab11a, suggest that the need to recheck the interpretation of some of the studies using this myoVb mutant is warranted.

References

18. Dhekne HS, Pylypenko O, Overeem AW, Ferreira RJ, van der Velde KJ, Rings EHHM, et al. MYO5B, STX3, and STXBP2 mutations reveal a common disease mechanism that
A mechanism underlying cholestasis resulting from MYO5B mutations

Chapter 6

Supplemental figure S1

(A) Sequencing results of HepG2KO clone. Top depicts wildtype reference genomic sequence of exon 3 of MYO5B, with corresponding amino acid translation. Below depicts the sequence results corresponding to the two modified alleles. One allele contains a 19 nucleotide deletion, the other allele contains a 1 nucleotide insertion. Both modifications result in a frameshift, and thereby a premature stop-codon. (B and C) Localization of apical proteins ABCC2 and ANO6 is identical in MYO5B KO and control parental HepG2 (D) Quantification of BC formation (expressed as BC’s per 100 cells) in HepG2KO cells expressing myc-myoVb or myc-myoVb-P660L. (E) Immunofluorescent labeling of myc and ANO6, in HepG2KO or HepG2Par expressing myc-myoVb-P660L. White arrows indicate ANO6 accumulated intracellularly with myc-myoVb-P660L. Yellow arrowheads indicate BCs. (D) Quantification of BC formation (expressed as BC’s per 100 cells) in HepG2KO cells or HepG2Par expressing myc-myoVb-P660L. (E). Quantification of the percentage of myc-positive cells that show intracellular clusters/accumulations of myc localized with ANO6, in HepG2KO or HepG2Par expressing myc-myoVb-P660L. (F) Quantification of the percentage of myc-positive cells that show subapical localization of myc, in HepG2KO or HepG2Par expressing myc-myoVb-P660L

Supplemental figure S2

(A) Labeling of ANO6 and myc in HepG2KO cells expressing myoVb/Δ1-1195 showed intracellular colocalization of both markers (white arrows). (B) Quantification of the percentage of HepG2KO cells showing accumulation of ABCC2 (as shown in figure 3D, white arrows) upon expression of myoVb/Δ1-1195 compared to untreated control. (C) Quantification of BC formation (expressed as BC’s per 100 cells) in HepG2KO cells expressing myc-myoVb/Δ1-1195, and untreated HepG2KO cells. (D,E) Labeling of ABCC2 with F-actin or ANO6 respectively, in HepG2KO cells expressing myoVb/Δ1-1195, compared to untreated control. White arrows indicate intracellular accumulation of ABCC2 (and ANO6 in figure E).
Supplemental figure S3

(A) Quantification of BC formation (expressed as BCs per 100 cells) in HepG2^Par cells expressing myc-myoVb/Δ1-1195, HepG2^Par cells transduced with empty pLenti-Puro plasmid, or untreated HepG2^Par. (B) Immunofluorescent images of HepG2 cells co-expressing myc-myoVb/Δ1-1195 and DPPIV-mCherry (or DPPIV-mCherry only as control), stained for ABCC2. DPPIV-mCherry colocalized with ABCC2 intracellular accumulations (white arrows), but not exclusively (yellow arrowheads indicate lack of colocalization). (C) Immunofluorescent images of HepG2 cells co-expressing myc-myoVb/Δ1-1195 and DPPIV-mCherry (or DPPIV-mCherry only as control), stained for myc. White arrows indicate colocalization of myc and DPPIV-mCherry, yellow arrowheads indicate lack of colocalization. (D) Wildtype HUES9 derived human induced hepatocytes (hiHeps), expressing myc- myoVb/Δ1-1195, labeled for ANO6, myc and hepatic lineage marker HNF4α. In hiHeps lacking myc- myoVb/Δ1-1195 expression, ANO6 is present at bile canaliculi (yellow arrowhead) and faintly at basolateral membranes. In hiHeps expressing myc- myoVb/Δ1-1195, ANO6 colocalized with myc inside the cells (white arrows).

Supplemental figure S4

(A) Labeling of radixin in HepG2 cells expressing myc- myoVb/Δ1-1195 (white arrows), compared to untreated control. Yellow arrowheads indicate BCs. (B,C) In both HepG2^Par and HepG2^KO, rip11 and
rab11a localized as subapical rings surrounding the BC (labeled with ABCC2 and ANO6 respectively). (D) Labeling of LAMP1 In proteins in HepG2 expressing myc- myoVb/Δ1-1195 (white arrows), compared to untreated control. White arrows indicate lack of colocalization. (E) Microscopy images of untreated and myc- myoVb/Δ1-1195 expressing HepG2, fixed after 30 minutes incubation (t= 0h) with fluorescently labeled transferrin (388Tf), and after a 2 hour chase period. Cells were stained for transferrin receptor (TfR) and ANO6.
Supplemental figure S5

(A) Quantification of BC formation upon expression of myoVb tail domain variants, compared to untreated control. (B) Quantification of BC formation upon expression of myc-myoVb/Δ1-1460, or its Y1714E mutant variant, compared to untreated control. (C) Relative (over)expression levels of myc-myoVb/Δ1-1460 and myc-myoVb/Δ1-1460-Y1614E as determined by qPCR, compared to endogenous myoVb expression in untreated control.
A mechanism underlying cholestasis resulting from MYOSB mutations