Lewis versus Bronsted Acid Activation of a Mn(IV) Catalyst for Alkene Oxidation

Steen, Jorn D.; Stepanovic, Stepan; Parvizian, Mahsa; de Boer, Johannes W.; Hage, Ronald; Chen, Juan; Swart, Marcel; Gruden, Maja; Browne, Wesley R.

Published in:
Inorganic Chemistry

DOI:
10.1021/acs.inorgchem.9b02737

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Lewis versus Brønsted Acid Activation of a Mn(IV) Catalyst for Alkene Oxidation

Jorn D. Steen, † Stepan Stepanovic, † Mahsa Parvizian, † Johannes W. de Boer, § Ronald Hage, †, § Juan Chen, || Marcel Swart, †, ω Maja Gruden, *, †, ⋆ and Wesley R. Browne† †, ‡, §, †

†Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
‡Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
§Catexel B.V., BioPartner Center Leiden, Galileiweg 8, 2333 BD Leiden, The Netherlands
||Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
*ICREA & Departament de Química, Universitat de Girona, Campus Montilivi (Ciències), 17003 Girona, Spain

Supporting Information

ABSTRACT: Lewis acid (LA) activation by coordination to metal oxido species has emerged as a new strategy in catalytic oxidations. Despite the many reports of enhancement of performance in oxidation catalysis, direct evidence for LA-catalyst interactions under catalytically relevant conditions is lacking. Here, we show, using the oxidation of alkenes with H2O2 and the catalyst [Mn2(μ-O)3(tmtacn)2](PF6)2 (1), that Lewis acids commonly used to enhance catalytic activity, e.g., Sc(OTf)3, in fact undergo hydrolysis with adventitious water to release a strong Brønsted acid. The formation of Brønsted acids in situ is demonstrated using a combination of resonance Raman, UV/vis absorption spectroscopy, cyclic voltammetry, isotope labeling, and DFT calculations. The involvement of Brønsted acids in LA enhanced systems shown here holds implications for the conclusions reached in regard to the relevance of direct LA-metal oxido interactions under catalytic conditions.

INTRODUCTION

The interaction of Lewis acids (LAs) with transition metal complexes and clusters can profoundly change their reactivity, which is most clearly manifested in the critical role of calcium ions in the oxygen evolving complex of photosystem (PS) II.1,2 Recent reports have highlighted correlations between Lewis acidity and properties of transition metal complexes, such as redox potential,3,5 and by extrapolation the enhancements in activity that they bring in oxidation catalysis, e.g., using iron1−4 and manganese complexes.6−19 However, the causal nature of the effects of LAs and indeed the actual interactions between them and transition metal complexes under catalytic conditions are unclear. In particular, their binding to reactive species, although postulated, has not been confirmed in solution.

For example, Watkinson and Nodzewska30 and the group of Yin31 have described the exceptional impact of Lewis acids on the oxidation of alkenes with H2O2 catalyzed by the complex [Mn2(μ-O)3(tmtacn)2](PF6)2 (1, where tmtacn is N,N,N′,N′-trimethyl-1,4,7-triazacyclononane, Scheme 1). The catalytic activity of 1 is dependent on the presence of Lewis acidic metal triflates such as Sc(OTf)3; alkene oxidation is not observed under the same conditions without a Lewis acid. This dependence was ascribed to binding of the Lewis acid to either 1 or the reactive intermediate responsible for substrate oxidation. Direct interaction between, e.g., Sc3+, and 1, was inferred from spectroscopic data and by analogy with known M-O-LA structures obtained in the solid state.32−34 Definitive evidence for such binding in solution is not available, however, especially under reaction conditions with, e.g., H2O2, where water is added with the oxidant in excess.

In the present contribution we show through a combination of spectroscopy and DFT calculations that the changes that follow addition of Lewis acids to 1 are not due to LA binding to an oxido unit of 1, as proposed for related Fe3+=O complexes.32−34 Instead, the effects observed are due to the release of a strong Brønsted acid upon hydrolysis of the metal triflates by adventitious water either present in the solvent or as water of crystallization in 1. The released Brønsted acid facilitates reduction of 1 by H2O2 and subsequent ligand exchange and redox reactions35 provide for the observed increase in catalytic performance.

Received: September 13, 2019
Published: October 18, 2019
In-line monitoring of the oxidation of styrene in the presence of LAs, ca. 250, are consistent with the earlier reports of Hage et al. for those reported by Lv et al.,31 who proposed the formation of a mononuclear manganese(IV) complex analogous to that reported earlier by Chin Quee-Smith et al. (i.e., $[\text{Mn}_2(\mu-\text{O})_3\text{tmtacn}]^{2+}$ (1) and Proposed Roles of Lewis Acids

Scheme 1. Oxidation of Alkenes with H$_2$O$_2$ Catalyzed by $[\text{Mn}_2(\mu-\text{O})_3(\text{tmtacn})]^{2+}$ (1) and Proposed Roles of Lewis Acids

Scheme 2. Key Stages in the Oxidation of Styrene (Blue) Catalyzed by 1 (1 mM) with Sc(OTf)$_3$ (2 mM) Using H$_2$O$_2$ (Magenta) As Oxidant

RESULTS AND DISCUSSION

As reported by Watkinson and Nodzewska and the group of Yin, we find here that the addition of metal triflates to 1 prior to the addition of H$_2$O$_2$ results in conversion of styrene to styrene oxide, albeit still with a substantial loss of H$_2$O$_2$ through disproportionation (Scheme 2 and Figures S1 and S2). The turnover numbers (TONs) achieved here in the oxidation of styrene is $[\text{Mn}_2(\mu-\text{O})_3(\text{tmtacn})]^{2+}$ (1) and Proposed Roles of Lewis Acids

Scheme 2. Key Stages in the Oxidation of Styrene (Blue) Catalyzed by 1 (1 mM) with Sc(OTf)$_3$ (2 mM) Using H$_2$O$_2$ (Magenta) As Oxidant

“Different standing times were used: 20 s (empty); 60 min (filled). S2). The turnover numbers (TONs) achieved here in the presence of LAs, ca. 250, are consistent with the earlier reports (ca. 100).30,31 In-line monitoring of the oxidation of styrene reveals that, in the presence of Lewis acids, the reaction proceeds through two distinct phases (Scheme 2, Figure S2). The addition of H$_2$O$_2$ is followed by an induction period, after which both alkene oxidation and disproportionation of the H$_2$O$_2$ begin concomitantly. The duration of the induction period and the ratio of styrene conversion to H$_2$O$_2$ disproportionation depends on the time, here referred to as standing time, between the addition of the Lewis acid to 1 in anhydrous acetonitrile and the subsequent addition of styrene and H$_2$O$_2$ (Scheme 2). Disproportionation of H$_2$O$_2$ is observed regardless of the standing time, whereas conversion of styrene is observed only when the standing time exceeds several minutes. During the reaction, a white precipitate forms that is a mixture of insoluble manganese and scandium salts (by ICP, see Experimental Section for details) of, most likely, acetate formed by hydrolysis of acetonitrile.36,37 Although the addition of a second equivalent of H$_2$O$_2$ results in continued oxidation of styrene (Figure S3), the isolated precipitate is not catalytically active.

Other Lewis acids31 have similar effects to that of Sc(OTf)$_3$, in terms of induction period and rate of oxidation. With Al(OTf)$_3$ consistently higher, conversion of styrene was obtained, whereas with Y(OTf)$_3$, the decomposition of H$_2$O$_2$ was slow, and negligible conversion of styrene was observed (Figure S2). Notably, however, with Y(CF$_3$CO$_2$)$_3$, both rapid decomposition of H$_2$O$_2$ and significant conversion of styrene were observed. The relative performance of the Lewis acids correlates with their relative rates of hydrolysis,38 however, the counterion plays a role in the outcome of the reaction also. These data prompted us to examine the interaction between the LAs, and especially Sc(OTf)$_3$, and 1.

Effect of Lewis Acids on the Electronic and Vibrational Spectroscopy of 1. The UV/vis absorption spectrum of 1 in acetonitrile shows a broad visible absorption at 490 nm and several more intense bands below 400 nm.39,40 The addition of 2 equiv of Sc(OTf)$_3$ results in an increase in absorbance over the range 400 and 650 nm and the appearance of weak bands at ca. 750 and 850 nm (Figure 1a). The relative rate of change in absorbance is constant across the entire spectrum, indicative of a single step process. Notably, the changes are not immediate but take $>$30 s. The Raman spectrum at $\lambda$$_{exc}$ 355 nm undergoes concomitant changes with the resonantly enhanced Mn−O−Mn symmetric stretching band at 699 cm$^{-1}$ decreasing in intensity and a band at 687 cm$^{-1}$ appearing together with an increase in intensity of the band at 799 cm$^{-1}$ (Figure 1b). DFT calculations and 18O labeling indicate that the band at 699 cm$^{-1}$ is a vibrational mode of the Mn−(μ-O)$_3$−Mn core, while the band at 799 cm$^{-1}$ involves mostly the Mn−N bonds, with little displacement of the Mn−(μ-O)$_3$−Mn core (Figure S4). Similar changes are observed at $\lambda$$_{exc}$ 457 nm (Figure S5). Weaker bands appear also that correspond to modes of the tmtacn ligand observed under nonresonant conditions ($\lambda$$_{exc}$ 785 nm, Figure S6). The addition of Al(OTf)$_3$ resulted in identical changes to the UV/vis absorption and resonance Raman spectra of 1, whereas the addition of Y(OTf)$_3$ and Y(CF$_3$CO$_2$)$_3$ did not (Figure S7).

The changes in the UV/vis absorption spectrum are similar to those reported by Lv et al.,31 who proposed the formation of a mononuclear manganese(IV) complex analogous to that reported earlier by Chic Quee-Smith et al. (i.e., $[\text{Mn}_3(\text{tmtacn})(\text{OME})_3](\text{PF}_6)$).42 However, the final UV/vis absorption spectrum is identical to that reported earlier by Hage et al. for 1 in concentrated H$_2$SO$_4$.40 The addition of excess water after the addition of Sc(OTf)$_3$ resulted in an immediate recovery of the initial UV/vis absorption and resonance Raman spectra of 1 (Figure 1), and indeed even 0.2 vol % of water is sufficient for full recovery (see Figures S8a

DOI: 10.1021/acs.inorgchem.9b02737
Inorg. Chem. 2019, 58, 14924−14930
Furthermore, using H$_2^{18}$O did not result in incorporation of 18O into 1 (by Raman spectroscopy, Figures S4 and S8c). Hence, the changes upon the addition of Sc(OTf)$_3$ are unlikely to be due to "opening" of the Mn–O–Mn bridges. Furthermore, DFT calculations indicate that although the formation of a ScIII–O–(MnIV)$_2$ bond is thermodynamically feasible, the calculated frequencies of the relevant vibrational mode (symmetric) do not match the shifts observed experimentally by Raman spectroscopy (Figure S9). In contrast the shifts calculated for 1 and H$^+$ match well (Figure S4). These data indicate that, in solution, Lewis acidic metal ions (e.g., ScIII) do not bind to a bridging oxygen of 1, but instead 1 is protonated by Brønsted acids, vide infra.

Effect of Lewis Acids on the Cyclic Voltammetry of 1.

A key role of Brønsted acids in activating 1 in catalytic oxidations is to shift its reduction potential to more positive potentials. This shift facilitates reduction of 1 by H$_2$O$_2$ from a MnIV state to dinuclear MnII and MnIII species. Indeed, cyclic voltammetry shows that the reduction of 1 at -0.6 V vs SCE moves to ca. 0.4 V upon the addition of Sc(OTf)$_3$ (Figure 2). The increase in current indicates a multielectron process, and new oxidation waves at ca. 1.0 V on the return cycles are consistent with the formation of new species as shown earlier by de Boer et al. Notably these changes are almost identical to those observed upon the addition of TfOH to 1 (Figure 2). As with Lewis acids, the addition of water results in only a minor shift of the redox waves back toward negative potentials, and essentially the same general shape of the redox wave is observed (Figure S10), despite that H$^+$ reverts to 1.

Comparison of the Lewis and Brønsted Acids on the Spectroscopy of 1 and Its Catalytic Activity.

As for the cyclic voltammetry, Sc(OTf)$_3$ and TfOH have essentially identical effects on the UV/vis absorption and resonance Raman spectra of 1 (Figure 1). Indeed, these same spectroscopic changes are observed upon the addition of H$_2$SO$_4$ (or D$_2$SO$_4$, Figure S15) to 1 in acetonitrile, and the changes are consistent with formation of species are catalytically active as established earlier where 1 was used in the presence of carboxylic acids.

DFT calculations indicate that binding of ScIII to the Mn–(μ-O)$_2$–Mn core is thermodynamically favorable and changes the Mn–O bond lengths substantially (see SI). The Sc–O bond is predicted to have a significant covalent bond character, close to that of the O–H bond in H$^+$. Hence, notwithstanding the discussion above, binding of Sc(OTf)$_3$ could shift the reduction potential of 1 in a similar manner to that induced by protonation and thereby facilitate reduction by H$_2$O$_2$. Indeed, cyclic voltammetry shows that the reduction of 1 at -0.6 V vs SCE moves to ca. 0.4 V upon the addition of Sc(OTf)$_3$ (Figure 2). The increase in current indicates a multielectron
the monoprotected complex H\(^{+}\). Notably the changes induced by Brønsted acids are instantaneous, in contrast to the gradual changes (>30 s) observed upon the addition of Sc(OTf)\(_3\). This different is consistent with release of Brønsted acids by hydrolysis of Sc(OTf)\(_3\)\(^{18,43}\) prior to protonation of I. It should be noted that I supplies 1 equivalent of water as water of crystallization, in addition to residual water already present in acetonitrile.

Having confirmed the spectroscopic similarities between the addition of TfOH and Sc(OTf)\(_3\) to I, the Brønsted acid assisted oxidation\(^{15,28,46}\) of styrene was examined. Essentially identical catalytic behavior was observed when using TfOH or Sc(OTf)\(_3\), including a lag period followed by rapid onset of identical catalytic behavior was observed when using TfOH or Sc(OTf)\(_3\) added to residual water already present in acetonitrile.

Inorganic Chemistry

Figure 3. Comparison of kinetics of styrene conversion (blue) and H\(_2\)O\(_2\) consumption (magenta) by I activated by either TfOH (6 equiv; filled) or Sc(OTf)\(_3\) (2 equiv; empty) for a 1 h standing time. In the absence of any acid, only disproportionation of H\(_2\)O\(_2\) to O\(_2\) is observed (Figure S1).

Similar trends were observed with trifluoroacetic acid (Figure S16), reinforcing that triflic acid is not unique and other Brønsted acids are capable of activating I in the same way, i.e., by protonation assisted reduction from the Mn\(^{IV}\) state.\(^{47}\)

The release of Brønsted acids from metal triflates in ostensibly anhydrous solvents has been noted in the literature under various conditions. For example in chlorinated solvents, Hintermann et al. reported that the reaction of AgOTf with a chlorinated substrate, and subsequently solvent, releases TfOH\(^{48}\) and recently, Schlegel et al. reported the release of catalytically active triflic acid in the metal triflate catalyzed glycosylation reactions.\(^{49}\) Gunnoe et al. have proposed the in situ generation of triflic acid from Al(OTf)\(_3\) in the hydrolymation of nonactivated alkenyamines in solvents such as DMSO and nitrobenzene etc.\(^{50}\)

In situ formation of TfOH, specifically in acetonitrile, has been proposed by Dumeunier and Markó in the acylation of alcohols catalyzed by metal triflates, which serve as reservoirs of the Brønsted acid.\(^{51}\) Spencer et al. have identified Brønsted acids as the active catalysts in hetero-Michael additions to \(\alpha,\beta\)-unsaturated ketones in the presence of various metal salts and related the catalytic ability of a metal salt to the extent of hydrolysis—conversion was not observed with metal salts that do not undergo hydrolysis. Additionally, water (more than 2 equiv vs metal catalyst) retards the reaction due to its Brønsted basicity. The water in that case most likely originates from side reactions such as imine condensation and acetal/thioacetal formation, which are unavoidable under the nonbasic conditions used for the hetero-Michael addition.

In the present report, 1 equiv of water is present by default due to the fact that I is a monohydrate, but as discussed by Spencer et al. even if this is not the case water can form due to background reactions. Indeed, even when anhydrous, the water content is at a minimum 0.001–0.005 vol %, which corresponds to approximately 0.5–3 mM of H\(_2\)O. This is in the same concentration range as the manganese complex (1 mM) and metal triflates (2 mM). Furthermore, in addition to water added with the oxidant H\(_2\)O\(_2\), even when in 90 wt % concentration, the disproportionation of H\(_2\)O\(_2\) generates H\(_2\)O and O\(_2\) and during epoxidation 1 equiv of H\(_2\)O is released also.

The pK\(_a\) of I is lower than most strong acids and hence the leveling effect of water means that when present in excess of the TfOH formed, the strongest acid present is the hydronium ion, which is unable to protonate I to an extent detectable by spectroscopic methods. Neither yttrium(III) salts nor CF\(_3\)CO\(_2\)H induce changes in the UV/vis absorption and Raman spectra of I, although they provide sufficient Brønsted acidity to facilitate reduction of I by H\(_2\)O\(_2\), as observed with carboxylic acids earlier.\(^{35,41}\) Indeed, there is no reason that the pK\(_a\) of Sc(H\(_2\)O\(_3\)) species formed by hydrolysis should be lower than that of TfOH and hence the species responsible for protonation of I cannot be defined. It is of note, however, that cyclic voltammetry with TfOH is nearly identical to that with Sc(OTf)\(_3\). Hence, although we have characterized Brønsted acidity in the present study as being due to the formation of TfOH in situ, in reality the nature of the species that protonates I to form H\(^{+}\) is ill-defined. Ultimately, the actual Brønsted acid responsible is of little concern in this case, but rather the effects observed are due to Brønsted rather than Lewis acidity. A point that is certain is that once water is added in molar excess, e.g., with H\(_2\)O\(_2\), or formed by side reactions, the hydronium ion is the Brønsted acid involved. Notably the hydronium ion is a much weaker acid than H\(^{+}\), and its addition, as shown above, results in a recovery of the original spectral features of I. Nevertheless, the equilibrium position is sufficient (see cyclic voltammetry) to provide enough H\(^{+}\) in solution for H\(_2\)O\(_2\) to be able to initiate reduction. The initial reduction triggers an autocatalytic transformation of I into species in lower oxidation states as shown earlier.\(^{35,61}\)

CONCLUSION

In summary, we have shown here that Lewis acidic metal triflates undergo rapid hydrolysis to generate strong Brønsted acids in acetonitrile under the conditions used for catalytic oxidations with H\(_2\)O\(_2\). Indeed, even in anhydrous acetonitrile, residual water (ca. 0.5 to 3 mM H\(_2\)O) and water of crystallization (1 molecule per I) can be sufficient for hydrolysis of the Lewis acid (Sc(OTf)\(_3\)). In the case of oxidation of alkenes with H\(_2\)O\(_2\) and I, the hydrolysis occurs well before the onset of substrate conversion. Hence, the postulated binding of Lewis acids to I, or a putative reactive species, does not occur and the changes in spectral properties and enhancements in catalytic activity observed are due to Brønsted acids formed in situ. Indeed, Brønsted acids, i.e., carboxylic acids, were shown earlier to suppress disproportionation and allow for H\(_2\)O\(_2\) to be used with complete efficiency in the oxidation of alkenes catalyzed by I with, e.g.,

DOI: 10.1021/acs.inorgchem.9b02737
Inorg. Chem. 2019, 58, 14924–14930
Inorganic Chemistry

C\(_{11}\)C\(_{10}\)H\(_4\) with turnover numbers (TONs) exceeding 3000.\(^{35,47}\)

Although Sc\(^{3+}\)-bound species have been observed crystallographically,\(^{32–34}\) the reactivity changes induced by such Lewis acids in solution are highly likely to be due to the release of Bronsted acids. The role of LAs as a source of Bronsted acids shown here impacts more broadly, for example, in the study of Lewis acid activation of iron and other metal catalysts. Beyond this, however, in recognizing the possibility to introduce strong Bronsted acids into reactions via Sc(OTf)\(_3\), the use of often difficult to handle strong acids directly can be circumvented.

EXPERIMENTAL SECTION

General Information

All reagents were of commercial grade (Sigma-Aldrich, TCI) and were used as received unless stated otherwise. H\(_2\)O\(_2\): Sigma-Aldrich, 50 wt %, H\(_2\)O\(_{18}\): Rotem Industries Ltd., and it was analyzed by elemental analysis (calcd for C\(_2\)H\(_8\)O\(_{18}\)Br\(_2\)Sc: 34.95, 3.25, 8.25, 0.00, 19.82, 7.04, 0.49, 0.01, 4.99, 2.01, 0.19, 0.01; found: 34.85, 3.25, 8.26, 0.00, 19.81, 7.00, 0.49, 0.01, 4.99, 2.01, 0.19, 0.01). KPF\(_6\) (45 mg, 0.24 mmol) was added to the reaction mixture:

- **Procedure Employed for Catalysis Studies.** The Lewis acid (30 \(\mu\)L of 100 mM solution in CH\(_3\)CN, 3 \(\mu\)mol) or Bronsted acid (30 \(\mu\)L of 300 mM solution in CH\(_3\)CN, 9 \(\mu\)mol) was added to 1.21 mL of a 1.24 mM solution of 1 (1.5 \(\mu\)mol) in anhydrous CH\(_3\)CN, and this mixture was stirred for a certain standing time, after which styrene (172 \(\mu\)L, 1500 \(\mu\)mol) was added. The final concentrations in 1.5 mM reaction mixture: 1 (1 \(\mu\)mol), Lewis acid (2 \(\mu\)mol) or Bronsted acid (6 \(\mu\)mol), styrene (1 \(\mu\)mol), H\(_2\)O\(_2\) (1 \(\mu\)mol). Reaction progress was determined by Raman spectroscopy (\(\lambda_{exc}\) 785 nm) with the initial time (t = 0) defined as the point of addition of H\(_2\)O\(_2\) (85 \(\mu\)L of 50 wt % in H\(_2\)O, 1500 \(\mu\)mol). The conversion of styrene and consumption of H\(_2\)O\(_2\) were monitored for approximately 30 min. Epoxide formation was confirmed by \(^{1}H\) NMR spectroscopy. Caution! Complete disproportionation of H\(_2\)O\(_2\) to oxygen and water can occur and hence the reactions should not be carried out in sealed vessels.

Note: Comparison of reaction progress data obtained in the present study with that in previous reports by Nodzewska and Watkinson showed the same reaction time (3–4 min).\(^{31}\) Lv et al.,\(^{31}\) however, applied general reaction conditions to each tested substrate, and therefore a reaction time of 2 h was reported for styrene. It is of note that in the aforementioned studies 0.1 M styrene was used, in contrast to the present study with 1 M and hence the effect of standing time would not have manifested itself in a difference in conversion in those studies.

ICP analysis confirms that the white precipitate formed during catalysis contained 10–16 wt % of Mn and 5–20 wt % of Sc in the form of insoluble salts. The insolubility and %metal content is consistent with the anion being acetate. The FTIR spectrum indicates that the counterion is an organic compound which is affected by deuteration of the solvent (\(d_{7}\)-acetonitrile) but does not contain a nitrite group (Figure S17). This precipitate is formed in the absence of substrate, and a precipitate is formed in the absence of the manganese complex also. Hence although the organic component could be due to a degradation product of the tmtacn ligand, more probably, hydrolysis of acetonitrile is responsible since the spectrum is solvent deuteration dependent. Comparison of these spectra with those of commercially available, and relatively anhydrous, scandium and manganese acetates is hampered by the effect of water (hydration state) on the spectrum, but the spectrum of the precipitate is close to that of NaOAc (Figure S18).

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.inorgchem.9b02737.

Additional spectroscopic and electrochemical data (PDF)

DOI: 10.1021/acs.inorgchem.9b02737

Inorg. Chem. 2019, 58, 14924–14930
ACKNOWLEDGMENTS

The COST association action CM1305 ECOStBio (STSM grant 34080), the European Research Council (ERC 279549, W.R.B.), MINECO (CTQ2017-87392-P, M.S.), GenCat (2014SGR1202, M.S.), FEDER (UNG110-4E-801, M.S.), the Chinese Scholarship Council (CSC), and The Netherlands Ministry of Education, Culture and Science (Gravity Program 024.001.035) are acknowledged for financial support. The Peregrine high performance computing cluster of the University of Groningen is acknowledged for computational resources.

REFERENCES

(26) Choe, C.; Yang, L.; Lv, Z.; Mo, W.; Chen, Z.; Li, G.; Yin, G. Redox-Inactive Metal Ions Promoted the Catalytic Reactivity of Non-
Heme Manganese Complexes towards Oxygen Atom Transfer.

Dalt. Trans. 2015, 44 (19), 9182–9192.

