Arabidopsis AAL-toxin-resistant mutant atr1 shows enhanced tolerance to programmed cell death induced by reactive oxygen species

Gechev, Tsanko S.; Ferwerda, MargFiet A.; Mehterov, Nikolay; Laloi, Christophe; Qureshi, Muhammad K.; Hille, Jacques

Published in:
Biochemical and Biophysical Research Communications

DOI:
10.1016/j.bbrc.2008.08.056

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2008

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Arabidopsis AAL-toxin-resistant mutant *atr1* shows enhanced tolerance to programmed cell death induced by reactive oxygen species

Tsanko S. Gechev a,b,⁎, Margriet A. Ferwerda b, Nikolay Mehterov a, Christophe Laloi c, Muhammad K. Qureshi b, Jacques Hille b

a Department of Plant Physiology and Plant Molecular Biology, University of Plovdiv, 24 Tsar Assen street, Plovdiv 4000, Bulgaria

b Department Molecular Biology of Plants, Researchschool GBB, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands

c Institute of Plant Sciences, ETH Zurich, Universitätstrasse 2, CH-8092 Zurich, Switzerland

A B S T R A C T

The fungal AAL-toxin triggers programmed cell death (PCD) through perturbations of sphingolipid metabolism in AAL-toxin-sensitive plants. While Arabidopsis is relatively insensitive to the toxin, the *loh2* mutant exhibits increased susceptibility to AAL-toxin due to the knockout of a gene involved in sphingolipid metabolism. Genetic screening of mutagenized *loh2* seeds resulted in the isolation of AAL-toxin-resistant mutant *atr1*. *Atr1* displays a wild type phenotype when grown on soil but it develops less biomass than *loh2* on media supplemented with 2% and 3% sucrose. *Atr1* was also more tolerant to the reactive oxygen species-generating herbicides aminotriazole (AT) and paraquat. Microarray analyses of *atr1* and *loh2* under AT-treatment conditions that trigger cell death in *loh2* and no visible damage in *atr1* revealed genes specifically regulated in *atr1* or *loh2*. In addition, most of the genes strongly down-regulated in both mutants were related to cell wall extension and cell growth, consistent with the apparent and similar AT-induced cessation of growth in both mutants. This indicates that two different pathways, a first controlling growth inhibition and a second triggering cell death, are associated with AT-induced oxidative stress.

© 2008 Elsevier Inc. All rights reserved.

Programmed cell death (PCD) is essential for a number of plant developmental processes and responses to pathogens [1]. Examples of developmentally regulated processes in which PCD is involved include embryo development, nucellar degeneration, maturation of tracheal elements and epidermal trichomes, formation of lace leaf shape, and leaf senescence [2]. Another type of PCD is represented by the hypersensitive response, a defense reaction in which plant cells in and around the site of pathogen infection die in order to physically restrict the spread of the pathogen [3]. While in the above examples cell death is beneficial and/or essential for plant development and survival, some necrotrophic pathogens can secrete toxins that cause cell death in healthy tissues so that the pathogens can feed on the dead tissues [4].

The fungal AAL-toxin triggers cell death through perturbations of sphingolipid metabolism in AAL-toxin-sensitive *Arabidopsis* [5]. The toxin inhibits ceramide synthase, a key enzyme in sphingolipid synthesis, which leads to accumulation of precursors and depletion of complex sphingolipids. Tomato plants sensitive to the AAL-toxin have a mutation in the *Asc* gene that is most likely a component of the ceramide synthase [6]. The *Arabidopsis thaliana* *loh2* mutant is more sensitive to the AAL-toxin than the wild type due to the knockout of a gene homologous to the tomato *Asc* gene [4]. Microarray analyses of AAL-toxin-induced cell death in *loh2* revealed induction of hydrogen peroxide-responsive genes and genes that are involved in the oxidative burst at early time points preceding visible cell death symptoms [4]. This indication of oxidative burst in AAL-toxin-treated plants was in agreement with previous studies demonstrating accumulation of reactive oxygen species in *Arabidopsis* plants treated with fumonisin B1 (FB1), an AAL-toxin analogue [7]. Moreover, a recently identified FB1 resistant mutant compromised in serine palmitoyl transferase, a key enzyme of de novo sphingolipid synthesis, failed to generate ROS and to initiate cell death upon FB1 treatment [8].

This paper describes a genetic approach carried out to isolate a mutant called *atr1* (AAL-toxin-resistant1) that survives AAL-toxin treatment, and its characterization in respect to reactive oxygen species-induced cell death. Microarray experiments of *atr1* and *loh2* under conditions that induce cell death only in *loh2* followed by bioinformatics analysis were carried out in order to identify genes with a potential role in the cell death process.
Materials and methods

Plant material, isolation of mutants, growth conditions, stress treatments and cell death assessment. Forty-thousand seeds from *A. thaliana* loh2 mutant, described earlier [4], were mutagenized with 0.1–0.3% ethane methyl sulfonate for eight hours. After extensive washing, the mutagenized seeds were planted on soil in pools and grown under standard greenhouse conditions (14 h light/10 h dark period, photosynthetic photon flux density 400 μmol m⁻² s⁻¹, 22 °C and relative humidity 70%). Screening for resistance to AAL-toxin was done by plating the self-pollinated progeny seeds from M1 plants on growth media containing 40 nM of AAL-toxin and grown in a climate room under the following conditions: 60 μmol m⁻² s⁻¹, 22 °C. AAL-toxin-resistant survivors, including atr1, were transferred to the greenhouse and seeds collected for further analysis. Light stress responses of loh2 and atr1 were evaluated by shifting in vitro-grown plants from 60 to 600 μmol m⁻² s⁻¹. Chilling stress was applied by shifting one-week grown plants from 60 μmol m⁻² s⁻¹, 22 °C to 240 μmol m⁻² s⁻¹, 4 °C for 1, 2 and 3 days. Salt stress was applied by growing plants on media supplemented with 60, 80 or 100 mM NaCl. Abiotic stress tolerance was evaluated by measuring variable fluorescence Fv/Fm with Flurocam 700 MF (Photon Systems Instruments, Brno, Czech Republic), fresh weight, and chlorophyll content. Assessment for tolerance to ROS-induced programmed cell death was done by plating atr1 and loh2 seeds on media containing either 7 μM aminotriazole (AT) or 0.5 μM paraquat and measuring the relative loss of fresh weight, chlorophyll, and visible cell death. Chlorophyll content was measured photometrically as previously described [9].

Isolation of RNA and microarray experiments. Samples for RNA isolation and microarray analysis were collected from atr1 and loh2 mutants grown on media with or without 7 μM AT four days after germination. One week after germination, this concentration of AT lead to mortality in loh2 and no death symptoms in atr1. RNA was isolated using RNA Plant Mini Kit (Qiagen) as previously described [10]. Microarray experiments with two biological repetitions were performed in compliance with the MIAME standards [11]. The *Arabidopsis* 2 oligonucleotide array of Agilent Technologies was used, representing 21,500 genes. The labeling, hybridization, and data extraction were done at ServiceXS (The Netherlands) according to the instructions of Agilent Technologies as previously described [4].

Bioinformatics analysis. Datasets resulting from the microarray experiments were subjected to hierarchical complete linkage clustering using the Cluster/Treeview program [12]. Transcripts showing a minimum fivefold difference in expression in at least one experiment were clustered in two-dimensions: transcripts and mutants. Promoter regions of genes from clusters with similar mode of expression and known cis-regulatory elements of the genes were retrieved from the *Arabidopsis* cis-regulatory elements database, Ohio State University (http://arabidopsis.med.ohio-state.edu/). Search for new common cis-regulatory elements was done with the MEME/MAST system developed at Purdue University (http://meme.nbcr.net/meme/intro.html).

Results

Isolation of atr1

The loh2 mutant of *Arabidopsis* is sensitive to AAL-toxin due to knockout of a gene involved in sphingolipid metabolism [4]. Forty thousand seeds from loh2 were chemically mutagenized with ethane methyl sulfonate, germinated on soil, self-pollinated and the resulting progeny plated on AAL-toxin-containing media in order to isolate mutants that are more tolerant to AAL-toxin than the original loh2 background. While the wild type *Arabidopsis* is resistant to 200 nM AAL-toxin, the loh2 mutant develops cell death symptoms at 20 nM AAL-toxin already and 40 nM of the toxin leads to lethality. Thirty independent survivors were isolated using a concentration of 40 nM AAL-toxin as a screening threshold. The first one of them, named atr1 (AAL-toxin resistant1), was selected for further analysis (Fig. 1). Genetic studies by crossing atr1 with the wild type and studying the progeny indicated that atr1 was recessive (data not shown). While atr1 displays a wild type phenotype when grown on soil, it develops less biomass than loh2 on growth media supplemented with 2% and 3% sucrose (Table 1).

Atr1 is more tolerant to ROS-generating herbicides

Earlier studies indicated that the AAL-toxin causes induction of ROS-associated genes and H₂O₂ accumulation that precedes the cell death [4]. To investigate this relation, the atr1 was also tested for tolerance to PCD induced by reactive oxygen species (Fig. 2). The catalase inhibitor aminotriazole (AT) leads to H₂O₂ accumulation and subsequent cell death [13], whereas paraquat causes superoxide-dependent cell death [14]. Application of either AT or paraquat in plant growth media caused reduction in growth as measured by fresh weight loss (Fig. 2), reduction in total chlorophyll content (Fig. 2) and eventually death of loh2. However, atr1 was more tolerant to both paraquat and AT than loh2, as estimated by the lack of cell death, smaller decrease in fresh weight and higher chlorophyll content. Atr1 was asymptomatic on 7 μM AT while the original loh2 background died (Fig. 3). AT inhibits catalase activity in both atr1 and loh2 plants with the same efficiency (data not shown), suggesting that atr1 may act downstream of hydrogen peroxide accumulation. As both AAL-toxin- and AT-induced cell deaths are light-dependent processes, we investigated the responses of loh2 and atr1 plants to light stress. Altering the light intensity from 60 to 600 μmol m⁻² s⁻¹ resulted in similar light stress responses in both mutants (data not shown). Atr1 and loh2 were also similar in their responses to chilling and salt stress (data not shown).

Gene expression analyses in loh2 and atr1 plants exposed to AT

While loh2 plants on media supplemented with AAL-toxin or paraquat die at a very early stage without developing fully expanded cotyledons, AT treatment allow loh2 plants to develop well-expanded cotyledons before they start dying and therefore constitute a very suitable system to analyze gene expression under cell death inducing conditions (Fig. 3). Microarray analyses of loh2 and atr1 under conditions that trigger cell death in loh2 and no visible damage in atr1 were carried out to identify genes specifically regulated in the two mutants. Both mutants were plated on medium without or with 7 μM AT, a condition that is eventually lethal for loh2 and asymptomatic for atr1 (Fig. 3). Samples for microarray analysis were collected on the fourth day after germination, two days before the first visible cell death symptoms in loh2. The complete datasets are available as supplementary material. Genes (219) with an at least fivefold increase or decrease in AT-treated loh2 or atr1 plants compared to untreated plants were subjected to hierarchical complete linkage clustering analysis [12] and the results presented in Fig. 4. The most regulated genes from Fig. 4 are presented in Table 2. The clustering revealed four prominent clusters: genes upregulated in both loh2 and atr1 (cluster A), genes upregulated in loh2 and downregulated or not regulated in atr1 (B), genes downregulated or not regulated in loh2 and upregulated in atr1 (C), and genes downregulated in both mutants (D). The two biggest clusters in Fig. 4, namely A and D, consist of genes co-reg-
regulated in both mutants, either coinduced (A) or corepressed (D). The cluster A comprise nitrate and ammonium transporters, peroxidases, transcription factors, a transposase, HSC70, WRKY and NAM family transcription factors, and a number of genes with unknown function. Twenty genes were exclusively induced in loh2 and not induced or downregulated in atr1 (cluster B), including four heat shock genes, two glycosyl transferases, a peptidylprolyl isomerase, and seven genes encoding for proteins with unknown functions. Seventeen genes were induced only in atr1, including two nicotianamine synthases, an allergen, and five genes with unknown functions. The cluster D of genes downregulated in both mutants contains two trypsin inhibitors, a protein kinase, arabinogalactans, expansins, xyloglucan endo-transglycosylases, a pectinesterase and proline-rich proteins.

In order to find common and specific cis-regulatory elements in the promoter regions of coregulated genes, promoters of those genes were analyzed for presence of known elements. Sequence binding sites for transcription factors of the WRKY, MYB, bZIP,
GATA zinc finger family were frequent in many of the regulated genes, although none of those were present in all of the regulated genes. Some of the AT-regulated genes contained one or several cis-regulatory elements reported to be involved in H2O2 signaling, including the recently identified B-box and NRXe-2 elements [15,16]. A computational approach could not detect new common cis-elements specific for the gene clusters.

Discussion

Taking advantage of a system for studying cell death triggered by AAL-toxin, second-site mutants more tolerant to AAL-toxin than the initial AAL-toxin-sensitive loh2 background have been isolated. Earlier investigations revealed that AAL-toxin-induced cell death is connected with a burst of H2O2 and the activation of H2O2-responsive/generating genes [4]. Moreover, comparative transcriptome analyses of ROS-related experiments showed that the responses to AAL-toxin and AT treatments fall into a common gene cluster of photorespiratory H2O2 [12]. The isolation of atr1 with enhanced tolerance to both AAL-toxin and ROS-generating agents is an additional genetic evidence for the link between AAL-toxin- and ROS-induced cell death. However, there is a clear difference between the symptoms of AAL-toxin-, AT- and paraquat-induced cell death,

Table 2

<table>
<thead>
<tr>
<th>Gene</th>
<th>TAIR locus</th>
<th>loh2</th>
<th>atr1</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-affinity nitrate transporter</td>
<td>At1G08090</td>
<td>8.205</td>
<td>57.23</td>
</tr>
<tr>
<td>Peroxidase</td>
<td>At2G18150</td>
<td>5.425</td>
<td>8.86</td>
</tr>
<tr>
<td>PEP carboxylase</td>
<td>At1G42110</td>
<td>7.445</td>
<td>5.76</td>
</tr>
<tr>
<td>Transposase</td>
<td>At5G02490</td>
<td>5.59</td>
<td>3.4</td>
</tr>
<tr>
<td>HSC70</td>
<td>At3G21720</td>
<td>9.77</td>
<td>2.67</td>
</tr>
<tr>
<td>Isocitrate lyase</td>
<td>At3G46230</td>
<td>12.733</td>
<td>1.43</td>
</tr>
<tr>
<td>Hsp17</td>
<td>At5G12030</td>
<td>8.625</td>
<td>1.3</td>
</tr>
<tr>
<td>Hsp17.6</td>
<td>At5G48570</td>
<td>3.63</td>
<td>1.04</td>
</tr>
<tr>
<td>Peptidylprolyl isomerase</td>
<td>At4G17030</td>
<td>1.61</td>
<td>4.72</td>
</tr>
<tr>
<td>Allergen-like</td>
<td>At5G60800</td>
<td>2.02</td>
<td>4.79</td>
</tr>
<tr>
<td>Nicotianamine synthase</td>
<td>At4G28850</td>
<td>-32.34</td>
<td>-56.05</td>
</tr>
<tr>
<td>Xyloglucan endo-transglycosylase</td>
<td>At2G18800</td>
<td>-30.595</td>
<td>-15.87</td>
</tr>
<tr>
<td>Extensin-like</td>
<td>At5G46890</td>
<td>-28.08</td>
<td>-23.74</td>
</tr>
<tr>
<td>Proline-rich protein</td>
<td>At2G33790</td>
<td>-27.72</td>
<td>-30.67</td>
</tr>
<tr>
<td>extA</td>
<td>At5G46900</td>
<td>-21.76</td>
<td>-20.9</td>
</tr>
<tr>
<td>Arabinogalactan AGP13</td>
<td>At2G25160</td>
<td>-10.145</td>
<td>-4.23</td>
</tr>
<tr>
<td>Cytochrome P450</td>
<td>At5G04860</td>
<td>-8.41</td>
<td>-54.26</td>
</tr>
<tr>
<td>Putative protein</td>
<td>At5G62340</td>
<td>-7.985</td>
<td>-14.92</td>
</tr>
<tr>
<td>Hypothetical protein</td>
<td>At1G09720</td>
<td>-6.72</td>
<td>-7.18</td>
</tr>
<tr>
<td>Putative protein</td>
<td>At4G25250</td>
<td>-7.35</td>
<td>-6.79</td>
</tr>
<tr>
<td>Tryptic inhibitor</td>
<td>At3G04320</td>
<td>-6.29</td>
<td>-7.59</td>
</tr>
<tr>
<td>Hypothetical</td>
<td>At3G18285</td>
<td>-12.57</td>
<td>-1.26</td>
</tr>
<tr>
<td>Ripening-related</td>
<td>At5G51520</td>
<td>-1.08</td>
<td>-8.18</td>
</tr>
</tbody>
</table>

Arabidopsis thaliana loh2 and atr1 mutants were grown on media without or with 7 μM AT and samples collected two days before cell death symptoms in loh2. Data are means of two biological replicates. Positive values indicate upregulated genes while negative values indicate downregulated genes.
suggesting that despite common production of H$_2$O$_2$ and similarities in gene expression, these treatments may activate different cell death signaling pathways. Recent discoveries of promoter regions and cis-regulatory elements specific for distinct types of ROS further support the notion for different ROS signaling pathways [16,17].

Both AAL-toxin- and AT-induced PCD are light-dependent processes. loh2 and atr1 showed similar responses towards light stress, suggesting that the mutation is specific to cell death and not to light-dependent stress responses. The two mutants are also undistinguishable in their responses to other abiotic stresses tested. In contrast, atr1 grows slower than loh2 on growth media supplemented with 2–3% sucrose but not on media without or with 1% sucrose and on soil (Table 1). The reason for this phenomenon is unknown but it could be a ‘trade-off’ price for the cell death tolerance of atr1.

AAL-toxin-induced PCD is connected with both depletion of complex ceramides and accumulation of precursors, as inhibiting serine palmitoyl transferase abolishes the cell death [5]. Likewise, mutation of serine palmitoyl transferase in fbr11 results in the absence of ROS burst upon F1B1-treatment and the lack of cell death [7]. Thus, atr1 seems to be different from fbr11. The inhibition of catalase activity by aminotriazole in both loh2 and atr1 suggests that the atr1 mutation may be interfering with signal perception or/and transduction rather than hydrogen peroxide accumulation. Alternatively, the mutation may inactivate a gene essential for regulation or execution of the cell death program that is situated below the hydrogen peroxide perception and transduction.

Previous studies of the transcriptome during hydrogen peroxide-mediated cell death in wild type plants revealed similarities in gene expression with our datasets, for example induction of hydrogen peroxide-sensitive HSC70, transcription factors and peroxidases [10,18–20]. The results here reveal new H$_2$O$_2$-regulated genes, including a nitrate transporter, trypsin inhibitors, and protein kinases. Microarray analyses also revealed that loh2 and atr1 have very similar patterns of gene expression and only a small percentage of the transcripts are exclusively regulated in loh2 or in atr1. Among them, two heat shock protein genes and a peptidylprolyl isomerase are induced only in loh2, an allergen-like gene is induced only in atr1, and a ripening-related gene is exclusively repressed in atr1. Heat shock proteins have diverse functions in plant biology and are rapidly induced under various conditions, including heat shock and oxidative stress [10,19,21]. While heat shock genes are extensively studied in plants, there is little functional data on plant peptidylprolyl isomerases [22].

Most of the repressed genes in loh2 and atr1 were related to cell wall metabolism, which in turn can govern cell growth and development. Expansins are primary wall-loosening factors that induce turgor-driven wall extension, while xyloglucan endo-transglucosylases as secondary factors reform the xyloglucan–cellulose wall structure, rendering it more responsive to the primary wall-loosening events [23]. The loose structure of the cell wall then allows growth of the cell. Repression of those genes, therefore, may inhibit plant growth and development. Indeed, growth inhibition that precedes cell death is clearly observed in loh2 and to a lesser extent in atr1; however, the growth inhibition in atr1 is eventually overcome and the plants continue to develop. In addition to expansins and xyloglucan endo-transglucosylases, the arabinogalactan proteins have also been implicated as regulators of cell growth and mediators of cell–cell interactions [24]. Downregulation of these genes is consistent with cessation of growth in both mutants and indicates that two distinct pathways may be activated by AT-induced oxidative stress: one controlling growth inhibition, active in both loh2 and atr1, and another triggering cell death, executed in loh2 but abolished in atr1.

Acknowledgments
Authors wish to thank K. Apel and I. Gadjev for helpful discussions. This work was supported in part by grants from the IAEA (Contract 13220), the Swiss NSF (SCOPES program, Project IB73A0-110774) and the NSF of Bulgaria (Projects G5/UB3).

Appendix A. Supplementary data
Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bbrc.2008.08.056.

References

