Stable Cesium Formamidinium Lead Halide Perovskites: A Comparison of Photophysics and Phase Purity in Thin Films and Single Crystals

Bart G. H. M. Groeneveld, Sampson Adjokatse, Olga Nazarenko, Hong-Hua Fang, Graeme R. Blake, Giuseppe Portale, Herman Duim, Gert H. ten Brink, Maksym V. Kovalenko, and Maria Antonietta Loi*

The stability of the active layer is an underinvestigated aspect of metal halide perovskite solar cells. Furthermore, the few articles on the subject are typically focused on thin films, which are complicated by the presence of defects and grain boundaries. Herein, a different approach is taken: a perovskite composition that is known to be stable in single crystal form is used, and its (photo-)physical properties are studied in the form of spin-coated thin films. The perovskites are lead-based with cesium and formamidinium as the A-site cations and iodide and bromide as the halide anions, with the formula Cs$_{0.1}$FA$_{0.9}$PbI$_3/Cs$_{0.1}FA_{0.9}PbI_2.55Br_{0.45}$. These compounds show high potential in terms of stability in single crystal form and closely resemble the compounds that have successfully been used in highly efficient perovskite–silicon tandem solar cells. It is found that a small difference in bromine content (x = 0.45 vs 0.6) has a significant impact in terms of the phase purity and charge carrier lifetimes, and conclude that the thin films of Cs$_{0.1}$FA$_{0.9}$PbI$_2.55$Br$_{0.45}$ have good potential for the use in optoelectronic devices.

1. Introduction

The main strength of hybrid metal halide perovskite solar cells is their high power conversion efficiency, which can reach values over 25%. However, an underdeveloped aspect of these devices is their stability, for which further investigation and improvement are needed. One of the most important aspects considered for improvement is the structural stability of the perovskite layer, which is influenced by the stoichiometry of the material and, therefore, also affects the environmental stability of the device. A perovskite with low structural stability can be affected by degradation, for example, in the form of phase segregation. An approach to improve the structural stability is to use elaborate compositions involving multiple cations or halide ions based on the Goldschmidt tolerance factor, which will be addressed later. The caveat with this method is that, generally, perovskite solar cells are based on thin films. This brings more factors into the equation: the morphology of the layer and the presence of defects. The solution processes used to make perovskite thin films introduce defects into the layer, for example, in the form of grain boundaries, which have been correlated with the material’s instability. The choice of solvent, the use of anti-solvent, and the processing method can all influence the morphology, which in turn gives rise to different degrees of stability.

Therefore, to investigate the intrinsic stability of new perovskite compositions, it is possible to circumvent the variability of the morphology of thin films by using single crystals. Crystals typically have fewer defects that act as charge traps, and are characterized by long-term stability.

Here, we propose to select a metal halide perovskite that was previously synthesized in single crystal form to ensure that it is...
structurally stable and investigate how the material performs in spin-coated thin films.

A tool that can be used to predict a perovskite’s stability is the Goldschmidt tolerance factor, which gives criteria for the radii of the ions that can fit in the structure.\(^{[4]}\) For lead-based perovskites, the incorporation of cesium and formamidinium (FA) makes it possible to improve the Goldschmidt tolerance factor compared with a mixed halide perovskite based on the methylammonium (MA) cation, such as MAPbI\(_3\)--Br.\(^{[4]}\) For example, the compositions Cs\(_{0.15}\)FA\(_{0.85}\)PbI\(_3\), Cs\(_{0.17}\)FA\(_{0.83}\)PbI\(_{1.8}\)Br\(_{1.2}\), and Cs\(_{0.05}\)FA\(_{0.16}\)MA\(_{0.79}\)PbI\(_{2.49}\)Br\(_{0.51}\) have a better tolerance factor and, therefore, a higher stability.\(^{[5,7,9]}\) Cs\(_{0.17}\)FA\(_{0.83}\)PbI\(_{2.49}\)Br\(_{0.51}\) was used in a perovskite–silicon tandem solar cell with a power conversion efficiency of 23.6% and high environmental stability.\(^{[15]}\)

Here, we investigate similar compounds, with composition Cs\(_{0.1}\)FA\(_{0.9}\)PbI\(_{3-x}\)Br\(_x\) (where \(x\) is 0.45 or 0.6), of which the \(x = 0.6\) variety was previously synthesized in single crystal form and demonstrated to be stable.\(^{[16]}\) We report the first investigation on the \(x = 0.45\) compound, which we anticipated to be similar to the higher bromine content perovskite in terms of structural stability. Because of the lower bromine ratio, we expected to have a broader absorption range due to a slightly narrower bandgap, which is favorable for multijunction photovoltaic applications.

During the previously reported synthesis of Cs\(_{0.1}\)FA\(_{0.9}\)PbI\(_{3-x}\)Br\(_x\) perovskites, impurities such as the non-perovskite \(δ\)-phases of FAPbI\(_3\) and CsPbI\(_3\) were found.\(^{[16]}\) To verify that the compositions of our films are phase pure, X-ray diffraction (XRD) measurements were performed. Powder XRD measurements were performed to check the uniformity of the emission in terms of energy and intensity over the surface of the thin films. CLSM was used to verify that the films are free of \(δ\)-CsPbI\(_3\). Because the non-perovskite phase of CsPbI\(_3\) has broad photoluminescence ranging from 450 to 600 nm,\(^{[17]}\) it will be discernable from the emission of the cesium–FA compounds. CLSM was performed to check the uniformity of the emission in terms of energy and intensity over the surface of the thin films.

2. Results

Cs\(_{0.1}\)FA\(_{0.9}\)PbI\(_{2.4}\)Br\(_{0.6}\) was selected for its structural stability, which is due to its favorable Goldschmidt tolerance factor (\(t = 0.84\)). Cs\(_{0.1}\)FA\(_{0.9}\)PbI\(_{2.5}\)Br\(_{0.45}\) has a similar tolerance factor; therefore, we expected it also to be stable. The lower bromine content should lead to an absorption onset at longer wavelengths, which is beneficial for the use in multijunction photovoltaic devices. We verified this by measuring the optical properties of both compounds. Figure 1a shows the absorbance of both Cs\(_{0.1}\)FA\(_{0.9}\)PbI\(_{2.5}\)Br\(_{0.45}\) and Cs\(_{0.1}\)FA\(_{0.9}\)PbI\(_{2.2}\)Br\(_{0.6}\) in spin-coated thin films. The decreased bromide content of Cs\(_{0.1}\)FA\(_{0.9}\)PbI\(_{2.5}\)Br\(_{0.45}\) leads to a redshift of about 20 nm. This is in agreement with previous literature, where higher bromide content leads to a wider bandgap material.\(^{[16]}\) The photoluminescence (PL) spectra also show a redshift for the sample with the lower bromide content. Here, the shift between the two compositions is smaller (15 nm) compared with that for the absorbance spectra.

![Figure 1](https://www.advancedsciencenews.com) a) Normalized absorbance spectra of spin-coated thin film perovskites with compositions Cs\(_{0.1}\)FA\(_{0.9}\)PbI\(_{2.5}\)Br\(_{0.45}\) (black lines) and Cs\(_{0.1}\)FA\(_{0.9}\)PbI\(_{2.2}\)Br\(_{0.6}\) (red lines). The inset shows the absorbance over a longer range. b) Normalized photoluminescence spectra of the thin films with the same compositions as in part (a).
Because of the band pass filters used in the confocal setup, it is not possible to locate different compositions with only slight variations in the stoichiometry. However, the filter with a band pass of 590 ± 40 nm would be able to detect δ-CsPbI₃. From the photoluminescence maps, there are no traces of emission from δ-CsPbI₃; we only see the emission of the films in the 780 nm long-pass range. In addition, we looked for variations in emission intensity, which might indicate the presence of different phases that act as recombination sites. Both films have good uniformity in the photoluminescence signal, and the only variations arise from morphological features. The morphology was characterized using atomic force microscopy; images of the films are shown in Figure 2c–f. The films seem smooth with crystal grain sizes on the order of hundreds of nanometers: this is due to the high number of nucleation sites induced by the antisolvent method during spin-coating.

The structure of the thin films was further studied by GIWAXS (see Figure 3a–d for 2D images). The GIWAXS patterns suggest that both thin films have an almost isotropic structure with only a weak orientation of the crystallites. Comparing
the integrated intensity versus \(q \) plots in Figure 4 of Cs\(_{0.1}\)FA\(_{0.9}\)PbI\(_{2.55}\)Br\(_{0.45}\) and Cs\(_{0.1}\)FA\(_{0.9}\)PbI\(_{2.4}\)Br\(_{0.6}\), we can see that there are two additional peaks at low \(q \) values for the latter material: at \(q = 0.69 \) Å\(^{-1}\) and \(q = 0.82 \) Å\(^{-1}\). These \(q \) values translate to 2\(\theta \) angles of 9.7° and 11.5°, respectively. These peaks in the film with higher bromine content are attributed to two nonperovskite phases: the orthorhombic \(\delta \)-phase of CsPbI\(_3\) and the \(\delta \)-phase of FAPbI\(_3\).[5,18] These phases are present throughout the entire thickness of the Cs\(_{0.1}\)FA\(_{0.9}\)PbI\(_{2.4}\)Br\(_{0.6}\) film, as shown by the presence of these peaks independently of the incident angle used to acquire the GIWAXS profiles (Figure S3, Supporting Information). Upon close inspection, we can also find the \(q = 0.82 \) Å\(^{-1}\) peak in the film of Cs\(_{0.1}\)FA\(_{0.9}\)PbI\(_{2.55}\)Br\(_{0.45}\), confirming the results obtained with XRD that both films contain the \(\delta \)-phase of FAPbI\(_3\). However, no trace of the non-perovskite CsPbI\(_3\) was found. Thus, Cs\(_{0.1}\)FA\(_{0.9}\)PbI\(_{2.4}\)Br\(_{0.6}\) seems to be less

Figure 3. GIWAXS patterns of a) Cs\(_{0.1}\)FA\(_{0.9}\)PbI\(_{2.55}\)Br\(_{0.45}\) measured at \(\alpha_i = 0.4^\circ \); b) Cs\(_{0.1}\)FA\(_{0.9}\)PbI\(_{2.4}\)Br\(_{0.6}\) measured at \(\alpha_i = 0.4^\circ \); c) Cs\(_{0.1}\)FA\(_{0.9}\)PbI\(_{2.55}\)Br\(_{0.45}\) measured at \(\alpha_i = 2.1^\circ \); and d) Cs\(_{0.1}\)FA\(_{0.9}\)PbI\(_{2.4}\)Br\(_{0.6}\) measured at \(\alpha_i = 2.1^\circ \). e) GIWAXS integrated intensity plotted versus \(q \) (normalized at \(q = 1.4 \) Å\(^{-1}\)) for the thin films of Cs\(_{0.1}\)FA\(_{0.9}\)PbI\(_{2.55}\)Br\(_{0.45}\) (black) and Cs\(_{0.1}\)FA\(_{0.9}\)PbI\(_{2.4}\)Br\(_{0.6}\) (red). The incident angle was 0.7°, corresponding to a penetration depth of approximately 120 nm. The green triangles indicate the phases found only in Cs\(_{0.1}\)FA\(_{0.9}\)PbI\(_{2.4}\)Br\(_{0.6}\). f) Time-resolved photoluminescence decay of both spin-coated films. The normalized data are plotted on a semilogarithmic scale. The lifetimes extracted from biexponential decay fits are \(\tau_1 = 36.3 \) ns and \(\tau_2 = 178 \) ns for Cs\(_{0.1}\)FA\(_{0.9}\)PbI\(_{2.55}\)Br\(_{0.45}\) and \(\tau_1 = 24.6 \) ns and \(\tau_2 = 116 \) ns for Cs\(_{0.1}\)FA\(_{0.9}\)PbI\(_{2.4}\)Br\(_{0.6}\).
stable than Cs$_{0.1}$FA$_{0.9}$PbI$_{2.55}$Br$_{0.45}$ because it forms two different phases which do not contribute to the photocurrent in solar cells. The effect of these two unwanted phases on the charge carrier lifetimes was investigated with time-resolved photoluminescence experiments (Figure 3f). We find that the charge carrier lifetimes of Cs$_{0.1}$FA$_{0.9}$PbI$_{2.4}$Br$_{0.6}$ are much lower than those of Cs$_{0.1}$FA$_{0.9}$PbI$_{2.55}$Br$_{0.45}$, and we propose that the δ-phase of CsPbI$_3$ plays a decisive role here. Combining the longer charge carrier lifetimes, the higher crystalline quality, and the lower bandgap of Cs$_{0.1}$FA$_{0.9}$PbI$_{2.55}$Br$_{0.45}$, we can conclude that this is the most promising material for the use in optoelectronic devices.

EDX was used in an attempt to locate the two non-perovskite phases (δ-FAPbI$_3$ and δ-CsPbI$_3$) in the two films. This technique can be used to observe the spatial distribution of elements and has been used in previous studies on metal halide perovskites to study phase segregation. Examples are element maps of halogen atoms and of various inorganic atoms that are used in hybrid perovskite research.$^{[19,20]}$ The EDX spectra of the spin-coated layers of Cs$_{0.1}$FA$_{0.9}$PbI$_{2.55}$Br$_{0.45}$ and Cs$_{0.1}$FA$_{0.9}$PbI$_{2.55}$Br$_{0.45}$ are shown in Figure S4, Supporting Information. The resulting element maps are shown in Figure S5, Supporting Information. From the lack of order in the distribution of iodine, cesium, bromine, and lead, we conclude that there is no sign of phase segregation at this resolution, which gives an upper limit to the domain size of the impurities of 50 nm. From the full width at half maximum (FWHM) of the fitted peaks in the GIWAXS data, we can extract an estimation of the average domain size for these impurities (Figure S6, Supporting Information). Using the Debye–Schererrer equation$^{[21]}$ under the assumption that the domains are spherical, we obtain average domain sizes for δ-CsPbI$_3$ and δ-FAPbI$_3$ of 10–15 nm in diameter in the case of Cs$_{0.1}$FA$_{0.9}$PbI$_{2.4}$Br$_{0.6}$. More accurate results might be obtained by characterizing the samples with transmission electron microscopy$^{[22]}$ however, this is a rather challenging task for this class of materials.

Considering that we deem Cs$_{0.1}$FA$_{0.9}$PbI$_{2.55}$Br$_{0.45}$ the most promising material of the family for optoelectronic applications, we wanted to verify our hypothesis that this material is structurally stable when grown as a single crystal. Single crystals were successfully grown according to a previously reported synthesis (see Figure S7, Supporting Information for a photograph of a millimeter-sized crystal).$^{[16]}$ The absorbance onset of this crystal (Figure 4a) starts at around 790 nm and is very similar to that of the corresponding thin film (Figure 1a). Steady-state photoluminescence is shown in Figure 4b; the emission is centered around 770 nm, which is also in accordance with the emission of the film. However, the FWHM of the emission of the crystal is slightly narrower (39 nm) than that of the thin film (51 nm), confirming the lower degree of energetic disorder.$^{[23]}$ In addition, the charge carrier lifetimes extracted from the long-lived component of the time-resolved photoluminescence data (Figure 4c) are longer on average, confirming the better quality of the crystal. The quality of the single crystal is also evident from the powder XRD pattern shown in Figure 4d. There are no visible impurities, and the peaks are narrower than for the thin films. The pattern features peak splitting (Figure S8, Supporting Information) and can be best fitted using a structural model with the tetragonal space group P4/mmbm, where the refined lattice parameters are $a = b = 8.8738(4)$ Å, $c = 6.2622(4)$ Å. Space group P4/mmbm is a
subgroup of the ideal cubic perovskite space group Pm-3n and corresponds to the a2d^3^c octahedral tilting scheme in the Glazer notation.[24] The same structure has been reported for both FAPbI$_3$[25] and FAPbBr$_3$.[26] Fitting of the peak intensities is not perfect and might indicate that a degree of chemical inhomo-
genuity remains in the crystal.

3. Conclusion

We have studied the photophysics and phase stability of Cs$_{0.1}$FA$_{0.9}$PbI$_{2.55}$Br$_{0.45}$ and Cs$_{0.1}$FA$_{0.9}$PbI$_{2.35}$Br$_{0.65}$ in thin film form. Despite the small difference in stoichiometry, these materials differ fundamentally in terms of phase purity: Cs$_{0.1}$FA$_{0.9}$PbI$_{2.35}$Br$_{0.65}$ has a lower crystalline quality when deposited as thin film. By performing GIWAXS experiments, we found that the corresponding thin film has traces of the non-perovskite phases δ-CsPbI$_3$ and δ-FAPbI$_3$, which form small domains on the nanometer scale. Considering that Cs$_{0.1}$FA$_{0.9}$PbI$_{2.55}$Br$_{0.45}$ only has traces of δ-FAPbI$_3$, it is likely that the δ-CsPbI$_3$ impurities cause the reduced charge carrier lifetime observed in time-
resolved PL measurements for the higher bromine content film. We would like to point out that established techniques such as CLSM and EDX were unable to demonstrate the existence of these impurities. We were able to synthesize Cs$_{0.1}$FA$_{0.9}$PbI$_{2.55}$Br$_{0.45}$ as high-quality single crystal, indicating that this material is structur-
ally stable. The better material quality and relatively straight-
forward stoichiometry, combined with the similarity in bandgap to MAPbI$_3$, indicate that Cs$_{0.1}$FA$_{0.9}$PbI$_{2.55}$Br$_{0.45}$ has good potential for the use in optoelectronic applications.

4. Experimental Section

Thin Film Fabrication: The films were either fabricated on glass or on prepatterned indium tin oxide (ITO)-coated glass substrates, which were ultrasonically cleaned in detergent solution, deionized water, acetone, and isopropanol, sequentially. After drying them in an oven at 140 °C for about 10 min, they were treated with ultraviolet ozone (UV-O$_3$) plasma for 20 min. The substrates were transferred into a nitrogen-
glovebox immediately for further processing. Solutions of 1 M N,N-dimethylformamide (DMF) (Sigma Aldrich) and dimethyl sulfoxide and isopropanol, sequentially. After drying them in an oven at 140 °C for an additional 1 h.

Crystal Synthesis: To synthesize FAPbI$_3$ and PbI$_2$, a 0.8 M solution with respect to [Pb] was prepared. Thus, in 11.25 mL of gamma-butyrolac-
tone (Acros, 99+%), 1.39 g of formamidinium iodide (FAI) (prepared as described in earlier work),[27] 0.23 g of CsI (ABCR, 99.9%), 3.2 g of PbI$_2$ (Sigma Aldrich, 99%), and 0.74 g of PbBr$_2$ (Acros, 98+%) were dissolved, generating a yellow solution. The solution was filtered through a 0.2 μm syringe filter and distributed over three 20 mL vials with a cap. The vessels were next placed in a glycerol bath preheated to 90 °C and then heated to 115 °C at a rate of 5 °C h$^{-1}$, keeping them at 115 °C for an additional 1 h. Next, the crystals were separated from the hot solution, dried with a filter paper, and placed in a desiccator over CaCl$_2$.
patterns leads to the integrated intensity $I(q)$ versus q, where q is the modulus of the scattering vector: $q = \frac{\lambda}{2\sin(\theta)}$.

Supporting Information
Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements
The authors thank A. Kamp and T. Zaharia for technical support. This work is part of the research program of the Netherlands Organisation for Scientific Research (NWO). This is a publication of the FOM-focus group “Next Generation Organic Photovoltaics,” participating in the Dutch Institute for Fundamental Energy Research (DIFFER).

Conflict of Interest
The authors declare no conflict of interest.

Keywords
perovskites, photophysics, single crystals, stoichiometry, thin films

Received: August 30, 2019
Revised: October 15, 2019
Published online: