Health-economic modelling of infectious disease diagnostics: current approaches and future opportunities
van der Pol, Simon; Rojas, Paula; Juarez-Castello, Carmello; van Asselt, A D I; Antonanzas, Fernando; Postma, Maarten

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Final author's version (accepted by publisher, after peer review)

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Antimicrobial resistance (AMR) is a public health threat; infections with resistant organisms are estimated to cause over 650,000 infections and over 30,000 deaths in Europe. AMR is associated with antibiotic consumption: appropriate prescribing of antibiotics is key in combating AMR. To fight this threat, it has been suggested that point-of-care diagnostics to inform antibiotics prescribing are an important tool in reducing antibiotics prescriptions.

Main objectives

With the objective of knowing the state of the art on diagnostic, health-economic models, we reviewed cost-effectiveness analyses (CEAs) on diagnostics for infectious disease, focusing on model types and AMR.

General conclusions of articles in two disease areas

<table>
<thead>
<tr>
<th>Disease Area</th>
<th>Cost-Effectiveness</th>
<th>No Cost-Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influenza</td>
<td>82%</td>
<td>18%</td>
</tr>
<tr>
<td>Respiratory tract infection (general)</td>
<td>80%</td>
<td>20%</td>
</tr>
</tbody>
</table>

* Prevalence result

Most cost-effectiveness analyses dealing with diagnostics are for certain types of respiratory tract infections: such as general respiratory tract infections, influenza or tuberculosis. Sexual transmitted disease, malaria and gastroenteritis (e.g. helicobacter infections) are also common disease groups.

Although bacterial or viral resistance is often discussed in the included papers, it is rarely included in the analysis. Examples of methods to include resistance are: an ICER with prescriptions saved as an outcome; calculating the threshold cost of resistance that would change the conclusion of cost-effectiveness; or a point estimate of resistant pathogens.

Key Findings

- Most cost-effectiveness analyses dealing with diagnostics are for certain types of respiratory tract infections: such as general respiratory tract infections, influenza or tuberculosis. Sexual transmitted disease, malaria and gastroenteritis (e.g. helicobacter infections) are also common disease groups.
- Although bacterial or viral resistance is often discussed in the included papers, it is rarely included in the analysis. Examples of methods to include resistance are: an ICER with prescriptions saved as an outcome; calculating the threshold cost of resistance that would change the conclusion of cost-effectiveness; or a point estimate of resistant pathogens.

References

PIE CHART OF DISEASE TYPES INCLUDED IN SYSTEMATIC REVIEW

- Tuberculosis: 13%
- Gastroenteritis: 7%
- Respiratory tract infection: 22%
- Other: 7%
- Influenza: 17%
- Fungal infection: 5%
- Malaria: 15%
- Other: 8%
- Urinary tract infection: 4%
- STD: 7%
- Malaria: 10%
- Other: 5%
- Tropical: 6%

RESULTS

The flow diagram of included articles is shown above. Most papers are set in the primary care setting, followed by the hospital setting. A large majority of papers analyzed used a decision tree model for the calculation of quality-adjusted life years (QALYs) and costs. Often, these models use shorter time horizons, e.g. one flu season, rather than a lifetime approach. The disease types investigated are shown in the pie chart below. Looking at the author's conclusions (see figure to the left), influenza diagnostics are not cost-effective in 50% of the articles, but for respiratory infections, improved diagnostics always is cost-effective or cost-saving.