A Magnetic Bilateral Tele-manipulation System using Paramagnetic Microparticles for Micromanipulation of Nonmagnetic Objects

Mohamed Abou Seif∗, Amr Hassan∗, Ahmed H. El-Shaer†, Abdelrahman Alfar∗, Sarthak Misra‡§, and Islam S. M. Khalil∗

Abstract—This study presents a scaled-bilateral tele-manipulation system for magnetic-based control of paramagnetic microparticles. This bilateral control system consists of a haptic device (master-robot) and an electromagnetic system with four orthogonal electromagnetic coils. The electromagnetic system generates magnetic field gradients to control the motion of the microparticle (slave-microrobot). A systematic robust tele-manipulation control design of the microparticles is achieved using disturbance observers (DOBs) to estimate the interaction forces at both the master-robot and slave-microrobot. Experimental results show that point-to-point motion control of the slave-microrobots results in maximum position error of 8 μm in the steady-state. Furthermore, we demonstrate experimentally that interaction forces of tens of micro Newtons, between the slave-microrobot and non-magnetic microbeads, can be estimated using DOBs and scaled-up to the sensory range of the operator.

I. INTRODUCTION

Magnetic micro- and nano-robotic systems are expected to have a wide spectrum of nano-technology [1]-[3] and nanomedicine [4]-[7] applications. Paramagnetic microparticles can be coated with drugs and localized under the influence of the magnetic field gradient within the vicinity of a deep-seated region of the human body. This microrobotic system allows for the elimination of direct human involvement in complex biological manipulations, and hence decreases the low reproducibility of manual results and possibility of contamination. Nevertheless, there exist many situations where it is essential to benefit from the precision of robotic systems while keeping a physician in control. Very recently, Lu et al. have presented a haptic interface that has a uniform response over the entire human tactile frequency range. This haptic interface enables the operator to feel interaction forces arising from contact with a micro bead without visual feedback [8]. Pillarsetti et al. have developed an interface using a haptic device and a polyvinylidene fluoride film to measure contact forces of a few milli Newtons [9]. In addition, the positive effect of force feedback has been verified in cell injection [10]. Sun et al. have also developed an autonomous microrobotic injection system using a hybrid control approach with visual servoing and precision position control [11]. Kummer et al. have incorporated a hypodermic needle tip to an NdFeB agent, and used the OctoMag configuration to puncture vasculature on a CAM blood vessels in an in vitro chicken embryo [12]. Although this in vitro experiment is done by an operator based on visual feedback, the interaction forces between the magnetic agent and the blood vessels are not measured and fed back to the control system. This force measurement is essential in the realization of motion control systems for safe interaction with biological tissue and blood vessels. Bolopion et al. have used haptic feedback to achieve microassembly of microbeads in three-dimensional space using Atomic Force Microscopy [13], and a dual-tip gripper is used for grasping and pick-and-place operations. However, the dependency on grasping is a significant functional limitation at microscale. Grasping...
decreases the occurrence of successful releases in nano-
technology applications, and may result in contamination of
samples in several biomedical applications. In this work, we
expand on our previous proof-of-concept study [14], analyze
the position and force tracking errors of a scaled-bilateral
tele-manipulation system (Fig. 1), and achieve the following:
(1) Scaled bilateral tele-manipulation [13] of paramagnetic
microparticles using a haptic device based on disturbance
observers (DOB) to estimate the interaction forces with the
master-robot and slave-microrobot [15], [16]; (2) Contact
and non-contact manipulation of non-magnetic microbead
using the magnetic-based bilateral tele-manipulation system.
The designed scaled tele-manipulation system is used in the positioning of non-magnetic microbeads with and without
contact to achieve successful releases at the reference posi-
tions [17], [18]. This positioning is done by the operator and
the interactions are sensed by scaling the forces up to the
human tactile sensory range (approximately 0.8 mN [19]).

The remainder of this paper is organized as follows: Section II provides descriptions of the haptic device and the
electromagnetic system. The design of the tele-manipulation
control system is included in Section III. Experimental re-
results are included in Section IV. Finally, Section V concludes
and provides direction for future work.

II. ELECTROMAGNETIC-BASED
BILATERAL TELE-MANIPULATION SYSTEM

The bilateral tele-manipulation system consists of a haptic device and an electromagnetic system with an orthogon-
al configuration of 4 electromagnetic coils (Fig. 1). The
workspaces of these two systems are analyzed and connected
using a tele-manipulation system.

A. Characterization of the Workspaces

Our haptic device is a pantograph mechanism, the length
of each link is denoted by \(l_i \), for \(i = 0, \ldots, 4 \). The angular
position of each link is measured with respect to a fixed
reference frame and is indicated using, \(q_i \). The haptic device
contains 2 active angles (\(q_a = [q_1 \quad q_4]^T \)) and 2 passive
angles (\(q_p = [q_2 \quad q_3]^T \)). The holonomic constrains of the haptic device are given by

\[
\begin{bmatrix}
 l_1 \cos q_1 + l_2 \cos q_2 - l_3 \cos q_4 - l_4 \cos q_4 - l_0 \\
 l_1 \sin q_1 + l_2 \sin q_2 - l_3 \sin q_4 - l_4 \sin q_4 \\
 y_e
\end{bmatrix} = 0,
\]

(1)

where \(x = [x_e \quad y_e]^T \) is the position of the end-effector, and
\(x_e \) and \(y_e \) are its coordinates. Taking the time-derivative of
(1) in the frame of reference and representing \(\dot{x} \) using the
active angles yields

\[
\dot{x} =
\begin{bmatrix}
 -l_1 \sin q_1 - l_1 \sin q_2 \sin(q_3-q_4) - l_4 \sin q_2 \sin(q_3-q_4) - l_4 \sin q_4 \\
 l_1 \cos q_1 + l_1 \cos q_2 \sin(q_3-q_4) + l_4 \cos q_2 \sin(q_3-q_4) + l_4 \cos q_4
\end{bmatrix}
\begin{bmatrix}
 q_a
\end{bmatrix},
\]

(2)

where \(\dot{x} \in \mathbb{R}^{2 \times 1} \) is the velocity of the end-effector in the
frame of reference. Further, \(\mathbf{J}(q) \in \mathbb{R}^{2 \times 2} \) is the Jacobian
matrix of the haptic device that maps the angular velocities
of the active angles only onto Cartesian velocities, and
\(q_i \in \mathbb{R}^{4 \times 1} \) is a vector of its generalized coordinates. We
use (2) to map joint-space torques onto task-space forces as follows [20]:

\[
\tau_m = \mathbf{J}^T(q) \mathbf{F}_m,
\]

(3)

where \(\tau_m \in \mathbb{R}^{2 \times 1} \) and \(\mathbf{F}_m \in \mathbb{R}^{2 \times 1} \) are vectors of the
input torques and task-space forces, respectively. The task-

space forces are not homogenous within the entire workspace
(black boundary in Fig. 2) of the haptic device, and it is
desirable to limit this workspace to a region in which forces
are almost homogenous. We calculate the task-space forces
using (3) at 60 representative points within the workspace
of the haptic device, as shown in Fig. 2. The gray square
indicates a region where the task-space forces are almost
uniform. This area is calculated to be 10 cm \(\times \) 10 cm, and
the motion of the operator is confined within this workspace.

On the other hand, the electromagnetic system contains a
water reservoir in the middle of an orthogonal configuration
of electromagnetic coils. This reservoir contains the slave-
microrobot and non-magnetic microbeads at the water-air
interface. The planar magnetic force \((\mathbf{F}_m(x) \in \mathbb{R}^{2 \times 1}) \)
exerted on the magnetic dipole moment \((\mathbf{m}(x) \in \mathbb{R}^{2 \times 1}) \)
of the slave-microrobot is given by [21]

\[
\mathbf{F}_m(x) = (\mathbf{m}(x) \cdot \nabla) \mathbf{B}(x),
\]

(4)

where \(\mathbf{B}(x) \in \mathbb{R}^{2 \times 1} \) is the planar magnetic field at the
position of the slave-microrobot \((x \in \mathbb{R}^{2 \times 1}) \). Kummer et al.
have shown that the magnetic field can be mapped onto
current input as follows [12]:

\[
\mathbf{B}(x) = \begin{bmatrix}
 B_x(x) \\
 B_y(x)
\end{bmatrix} = \begin{bmatrix}
 \tilde{B}_x(x) \\
 \tilde{B}_y(x)
\end{bmatrix} = \begin{bmatrix}
 I_1 \\
 I_4
\end{bmatrix} = \mathbf{B}(x) \mathbf{I},
\]

(5)

where \(B_x(x) \in \mathbb{R}^{1 \times 1} \) and \(B_y(x) \in \mathbb{R}^{1 \times 1} \) are the magnetic field components along \(x \)- and \(y \)-axis, respectively. \(\tilde{B}_x(x) \in \mathbb{R}^{4 \times 1} \) and \(\tilde{B}_y(x) \in \mathbb{R}^{4 \times 1} \) map the input current onto magnetic
fields along \(x \)- and \(y \)-axis, respectively. Further, \(I_j \), for
\(j = 1, \ldots, 4 \), is the current input to the \(k \)th electromagnetic
coil. \(\mathbf{B}(x) \in \mathbb{R}^{4 \times 4} \) is the magnetic field-current map and
\(\mathbf{I} \in \mathbb{R}^{4 \times 1} \) is the input current vector. Substituting (5) in
(4) yields

\[
\mathbf{F}_m(x) = \begin{bmatrix}
 m_x(x) \frac{\partial}{\partial x} + m_y(x) \frac{\partial}{\partial y}
\end{bmatrix} \mathbf{B}(x) \mathbf{I},
\]

(6)

where \(\mathbf{A}(\mathbf{m}, \mathbf{P}) \in \mathbb{R}^{2 \times 4} \) is the actuation matrix which
maps the input current onto magnetic force [12], [22]. We
numerically calculate the magnetic field and field gradient
within the workspace of the electromagnetic system using
(6), and compare the calculated field to measurements using
a calibrated 3-axis digital Teslamer (Senis AG, 3MH3A-0.1%, 200mT, Neuhofstrasse, Switzerland). Agreement between the measured field and calculated field enables us to use (6) as a basis of the bilateral control system for the slave-side, whereas (3) is used to design the master-side of the bilateral control system. We also observe that the gradients are almost uniform within a workspace of 1 mm×1 mm. Therefore, we limit the motion of the slave-microrobot in this region during the bilateral tele-manipulation experiments.

B. Dynamics of the Haptic Device and Slave Microrobot

The haptic-device is a planar pantograph mechanism, the kinetic energies of its links (links 1 and 4) that exhibit rotational motion are given by

$$T_1 = \frac{1}{2} \frac{m_1 l_1^2}{3} \dot{q}_1^2 \quad \text{and} \quad T_3 = \frac{1}{2} \frac{m_4 l_4^2}{3} \dot{q}_4^2.$$ \hspace{1cm} (8)

Link 2 undergoes translational and rotational motion. Therefore, its kinetic energy is given by

$$T_2 = \frac{m_2 l_2^2 \dot{q}_2^2}{24} + \frac{m_2}{2} \left(l_1^2 \dot{q}_1^2 + \frac{l_2^2}{4} \dot{q}_2^2 + \frac{l_3 l_4}{2} \dot{q}_2 \dot{q}_4 c_{12} \right).$$ \hspace{1cm} (9)

where $c_{12} = \cos (q_1 - q_2)$. Similarly, the kinetic energy of link 3 is given by

$$T_3 = \frac{m_3 l_3^2 \dot{q}_3^2}{24} + \frac{m_3}{2} \left(l_4^2 \dot{q}_4^2 + \frac{l_2^2}{4} \dot{q}_3^2 + \frac{l_3 l_4}{2} \dot{q}_3 \dot{q}_4 c_{12} \right).$$ \hspace{1cm} (10)

Using (8), (9), and (10), the total kinetic energy is, $T = \sum_{k=1}^{4} T_k$, and equation of motion of the haptic-device is calculated using

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_k} \right) - \frac{\partial T}{\partial q_k} = Q_k \quad \text{for} \quad k = 1, \ldots, 4,$$ \hspace{1cm} (11)

where $Q_k = f_o - \frac{\partial H}{\partial \dot{q}_k}$ is the kth generalized force associated with the kth generalized coordinate. r is a position vector of the end-effector, and f_o is the input force from the operator. Based on (11), the dynamics of the master-robot in the joint-space is given by

$$H_m(q) \ddot{q} + b_m(q, \dot{q}) \dot{q} = \tau_m + \tau_o,$$ \hspace{1cm} (12)

where $H_m(q) \in \mathbb{R}^{4 \times 4}$ and $b_m(q, \dot{q}) \in \mathbb{R}^{4 \times 4}$ are the inertia matrix and Coriolis damping of the master-robot, respectively. Further, $\tau_o \in \mathbb{R}^{2 \times 1}$ is the interaction torque between the master-robot and the operator, respectively. In (12), $H_m(q)$ is given by

$$H_m(q) = \begin{bmatrix} h_{11} & u c_{12} & 0 & 0 \\ u c_{12} & \frac{m_2 l_2^2}{3} & 0 & 0 \\ 0 & 0 & \frac{m_3 l_3^2}{3} & v \dot{q}_{34} \\ 0 & 0 & v \dot{q}_{34} & h_{44} \end{bmatrix},$$ \hspace{1cm} (13)

where $h_{11} = \left(\frac{m_1}{3} + m_2 \right) l_1^2$, $h_{44} = \left(\frac{m_3}{3} + m_4 \right) l_4^2$, $u = \frac{m_2 l_2}{4}$, $v = \frac{m_3 l_3}{4}$, and $c_{12} = \cos (q_1 - q_2)$. Further, $b_m(q, \dot{q})$ is given by

$$b_m = \begin{bmatrix} u \dot{q}_2 s_{12} - u a s_{12} & 0 & 0 \\ -u a s_{12} - u \dot{q}_1 s_{12} & 0 & 0 \\ 0 & 0 & v \dot{q}_3 s_{34} - v b s_{34} \\ 0 & 0 & -v b s_{34} & v \dot{q}_3 s_{34} \end{bmatrix},$$ \hspace{1cm} (14)

where $a = \dot{q}_1 - \dot{q}_2$ and $b = \dot{q}_3 - \dot{q}_4$. Further, $s_{12} = \sin (q_1 - q_2)$ and $s_{34} = \sin (q_3 - q_4)$. Our objective is to scale the motion of the operator’s hand to control a slave-microrobot remotely. Therefore, we project the equation of motion onto the task-space using (2) and (3), and obtain

$$M_m(q) \ddot{x} + c_m(q, \dot{q}) \dot{x} = F_m + f_o,$$ \hspace{1cm} (15)

where $M_m(q) \in \mathbb{R}^{2 \times 2}$ is the inertia matrix of the haptic-device in the task-space and is given by

$$M_m(q) = J^T H_m(q) J^{-1} \quad \text{and} \quad J = \begin{bmatrix} J(q) & 0_{2 \times 2} \end{bmatrix},$$ \hspace{1cm} (16)

where $J \in \mathbb{R}^{2 \times 4}$ is a Jacobian matrix that includes the passive links of the haptic device. In (15), $c_m(q, \dot{q})$ is given by

$$c_m(q, \dot{q}) = J^T b_m(q, \dot{q}) J^{-1} - J^T H_m(q) J^{-1} J J^{-1}.$$ \hspace{1cm} (17)
Fig. 3. The architecture of the scaled-bilateral tele-manipulation system between the master-robot (haptic device) and slave-microrobot (paramagnetic microparticles) [28]. The scaled bilateral tele-manipulation system is based on 4 inputs from the master-robot and slave-microrobot, i.e., position of the microparticles (\hat{P}), the estimated interaction force between the end-effector and operator (\hat{f}_o), and the estimated interaction forces with the microparticles (\hat{f}_s). This control system scales down (by 2 orders on magnitude) the motion of the operator to control the microparticles (bottom-left corner) within a workspace of 1 mm \times 1 mm. It also scales up (by 6 orders on magnitude) the estimated interaction forces of the microparticles to the sensory range of the operator (top-right corner).

Now we turn our attention to the slave-side, paramagnetic microparticles are used as slave-microrobots. These microparticles are influenced by several factors such as the external magnetic, viscous drag force, inertia, Brownian motion, microparticle-fluid interaction, and magnetic dipole interactions between multiple microparticles. We assume that the magnetic force and the viscous drag force are dominant [23]. Therefore, the dynamics of the slave-microrobot is given by

$$M_s \ddot{x} + c_s(\dot{x}) = F_s(P) + f_s.$$ \hspace{1cm} (18)

In (5), M_s and $c_s(\dot{P}) \in \mathbb{R}^{2 \times 1}$ are the mass of the slave-microrobot and the damping force on the slave-microrobot, respectively. Further, $f_s \in \mathbb{R}^{2 \times 1}$ is the interaction force between the slave-microrobot and the environment. The influence of the inertial term $(M_s \ddot{x}) \in \mathbb{R}^{2 \times 1}$ is based on the Reynolds number of the slave-microrobot. We calculate the Reynolds number as $Re = \frac{\rho \|L \| P}{\mu} = 0.01$, where ρ is the density of the fluid (998.2 kg.m$^{-3}$), P is the velocity of the slave-microrobot at order of $O(10^2)$ μm/s, and L is its length (100 μm), and μ is the dynamic viscosity of the fluid (10^{-3} Pa.s). It is also possible to use a cluster of microparticles as slave-microrobot during tele-manipulation. Therefore, the lower-limit on Reynolds number is of order $O(10^{-2})$.

III. Bilateral Tele-Manipulation System Design

We define position tracking error ($e_p \in \mathbb{R}^{2 \times 1}$) and force tracking error ($e_f \in \mathbb{R}^{2 \times 1}$) between the master-robot and slave-microrobot as follows:

$$e_p = x - \alpha P$$ and $$e_f = f_s + \beta f_s,$$ \hspace{1cm} (19)

where $\alpha > 0$ and $\beta > 0$ are position and force scaling coefficients, respectively. Using (19), we define a generalized position tracking error ($\sigma \in \mathbb{R}^{2 \times 1}$) as follows [24]-[27]:

$$\sigma = ce_p + e_p.$$ \hspace{1cm} (20)

In (20), c is a positive control gain. In order to achieve asymptotic convergence, we select the desired accelerations as

$$\Gamma_p = -k_p \sigma$$ and $$\Lambda_f = -k_f D_h^{-1} e_f,$$ \hspace{1cm} (21)

where $\Gamma_p \in \mathbb{R}^{2 \times 1}$ and $\Lambda_f \in \mathbb{R}^{2 \times 1}$ are the desired accelerations in the position and force control-loops, respectively. The controller gains (k_p) and (k_f) are positive-definite and D_h is the damping coefficient of the operator hand. Finally, the control input at the master-robot is given by

$$F_m = \frac{\tilde{M}_m(q)}{\alpha + \beta} (\alpha \Lambda_f + \beta \Gamma_p) + \hat{c}_m(q, \dot{q}) x - \hat{f}_o,$$ \hspace{1cm} (22)

where $\tilde{M}_m(q)$ and $\hat{c}_m(q, \dot{q}) \in \mathbb{R}^{2 \times 1}$ are the nominal inertial matrix and nominal Coriolis damping forces calculated using (16) and (17), respectively. In (22), \hat{f}_o is the estimated interaction force between the master-robot and the operator. The control input at the slave-microrobot is calculated by setting the magnetic force $F_s(P)$ to

$$F_s(P) = \frac{M_s}{\alpha + \beta} (\Lambda_f - \Gamma_p) + \hat{c}_s(\dot{P}) - \hat{f}_s.$$ \hspace{1cm} (23)

In (23), $\hat{c}_s(\dot{P}) \in \mathbb{R}^{2 \times 1}$ is the nominal damping force on the slave-microrobot. Further, $\hat{f}_s \in \mathbb{R}^{2 \times 1}$ is the estimated interaction force between the slave-microrobot and the environment. The scaled-bilateral control architecture is shown in Fig. 3. The bilateral control laws depend on 4 inputs (19), i.e., positions of the master-robot and the slave-microrobot, and the interaction forces between the operator and the
master-robot and the slave-microrobot and its surrounding
environment. Substituting (22) in (15), we obtain
\[
\ddot{x} = \frac{1}{\alpha + \beta} (-\alpha k_t D_h^{-1} \mathbf{e}_t - \beta k_p \sigma).
\] (24)

Similarly, substituting (23) in (18) yields
\[
\ddot{\mathbf{P}} = \frac{1}{\alpha + \beta} (-\alpha k_t D_h^{-1} \mathbf{e}_t + k_p \sigma).
\] (25)

Finally, the position tracking error of the bilateral control
system is calculated using (24) and (25), as follows:
\[
\ddot{e}_p = \ddot{x} - \alpha \ddot{\mathbf{P}} = -k_p \mathbf{e}_p - k_p \dot{e}_p.
\] (26)

Therefore, the error dynamics between the master-robot and
slave-microrobot is governed by
\[
\ddot{e}_p + k_p \dot{e}_p + k_p \mathbf{e}_p = 0.
\] (27)

The control gains \(k_p \) and \(c \) have to achieve stable roots of the
characteristic polynomial of (27), which can be represented
in the following form:
\[
\begin{bmatrix}
 \dot{\mathbf{e}}_p \\
 \ddot{\mathbf{e}}_p \\
\end{bmatrix} =
\begin{bmatrix}
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1 \\
 -k_p c & 0 & -k_p & 0 \\
 0 & -k_p c & 0 & -k_p \\
\end{bmatrix}
\begin{bmatrix}
 \mathbf{e}_p \\
 \dot{\mathbf{e}}_p \\
\end{bmatrix}.
\] (28)

In particular, the matrix \(\mathbf{A} \) in (28) is Hurwitz; that is,
its eigenvalues have strictly negative real parts. To study the
stability of the force tracking error \((e_t) \), we substitute \(\mathbf{f}_o \) and \(\mathbf{f}_s \) using (15) and (18) in the force tracking error
(19), we obtain
\[
\mathbf{e}_t = \mathbf{M}_m \ddot{x} + \beta \mathbf{M}_s \ddot{\mathbf{P}} + \frac{k_t D_h^{-1}}{\alpha + \beta} \mathbf{e}_t + (\alpha \mathbf{M}_m + \beta \mathbf{M}_s \mathbf{I}_{id}) \\
-\dot{\mathbf{f}}_o + \beta M_d \dot{\mathbf{f}}_s,
\] (29)

where \(\mathbf{I}_{id} \in \mathbb{R}^{2 \times 2} \) is the identity matrix. Substituting (24)
into (29) yields
\[
0 = \frac{M_s}{\alpha + \beta} M_t D_h^{-1} \mathbf{e}_t - \frac{\beta k_p}{\alpha + \beta} M_m \sigma + \beta k_p \mathbf{P}.
\] (30)

The last term in (30) can be ignored because of the low
Reynolds number characteristic. Therefore, force tracking
error is coupled with the position tracking error using
\[
\mathbf{e}_t = \frac{k_p c}{M_s k_t D_h^{-1} M_m} \mathbf{e}_p + \frac{k_p}{M_s k_t D_h^{-1} M_m} \mathbf{M}_s \mathbf{e}_p \\
= \frac{k_p}{M_s k_t D_h^{-1} M_m} \begin{bmatrix} c & c & 0 & 0 \\
0 & 0 & 1 & 1 \\
\end{bmatrix} \begin{bmatrix} \mathbf{e}_p \\
\ddot{\mathbf{e}}_p \\
\end{bmatrix}.
\] (31)

It follows from (28) and (32) that
\[
\| e_t \| \leq \frac{k_p}{M_s k_t D_h^{-1} M_m} \| \mathbf{M}_m \| \| \mathbf{C} \| \| e^A \mathbf{e}_p (0) \|,
\] (33)

where \(\| . \| \) denotes the maximum singular value operator
norm and \(\mathbf{e}_p (0) \) is the initial value of position tracking error.
Since \(\mathbf{A} \) is Hurwitz, there exist \(\xi > 0 \) and \(\chi > 0 \) such that
\(\| e^A \mathbf{e}_p (0) \| \leq \xi e^{-\chi t} \mathbf{e}_p (0) \| \). Further from (1) and (16),
the map \(\mathbf{x} \mapsto \mathbf{M}_m (\mathbf{x}) \) is positive definite and piecewise
continuous, which implies that \(\| \mathbf{M}_m \| \) is uniformly bounded
since (27) ensures that \(\mathbf{x} \) is uniformly bounded. This in turn
implies that
\[
\| e_t \| \to 0 \quad \text{as} \quad t \to \infty.
\] (34)

The implementation of the scaled-bilateral tele-manipulation
control is based on the estimation or measurement of the
interaction forces between the operator and the end-effector,
and the slave-microrobot and its surrounding environment
(particles-to-particles interactions, drag force, and interaction
force with non-magnetic microbeads). We estimate the
interaction forces in the force tracking error (19) using
DOB s [26], [27], [28]. The estimated interaction force \(\dot{\mathbf{f}}_e \)
on the slave-microrobot is given by
\[
\dot{\mathbf{f}}_e = \frac{g}{s + g} \left(\mathbf{F}_s (\mathbf{P}) + g M_s \mathbf{P} \right) - g M_s \mathbf{P},
\] (35)

where \(g \) is the gain of the low-pass filter, and \(\mathbf{F}_s (\mathbf{P}) \) is
the nominal magnetic force exerted on the slave-microrobot
(6). The interaction force \(\dot{\mathbf{f}}_o \) between the end-effector
of the haptic device and the operator is estimated using the
following DOB:
\[
\dot{\mathbf{f}}_o = \frac{g}{s + g} \left(\mathbf{K}_t \mathbf{I}_m + g \mathbf{M}_m (\mathbf{q}) \dot{\mathbf{x}} \right) - g \mathbf{M}_m (\mathbf{q}) \dot{\mathbf{x}},
\] (36)

where \(\mathbf{K}_t \) is a matrix of the torque constants of the actuators.
Further, \(\mathbf{I}_m \) is the input current vector to the haptic device.
Fig. 3 provides the architecture of the DOBs (35) and
(36). The output of the DOB of the slave-microrobot is
validated by measuring the interaction forces between the
slave-microrobot and the tip of a microforce sensing probe
that is embedded within the electromagnetic system [29].
A compression force of 0.7 \(\mu \)N is measured when the
slave-microrobot (3 paramagnetic microparticles) contacts
the tip, whereas a non-contact force with an average of
0.3 \(\mu \)N is measured before the contact with the tip of the
microforce sensing probe. This measurement is compared
to the estimated force using (34) and we find agreement
between the measured and estimated forces [14].

IV. EXPERIMENTAL RESULTS

Our tele-manipulation experimental results are done using a
pantograph haptic device and an electromagnetic system.
The haptic device consists of 4 carbon fiber (35048-OW,
Rock West Composites, Utah, U.S.A) tubes \(l_1 = l_4 = 150 \) mm
and \(l_2 = l_3 = 225 \) mm). The tubes are connected
together to form a closed-configuration with a distance of
100 mm between the active tubes (diameter of 28.8 mm).
The active tubes are actuated using two DC motors (2322 980,
Maxon Motor, Sachseln, Switzerland). These motors have
torque constant \(k_t \) of 15.3 mN.m.A\(^{-1}\) and rotor inertia of
5.88 g cm\(^{-2}\), and are controlled via an NI myRIO board (National Instruments, Austin, Texas, U.S.A). The position and forces of the end-effector are determined using the Jacobian matrix of the haptic device using (2) and (3), respectively. The electromagnetic system consists of 4 electromagnetic coils. Each coil is independently supplied with current input using electric driver (MD10C, Cytron Technologies Sdn. Bhd, Kuala Lumpur, Malaysia) and controlled via an Arduino control board (Arduino UNO - R3, Arduino, Memphis, Tennessee, U.S.A). The electromagnetic configuration contains a force sensor (FT S100 140305 29, FemtoTools AG, Buchs, Switzerland) to measure the interaction forces with the slave-microrobot. The force sensor is fixed using a three-dimensional motion stage (LDV40-LM-C2, SELN Dongguan Shengang Precision Metal \& Electronic Co., Ltd.,Guangdong, China). Position of the slave-microrobot is determined using a stereo microscopic system (Stemi 2000-C, Carl Zeiss Microscopy, LLC, New York, U.S.A) and a Sony XCD-X710 (Sony Corporation, Tokyo, Japan) FireWire camera. The bilateral tele-manipulation system is mounted on a tuned damped optical table (M-ST-UT2-58-12, Newport, California, U.S.A).

The scaled trajectory of the operator and the current position of the slave-microrobot are used to calculate the position tracking error (\(e_p\)), whereas the estimated forces are used to calculate the force tracking error (\(e_f\)). Fig. 4 demonstrates the stability of the position tracking based on (27). The slave-microrobot (cluster of 6 microparticles) follows the scaled-position of the operator at an average speed of 100 \(\mu\)m/s. The red and blue lines represent the scaled trajectory of the operator and the trajectory of the slave-microrobot. In this representative trial, the position scaling coefficient (\(\alpha\)) is set to 2285 and the force scaling coefficient (\(\beta\)) is set to \(10^6\). Table I provides the parameters and the control gains of the tele-manipulation system.

We also use our magnetic-based tele-manipulation system to position non-magnetic microbeads (blue polystyrene particles, Micromod Partikeltechnologie GmbH, Rostock-Warnemuende, Germany). Fig. 5 provides a representative tele-manipulation experiment of the non-magnetic microbead towards a reference position (small orange circle). The positions of the slave-microrobot and the microbead are indicated using the red and blue lines, respectively (Fig. 5(a)). Positioning of the microbead is achieved via contact and non-contact manipulation between the microbead and the slave-microrobot. At time, \(t = 7\) seconds, the slave-microrobot touches the microbead and changes its orientation towards the reference position. At time, \(t = 16\) seconds, the slave-microrobot reverses its direction at a relatively high speed to break free from the adhesive force with the microbead [18]. This action enables non-contact pushing of the microbead by moving the slave-microrobot slowly with respect the microbead towards the reference position (time instants, \(t = 17\) seconds and \(t = 18\) seconds). Once the microbead is positioned at the reference position (\(t = 20\) seconds), the operator moves the slave-microrobot at relatively high speed away from the microbead to break free from the adhesive forces and to achieve a successful release. During this tele-manipulation experiment, the interaction forces are estimated, scaled-up, and sensed by the operator. The scaled-force on the master-robot and the interaction force on the slave-microrobot are shown in Fig. 5(b). In this trial, the non-contact pushing and pulling are used to accurately position the microbead within the vicinity of the reference position, and the maximum position tracking error is calculated to be \(8\) \(\mu\)m in the steady-state. Another tele-manipulation trial is provided in Fig. 6 without contact between the slave-microrobot and the non-magnetic microbead. Before time, \(t = 12\) seconds, the slave-microrobot achieves non-contact pushing to move the microbead, as shown in Fig. 6(a). At time, \(t = 12\) seconds, the direction of slave-microrobot is reversed to achieve non-contact pulling to position the microbead at the reference position (Fig. 6(b)). These non-contact pushing and pulling forces are also scaled-up to the sensory range of the operator and are detected during the manipulation trial, as shown in Fig. 6(c). Please refer to the accompanying video.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>2285</td>
<td>(\beta)</td>
<td>(10^6)</td>
</tr>
<tr>
<td>(g) [rad s(^{-1})]</td>
<td>10</td>
<td>(k_i) [mN m A(^{-1})]</td>
<td>15.3</td>
</tr>
<tr>
<td>(k_p) [s(^{-1})]</td>
<td>(> 0)</td>
<td>(k_f) [s(^{-1})]</td>
<td>(> 0)</td>
</tr>
<tr>
<td>(r_p) [(\mu)m]</td>
<td>50</td>
<td>(M_s) [kg]</td>
<td>(7.33 \times 10^{-10})</td>
</tr>
</tbody>
</table>
The utilization of DOBs in the implementation of tele-manipulation control system enables the operator to sense the interaction forces while still being in control (Figs. 5 and 6). The estimated force at the slave-microrobot provides the operator with qualitative information from the environment of the slave-side. We assume that the viscous drag and microbead-to-microparticle interaction forces are dominant based on the calculated Reynolds number. Although Figs. 5(b) and 6(c) show good agreement between the estimated forces using the DOBs (based on the stability of the force tracking error (34)), we do not yet have a clear understanding of the nature of the sensed forces at the haptic interface. In the representative trial shown in Fig. 5, a non-contact force of 0.75 \(\mu N \) is estimated when the distance between the slave-microrobot and microbead is controlled (by the operator) to be approximately 100 \(\mu m \). At time, \(t=7 \) seconds, contact between the slave-microrobot and the microbead is observed and we also find a microbead force of 2 \(\mu N \) that is sensed by the operator (after scaling). At time, \(t=12 \) seconds and \(t=20 \) seconds we observe two peaks of 4.0 \(\mu N \) and 4.5 \(\mu N \), respectively. These peaks are due to the increased viscous drag force due to the increased speed of the slave-microrobot. The operator increases the speed of the slave-microrobot to break free from the contact with the microbead. Therefore, greater drag force is estimated and sensed by the operator. At time, \(t=20 \) seconds, the operator increases the speed of the slave microrobot to achieve a successful release of the microbead at the reference position (small orange circle). Therefore, the drag force is also increased and observed as a peak of 4.5 \(\mu N \) in the force estimated by the DOB.

V. CONCLUSIONS AND FUTURE WORK

This study presents a bilateral tele-manipulation system that enables accurate positioning of non-magnetic microbeads with and without contact. The operator stays in control of the manipulation while his accuracy is improved and the interaction forces are estimated via DOBs and scaled-up to his sensory range. This tele-manipulation system is designed based on a haptic device and an electromagnetic system with orthogonal configuration. We demonstrate bilateral contact and non-contact pushing and pulling to position microbeads with maximum position error of 8 \(\mu m \). In addition, successful releases of the microbeads are achieved at the reference positions.

As part of future studies, the influence of the interaction force on the tele-manipulation experiments will be investigated and we will design a robust motion control system to account for the deviations between the nominal parameters used in the control inputs and the real model. Our system will be modified to enable tele-manipulation in three-dimensional space [30]. This modification is essential to achieve complex microassembly tasks. In addition, the transparency of the tele-manipulation and the effect of time-delay on the stability of the control system will be studied.

REFERENCES

Fig. 6. A representative bilateral tele-manipulation of a non-magnetic microbead with average diameter of 100 µm using a slave-microrobot. (a) Tele-manipulation is achieved and the microbead is positioned within the vicinity of the reference position (small orange circle) via non-contact pushing and pulling. (b) The bilateral tele-manipulation enables localization of the microbead within the vicinity of a reference position. The non-contact forces enables successful release of the microbead at the reference position. The red and blue lines indicate the paths of the slave-microrobot and the microbead, respectively. (c) The operator senses the interaction forces between the slave-microrobot and the microbead after scaling this force up to his sensory range. The interaction forces are estimated using (35) and (36). Please refer to the accompanying video.